
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Introduction to S-Plus for UNIX
(with exercises)

Diego Kuonen

Chair of Statistics

Department of Mathematics

Swiss Federal Institute of Technology

1015 Lausanne, Switzerland

http://statwww.epfl.ch

Fourth Edition
February 2001

c© 1999–2001 by Diego Kuonen, DMA, EPFL.

Diego Kuonen
DMA–Ecublens
EPFL
CH–1015 Lausanne

Phone: + 41 (0) 21 693 5508
Fax: + 41 (0) 21 693 4250

Diego@Kuonen.com

http://stat.kuonen.com

As the ability to cut and paste is very convenient in writing S-Plus code, the examples
in this manuscript were developed by cut and paste between the LATEX source and a
window running on S-Plus. The figures were generated in PostScript, and were directly
incorporated.

This guide may be freely copied and redistributed for any educational purpose provided
its authorship is clearly stated.

Preface

S-Plus is a powerful tool for interactive data examination, creation of graphs, and
implementation of customized routines based on the S language of AT&T Bell Labs (Lu-
cent Technologies). The modern concept together with its flexibility makes it appealing
to data analysts from all scientific fields. Among its many strengths are its powerful but
flexible graphics routines, and its facility for writing functions whereby you may either
modify an existing function, or create one of your own. Most standard statistical tech-
niques and many non-standard ones besides are already programmed in S-Plus, making
exploratory and formal statistical analysis very easy.

This guide was written to give a solid but quick introduction to the S-Plus environ-
ment. If you have never used S-Plus before, this guide will get you up to speed quickly.
So, the present guide is primarily intended for the S-Plus novice. With the provided
groundwork in place, it is then possible to tackle the really sophisticated functions and
to write your own. If a specific problem is not covered in this guide, you should be able
to find the answer in one of the books and manuals on S-Plus.

This manuscript was written to accompany the introduction course to S-Plus given
at the Department of Mathematics at the Swiss Federal Institute of Technology in Lau-
sanne. Although it has been written for a particular environment, S-Plus 3.4 for UNIX,
I have tried as far as practicable to make the guide independent of the computing envi-
ronment and the exact version of S-Plus in use. This manuscript is also useful with R,
a freely-available open-source statistical system ‘not unlike S’. I have tried where possible

i

ii

to use code that works in all versions of S-Plus and in R. In addition to the first edition
the present manuscript includes a new chapter on a short comparison of S-Plus 5.x with
S-Plus 3.4. Moreover, it is assumed to work with a graphical user interface (GUI) such as
Motif or Microsoft Windows, or at a X-terminal. Finally, the webpage of the introduction
course to S-Plus and of the present manuscript is

http://statwww.epfl.ch/splus/

Many people influenced this manuscript and contributed directly or indirectly. They
are far too numerous to mention. I would like to thank all of them. A special thank goes to
Christian Sangiorgio from the Seminar für Statistik at the ETHZ in Zürich for providing
me with their course material on their ‘Einführung in S-Plus’ course. Moreover, special
thanks go to Prof. Anthony C. Davison and Reinhard Furrer for their valuables comments
and suggestions.

Diego Kuonen,

Lausanne, February, 2001.

Typographical Conventions

Throughout this guide S-Plus language constructs and commands are set in typewriter
font like this, or in using the S-Plus prompt ‘>’ like

> S-Plus command

or

> S-Plus command # comment on the S-Plus command

The prompt $ is used as the standard prompt for the UNIX shell, e.g.

$ UNIX command

Finally, keyboard keys are written in capital letters, e.g. press the RETURN key.

