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Simple Random Sample(SRS)-Total ways

Consider the physicians data. Recall there were 25 physicians with
the number of visits for each of the physicians recorded. Suppose
we wish to construct all possible samples of size n=5. We have

T =
25!

(5!) (25 − 5!)

total samples of size 5.
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SRS-Probabilty not being included

In the simple random sampling scheme we can establish the
probability of being selected in a sample:

Probabilty not being included =

(
N − 1

n

)

(
N

n

)

=

N−1!
(N−1−n)!n!

N!
(N−n)!n!

=
(N − n)

N
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SRS-Probabilty being included

= 1 −
(

N − n

N

)

=
( n

N

)
.

We have to take into consideration these “likelihoods” of being
included or not included in the sample in constructing estimates of
our population parameters.

Instructor: C. L. Williams MthSc 406



Chapter 3

Some key things to remember
Sample statistics-Total, mean and proportion

Sample Total: The sample total is generally denoted by xT

and is the sum of the values over all elements in the sample:

xT =

n∑

i=1

xi

Sample Mean: The sample mean generally denoted by x̄ and
is the sum of the values in the sample divided by the sample
size:

x̄ =

∑n
i=1 xi

n

Sample Proportion: The sample proportion of a
dichotomous characteristic is generally denoted by px is given
by

px =
xt

n

Instructor: C. L. Williams MthSc 406



Chapter 3

Sample statistics

Sample Variance and standard deviation: The sample
variance s2

x is given by:

s2
x =

∑n
i=1 (xi − x̄)2

n − 1

Dichotomous

s2
x =

npx (1 − px)

n − 1

and for large sample sizes (> 20) an approximation can be
used

s2
x = px (1 − px)

Sample standard deviation

sx =
√

px (1 − px)
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Estimation of Population Characteristics

An estimate of the population total XT can be obtained from the
sample total xT as given

x ′

T =

(
N

n

)
(x)

An estimate σ2
x of the population variance σ2

x is given by

σ̂2
x =

(
N − 1

N

)
(s2

x )

If the number of elements N in the population large, (N-1)/N:

σ̂2
x ≈ s2

x
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Total Estimates

So in determining estimates of the population total under simple
random sampling we would construct our estimates by:

x ′

t =

N

n∑

i=1

xi

n

V̂ar(x ′

t) = N2

(
N − n

N

)(
s2
x

n

)

ŜE (x ′

t) = N

√
N − n

N

(
sx√
n

)

Note the fpc factor. Intuitively, we make this correction because
with small populations the greater the sampling fraction

(
n
N

)
, (ie.

the more likely an element will be included) the more information
we have about the population and hence the smaller the variability.
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Mean Estimates

x =

n∑

i=1

xi

n

V̂ar(x) =

(
N − n

N

)(
s2
x

n

)

ŜE (x) =

√
N − n

N

(
sx√
n

)
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Proportion Estimates

py =

n∑

i=1

yi

n

̂Var (py ) =

(
N − n

N

)
py (1 − py )

n − 1

ŜE (py ) =

√(
N − n

N

)√
py (1 − py )

n − 1
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Simple Random Sampling

Schools in Sample Totali Schools in Sample Totali
1,2,3 24 2,3,4 22
1,2,4 24 2,3,5 30
1,2,5 32 2,3,6 32
1,2,6 34 2,4,5 30
1.3,4 20 2,4,6 32
1,3,5 28 2,5,6 40
1,3.6 30 3,4,5 26
1,4,5 28 3,4,6 28
1,4.6 30 3,5,6 36
1,5,6 38 4,5,6 36
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Totali fi πi = fi
T

20 1 .05
22 1 .05
24 2 .10
26 1 .05
28 3 .15
30 4 .20
32 3 .15
34 1 .05
36 2 .10
38 1 .05
40 1 .05

Total 20 1.00
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E (x ′

t) = 20(0.05) + 22(0.05) + 24(0.10) + 26(0.05)

+ 28(0.15) + 30(0.20) + 32(0.15) + 34(0.05)

+ 36(0.10) + 38(0.05) + 40(0.05)

= 30.

The variance Var(x ′

t) of the sampling distribution of x ′

t is

Var(x ′

t) = (20 − 30)2(0.05) + (22 − 30)2(0.05) + (24 − 30)2(0.10)

+ (26 − 30)2(0.05) + (28 − 30)2(0.15) + (30 − 30)2(0.20)

+ (32 − 30)2(0.15) + (34 − 30)2(0.05) + (36 − 30)2(0.10)

+ (38 − 30)2(0.05) + (40 − 30)2(0.05)

= 26.4.
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Thus, we see that for simple random sampling, the estimated
population total, x ′

t , is an unbiased estimate of the population
total XT . The standard error of x ′

t given by the equation above is
directly proportional to σXT

, the standard deviation of the
distribution of XT the population total, in the population, and
inversely proportional to the square root of the sample size, n.
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The standard error also depends on the square root of the factor

(N − n)

(N − 1)
,

which is known as the finite population correction, and is often
denoted fpc.
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We can obtain some insight into the role played by the fpc by
examining its value for a hypothetical population containing N =
10,000 elements and for sample sizes as given in Table 3.3. From
this table we see that if the sample size, n, is very much less than
the population size, N, then the fpc is very close to unity and thus
will have very little influence on the numerical value of the
standard error SE(x ′

t) of the estimated total, x ′

t . On the other
hand, as n gets closer to N, the fpc decreases in magnitude and
thus will cause a reduction in the value of SE(x ′

t)

Instructor: C. L. Williams MthSc 406



Chapter 3

fpc

can be re-written as

√
fpc =

√
N − n

N − 1

=

√
N

N − 1
×
√

1 −
n

N

so for increasing sample sizes. . .

Sample Size,n fpc =
√

N−n
N−1

1 1.0000
10 .9995
100 .9950
500 .9747
1000 .9487
5000 .7071
9000 .3162
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Total Estimates

x ′

t =

N

n∑

i=1

xti

n

Var(x ′

t) = N2

(
N − n

N − 1

)(
σ2

XT

n

)

SE (x ′

t) = N

√
N − n

N − 1

(
σx√

n

)
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Mean Estimates

x =

n∑

i=1

xti

n

Var(x) =

(
N − n

N − 1

)(
σ2

xt

n

)

SE (x) =

√
N − n

N − 1

(
σx√
n

)
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Proportion Estimates

py =

n∑

i=1

yi

n

Var (py ) =

(
N − n

N

)
Py (1 − Py )

n − 1

SE (py ) =

√(
N − n

N − 1

)√
Py (1 − Py )

n
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Coefficients of Variation

We define the coefficient of variation CV
(
d̂
)

of an estimate d̂ of

a population parameter d as its standard error SE(d) divided by
the true value d of the parameter being estimated.

CV
(
d̂
)

=
Var

(
d̂
)

d̂

The square of the coefficient of variation CV 2
(
d̂
)

is a measure of

the relative variation of a estimate. That is the variation relative to
the estimate.
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Define

CV (PT ) =
σPT

X

then

CV (x ′

t) =

(
CV (PT )√

n

)√
N − n

N − 1

CV (x) =

(
CV (PT )√

n

)√
N − n

N − 1

CV (py ) =

(
1 − Py√

nPy

)√
N − n

N − 1
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Reliability of Estimates

The standard error of an estimate is a measure of the sampling
variability of the estimate over all possible samples. Under the
assumption that measurement error is nonexistent or negligible, the
reliability of an estimate can be judged by the size of the standard
error; the larger the standard error, the lower is the reliability of
the estimate (see Section 2.4). for reasonably large values of n

(say, greater than 20), distributions that are close to the normal or
Gaussian distribution, then we can use normal theory to obtain
approximate confidence intervals for the unknown population
parameters being estimated. For example, approximate 100(1 -
α)% confidence intervals for the population total are given by

x ′

t ± zα/2(N)