Contents

1 Introduction 1

1.1 The History of S and S-Plus . 1

1.2 Award-winning S Language . 2

1.3 Available Documentation . 2

1.3.1 Online Help . 2

1.3.2 Printed and Online Manuals . 3

1.3.3 StatLib . 3

1.3.4 S-News . 4

1.3.5 Other Books . 4

1.3.6 Statistics Related Information . 5

1.4 Essentials . 6

1.4.1 Getting Started . 6

1.4.2 Quitting . 9

1.4.3 The Help System . 9

1.4.4 General Information . 12

1.4.5 Command Line Editing . 13

2 Introductory Session: How to Beat the Lottery 15

iii

iv CONTENTS

3 Data Manipulation 21

3.1 Basic Data Manipulation . 21

3.1.1 Numbers and Vectors . 21

3.1.2 Matrices and Arrays . 25

3.1.3 Lists and Data Frames . 29

3.1.4 Logical and Missing Values . 32

3.2 Importing and Exporting Data . 34

3.2.1 Notes on Importing . 35

3.2.2 Notes on Exporting . 37

3.3 Exercises . 38

4 Graphics 43

4.1 Introduction . 43

4.2 High-level Plotting Commands . 44

4.3 Low-level Plotting Commands . 47

4.4 Interactive Graphics Functions . 49

4.5 Graphics Parameters . 49

4.6 Exercises . 50

5 Exploring Data 53

5.1 Multivariate Data Exploration . 53

5.2 Exercises . 56

6 Statistical Functions 59

6.1 Densities and Distributions . 59

6.1.1 Randomness . 61

6.1.2 QQ-Plots . 61

6.2 Basic Statistics . 62

6.3 Standard Tests . 64

6.4 Exercises . 65

CONTENTS v

7 Statistical Models 69

7.1 Basic Formulas . 69

7.2 Linear Models: lm . 70

7.3 Others Models . 73

7.4 Exercises . 74

8 S-Plus Functions 79

8.1 Loops and Conditional Execution . 79

8.1.1 Grouped Expressions . 79

8.1.2 Control Statements . 79

8.2 Function Syntax . 81

8.3 The apply Family . 82

8.4 Debugging in S-Plus . 84

8.5 Exercises . 84

9 Miscellany 85

9.1 Use a Library . 85

9.2 Load C or Fortran Code . 86

9.3 ESS: Emacs Speaks Statistics . 86

9.4 R: the ‘GNU S’ . 86

10 Comparison of S-Plus 5.x with S-Plus 3.4 89

10.1 Backward Compatibility Issues . 89

10.2 The New Help System . 90

10.3 Changes in Debugging . 91

10.4 Migrating C and Fortran Code . 91

11 Conclusion 93

Bibliography 95

vi CONTENTS

List of Figures 97

List of Tables 98

Chapter 1
Introduction

1.1 The History of S and S-Plus

S is a very high level language and an environment for data analysis and graphics. S
was written by Richard A. Becker, John M. Chambers, and Allan R. Wilks at Lucent
Technologies (formerly AT&T Bell Laboratories) Statistics Research Department. S is a
very general tool, so that applications are not restricted to any particular subject area.
One way to think of it is to imagine the wide range of applications that can be handled
by a spreadsheet program — but think of an even broader range of applications because
S is much more flexible for complex computations. As examples, S has been used for
computing in areas like business, finance and experimental science.

Of fundamental importance is that S is a language. This makes S much more useful
than if it were merely a ‘package’ for statistics or graphics or mathematics. Imagine if
English were not a language, but merely a collection of words that could only be used
individually — a package. Then what is expressed in this sentence is far more complex
than any meaning that could be expressed with the English package. That is why the
authors of S prefer that you not call S a statistics package. Most of the people who use S
have no attachment to statistics, and most of the S applications involve basic quantitative
computations and graphics. In S, all functions are tightly integrated and controlled by
the S language.

S-Plus is a value-added version of S sold by Insightful Corporation (formerly Math-
Soft, Inc.), and it is a fully supported and documented application which has been com-
piled and tested on numerous architectures. It is available in both UNIX and Windows
versions. The latest version of S-Plus is even running on the most affordable platform:
Linux. In all, S-Plus offers a very comprehensive set of functions with over 4,000 built-in
functions.

S is a subset of S-Plus, and hence anything which may be done in S may be done in
S-Plus. In addition S-Plus has extended functionality in a wide variety areas, including

1

2 CHAPTER 1. INTRODUCTION

robust regression, modern nonparametric regression, time series, survival analysis, mul-
tivariate analysis, classical statistical tests, quality control, graphics drivers and many
more. Add-on modules add additional capabilities for wavelet analysis, spatial statistics,
financial analysis and design of experiments. In addition, the newer S-Plus versions for
Windows introduces a full-featured graphical user interface.