√
N − n

N

(
spt√

n

)

x ± zα/2

√
N − n

N

(
spt√

n

)

√ ( )
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Text Example

sample total = 44

spt = 3.48

x ′

t =

(
25

9

)
(44)

= 122.22

so that the confidence interval is given by:

122.22 ± 1.96(25)

√
25 − 9

25

(
3.48√

9

)

→ 122.22 ± 45.47

→ (76.75, 167.69)
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Note that the true population total, XT = 127, is covered by this
confidence interval. These 95% confidence intervals have the
following usual interpretation: if we were to repeatedly sample n
elements from this population according to the same sampling
plan, and if, for each sample, confidence intervals were calculated,
95% of such confidence intervals would include the true unknown
population parameter.
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If the variable has a nearly symmetric distribution and the sample
size is not small, then the confidence coefficients expressed in the
confidence intervals will be approximately correct. If the data are
badly skewed, however, and the sample size is small, the
confidence coefficients may be misleading (Exercise 3.1 illustrates
the situation using the data in Table 2.1).
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Indicator functions

We have previously discussed the idea of constructing a
dichotomous variable that would “indicate” the presence or the
absence of a condition or attribute. We can use this same idea a s
means to create subdomains of population for which we can do
similar sampling techniques. We recall the “indicator” function:

Y =

{
1
0
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Illustrative text example

Population: 6 families on one city block
Variable: Out of pocket medical expense

Out-of-Pocket
Medical Expense

Family Race (dollars)

1 W 500
2 B 350
3 B 430
4 W 280
5 W 170
6 B 50
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Population characteristics for Z/Y

Z

Y
=

$830

3
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Out-of-Pocket
Medical Expense

Family Race (dollars Xi ) Yi Zi

1 W 500 0 0
2 B 350 1 350
3 B 430 1 430
4 W 280 0 0
5 W 170 0 0
6 B 50 1 50

Yi =

{
1 African american family
0 Caucasian family
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Given the sampling distibution

Sample Elements z y z/y∗

1,2,3,4 780 2 390
1,2,3,5 780 2 390
1,2,3,6 830 3 276.67
1,2,4,5 350 1 350
1,2,4,6 400 2 200
1,2,5,6 400 2 200
1,3,4,5 430 1 430
1,3,4,6 480 2 240
1,3.5,6 480 2 240
1.4,5,6 50 1 50
2,3,4,5 780 2 390
2,3,4,6 830 3 276.67
2,3,5,6 830 3 276.67
2,4,5,6 400 2 200
3,4,5,6 480 2 240
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Using complementary indicator function

Out-of-Pocket
Medical Expense

Family Race (dollars Xi ) Yi Zi

1 W 500 1 500
2 B 350 0 0
3 B 430 0 0
4 W 280 1 280
5 W 170 1 170
6 B 50 0 0

Yi =

{
1 Caucasian family
0 African american family
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Complementary sampling distribution

Sample Elements z y z/y∗

1,2,3,4 780 2 390
1,2,3,5 670 2 335
1,2,3,6 500 1 500
1,2,4,5 950 3 316.667
1,2,4,6 780 2 390
1,2,5,6 670 2 335
1,3,4,5 950 3 316.667
1,3,4,6 780 2 390
1,3,5,6 670 2 335
1,4,5,6 950 3 316.667
2,3,4,5 450 2 225
2,3,4,6 280 1 280
2,3,5,6 170 1 170
2,4,5,6 450 2 225
3,4,5,6 450 2 225
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Similarly

We can show that E
(

z
y

)
=316.67 and SE

(
z
y

)
=81.165
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This approach of subdomains analysis is a special case or ratio
estimation that we we discuss in greater detail in chapter 7. In this
special case the ratio estimates are unbiased when the denominator
of the estimator (Z/Y) is the count of the elementary units
considered in the subdomain of interest, and if simple random
sampling is used.
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A exact expression for the standard error of an estimated mean for
the subdomain is unattainable, but for large value of the expected
number in the subdomain an approximate standard error is given
by:

SE

(
z

y

)
=

[
σz√
E (y)

]
×
√

Y − E (y)

Y − 1

where

σz =

√√√√√√√√√√




Y∑

i=1

(
Zi − Z

)2

Y




Instructor: C. L. Williams MthSc 406



Chapter 3

Standard Error Estimate

̂
SE

(
z

yt

)
=

[
σ̂z√
yt

]
×

√
y ′

t − yt

y ′

t − 1
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How large of a sample is needed
Illustrative Text Example-Setup

Recall for the forced vital capacity problem that we had a sample of
size forty(40) from a population of size 1200. In this case each of
the individuals randomly selected “represented” 30 of the factory
workers (including themselves). An interesting question should now
be addressed. How was the sample of size 40 selected? It is also
important to note that in order to determine a sample size a level
of reliability must be established. We already know that the larger
the sample the more reliable the estimates are, but the validity of
the sample is based solely on the process of obtaining the sample.
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How large of a sample is needed?
Illustrative Text Example-Setup

For example, suppose that from a hospital admitting 20,000
patients annually, a survey of hospital patients is to be taken for
the purpose of determining the proportion of the 20,000 patients
that received optimal care as defined by specified standards. The
quality care review committee planning the survey may feel that
some remedial action should be taken if fewer than 80% of the
patients are receiving optimal care.

N=20,000.

Take action if <80% receiving optimal care.
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In this instance, the committee would be concerned about
overestimates of the true proportion, but would probably not
be too concerned if the estimated proportion were 80% when
the true proportion were 75%.

The statistician might formulate this by saying that the user
would like to be “virtually certain” that the estimated
proportion differs from the true proportion by no more than
100[(80-75)/75]% or 6.67% of the true proportion.

Notice that bias=(80-75) and we’re considering a “relative
bias”. That is, bias relative to the true proportion.
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3 × SE (py ) = 3 ×
√

Py (1 − Py )

n

√
N − n

N − 1

→ 3 × SE (py ) ≤ 0.0667Py

→ 3 ×
√

Py (1 − Py )

n

√
N − n

N − 1
≤ 0.0667Py

or

n ≥
9NPy (1 − Py )

(N − 1) (0.667)2P2
y + 9Py (1 − Py )
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So setting Py=0.80 and N=20,000

n ≥
9(20, 000)(0.80) (0.20)

(19, 999) (0.0667)2(0.80)2 + 9(0.80) (0.20)

n ≥ 493.295 or 494.

See Box 3.5 for the Exact and approximate Sample size Required
under simple random sampling
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Exact Approximate

Total x ′

t n ≥ z2N(CVx )
2

z2(CVx )
2+(N−1)ǫ2

n ≥ z2(CVx )
2

ǫ2

Mean x̄ n ≥ z2N(CVx )
2

z2(CVx )
2+(N−1)ǫ2

n ≥ z2(CVx )
2

ǫ2
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Text Illustrative Example

A sample survey of retail pharmacies is to be conducted in a state
that contains 2500 pharmacies. The purpose of the survey is to
estimate the average retail price of 20 tablets of a commonly used
vasodilator drug. An estimate is needed that is within 10 % of the
true value of the average retail price in the state. A list of all
pharmacies is available and a simple random sample is to be taken
from the list. A phone survey of 20 of N = 1000 pharmacies in
another state showed an average price of $7.00 for 20 tablets with
a standard deviation of $1.40.
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CV (x)2 =
[(N − 1)/N]s2

x

x2

=
[999/1000](1.4)2

(7.00)2

= 0.04
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with a tiny ǫ = 0.1 and N=2500. Using the exact formula from
Box 3.5

n =
9(2500)(0.04)

9(0.04) + 2499(0.1)2

= 35.6

≈ 36.
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