An electronic source for information on S-Plus is the Insightful Corporation web site.
The URL for this site is

http://www.insightful.com

1.2 Award-winning S Language

The S System was recently recognized with the prestigious ‘Association for Computing
Machinery (ACM) Software Systems Award’. The ACM named John M. Chambers of
Bell Labs as the recipient of the 1998 ‘Software System Award’ for developing the S Sys-
tem. The ACM’s citation notes that Chambers’s work ‘forever altered the way people

analyze, visualize, and manipulate data... S is an elegant, widely accepted, and enduring

software system, with conceptual integrity, thanks to the insight, taste, and effort of John

Chambers.’ Note that the ‘System Software Award’ recognizes those who develop soft-
ware systems having a lasting influence. Software systems recognized by previous awards
have included such cornerstones of modern computing as the UNIX operating system, the
World Wide Web, TCP/IP, and the Postscript language.

1.3 Available Documentation

There are a variety of ways to accelerate your progress with S-Plus, and to build upon
the work of others. This section describes the learning and support resources available to
S-Plus users.

1.3.1 Online Help

S-Plus offers an online help system to make learning and using S-Plus easier. Moreover,
the UNIX version of S-Plus 3.4 provides a convenient menu-driven help system, while
in the Windows version help is provided through the Windows Help system. The latest
UNIX version of S-Plus 5.1 introduces a new help system which displays help as HTML-
formatted text (see also Chapter 10).

1.3. AVAILABLE DOCUMENTATION 3

1.3.2 Printed and Online Manuals

All S-Plus versions come with several manuals. For instance the UNIX/Linux version
comes with the ‘User’s Guide’, the ‘S-Plus Guide to Statistics (Part I and II)’, and
the ‘S-Plus Installation and Maintenance Guide’. The entire S-Plus documentation
for Windows and UNIX/Linux is also available from the following Insightful Corporation
web site

http://www.insightful.com/resources/doc/

A collection of whitepapers and application notes on S-Plus you will at

http://www.insightful.com/resources/whitepapers/

and the ‘S-Plus Instructor’s Corner’ — a resource for instructors teaching data anal-
ysis and statistics using S-Plus — under

http://www.insightful.com/resources/inst-corner/

An additional online book that is geared towards those who are programming in S is

http://www.seanet.com/~pburns/Spoetry/

Finally, a HTML-based help system for S-Plus 3.4 you will find at the URL

www.uni-muenster.de/ZIV/Mitarbeiter/BennoSueselbeck/s-html/shelp.html

1.3.3 StatLib

StatLib is a system for distributing statistical software, data sets, and information by
electronic mail, FTP and the World Wide Web. It contains a wealth of user-contributed
S-Plus functions. To access StatLib by FTP, open a connection to: lib.stat.cmu.edu.
Login as anonymous and send your e-mail address as your password. The FAQ (‘Fre-
quently Asked Questions’) is in /S/FAQ, or in HTML format at

http://www.stat.math.ethz.ch/S-FAQ/

To access StatLib with a web browser, visit

http://lib.stat.cmu.edu

To access StatLib by e-mail, send the message:

send index from S

4 CHAPTER 1. INTRODUCTION

to statlib@lib.stat.cmu.edu. You can then request any item in StatLib with the
request send item from S where item is the name of the item.

1.3.4 S-News

S-news is an electronic mailing list by which S-Plus users can ask questions and share
information with other users. To get on this list, send a message with message body
subscribe to

s-news-request@wubios.wustl.edu

To get off this list, send a message with body unsubscribe to the same address. Once
enrolled on the list, you will begin to receive e-mail. To send a message to the S-news
mailing list, send it to s-news@wubios.wustl.edu. Do not send subscription requests
to the full list; use the s-news-request address shown above. The S-news mailing list
archives are available at

http://www.biostat.wustl.edu/s-news/s-news-archive/

1.3.5 Other Books

The primary references for S are the books by its creators:

Becker R. A., Chambers J. M. and Wilks A. R. (1988), The New S Language,
Chapman and Hall, London.

Chambers J. M. and Hastie T. J. (1992), Statistical Models in S, Chapman and Hall,
London.

Chambers J. M. (1998), Programming with Data, Springer, New York.

Other books which discuss particular aspects of S and S-Plus include the following:

Bowman A. W. and Azzalini A. (1997), Applied Smoothing Techniques for Data

Analysis: The Kernel Approach with S-Plus Illustrations, Oxford University Press,
Oxford.

Cleveland W. (1993), Visualizing Data, Hobart Press, Summit, New Jersey.

Davison A. C. and Hinkley D. V. (1997), Bootstrap Methods and Their Application,
Cambridge University Press, Cambridge.

Everitt B. (1994), A Handbook of Statistical Analyses using S-Plus, Chapman and
Hall, London.

Härdle W. (1991), Smoothing Techniques with Implementation in S, Springer, New
York.

1.3. AVAILABLE DOCUMENTATION 5

Krause A. and Olson M. (1997), The Basics of S and S-Plus, Springer, New York.

Marazzi A. (1993), Algorithms, Routines and S Functions for Robust Statistics,
Chapman and Hall, London.

Spector P. (1994), An Introduction to S and S-Plus, Duxbury Press, Belmont, Cal-
ifornia.

Venables W. N. and Ripley B. D. (1999), Modern Applied Statistics with S-Plus,
Third Ed., Springer, New York.

Venables W. N. and Ripley B. D. (2000), S Programming, Springer, New York.

They go far beyond the coverage of this guide, including many topics (such as robust
statistics, non-linear regressions, modern regression, survival analysis, tree-based models,
time series and spatial statistics) not covered here, as well as in greater depth on what is
covered. Moreover, for readers of German there are:

Böker F. (1997), S-Plus – Learning by Doing: Eine Anleitung zum Arbeiten mit

S-PLUS, Verlag Lucius & Lucius, Stuttgart.

Krause A. (1997), Einführung in S und S-Plus, Springer Verlag, New York.

Suselbeck B. (1993), S und S-Plus: Eine Einführung in Programmierung und An-

wendung, Gustav Fischer Verlag, Jenna.

For readers of French there is:

Baumgartner M. (1994), Une introduction à S-Plus Version 3.1 pour Silicon Graph-

ics Iris, Département de Mathématiques, Chaire de Statistique, EPFL, CH-1015
Lausanne.

The later can be downloaded from the course home page:

http://statwww.epfl.ch/splus/

An up-to-date list of texts and books on S and S-Plus is:

http://www.insightful.com/resources/biblio.html

1.3.6 Statistics Related Information

Statistics related information you will find at

http://www.statoo.com

On this site you can find easily and quickly anything related to statistics.

6 CHAPTER 1. INTRODUCTION

1.4 Essentials

This section covers the basics of starting S-Plus, of constructing S-Plus expressions, of
getting help by use of the built-in help system, and some general information.

1.4.1 Getting Started

To start S-Plus, type the following at the UNIX shell prompt, and press the RETURN
key:

$ Splus

Only the ‘S’ is capitalized. When you press RETURN, a copyright message appears:

S-PLUS : Copyright (c) 1988, 1996 MathSoft, Inc.

S : Copyright AT&T.

Version 3.4 Release 1 for Silicon Graphics Iris, IRIX 5.3 : 1996

Working data will be in .Data

>

You get the S-Plus prompt ‘>’, waiting for input from you. You can use S-Plus by
typing expressions after the prompt and pressing the RETURN key. Among the simplest
S-Plus expressions are arithmetic ones such as

> 8+9

[1] 17

> 8*9

[1] 72

The symbols ‘+’ and ‘*’ represent S-Plus operators for addition and multiplication,
respectively. In addition to the usual arithmetic and logical operators, S-Plus has special
operators for special purposes. For example, the colon operator ‘:’ is used to obtain
sequences:

> 1:9

[1] 1 2 3 4 5 6 7 8 9

The [1] in each of the output lines is the index of the first S-Plus response on the line of
S-Plus output. If S-Plus is responding with a long vector of results, each line is preceded
by the index of the first response of that line. The most common S-Plus expression is the
function call. An example of a function in S-Plus is the c function, used for ‘combining’
comma-separated lists of items into a single item. Functions calls are always followed by
a pair of parentheses, with or without any arguments in the parentheses. An example is
given by

1.4. ESSENTIALS 7

> c(1,5,8,9)

[1] 1 5 8 9

Let us now introduce some basic typing syntax and conventions in S-Plus. Note that
S-Plus ignores most spaces, for example:

> 8+ 9

[1] 17

However, do not put spaces in the middle of numbers or names. For example, if you wish
to add 321 and 1, the expression 32 1+1 causes an error. Also, when you type a RETURN
and it is clear to S-Plus that an expression is incomplete (for example, the last character
is an operator, or there is a missing parenthesis), S-Plus provides a continuation prompt
to remind you to complete the expression. The default continuation prompt is ‘+’. Here
are two examples of incomplete expressions

> 8*

+ 9

[1] 72

> c(1,5,

+ 8,

+ 9

+)

[1] 1 5 8 9

In each of the above cases, the user completed the expression after the continuation
prompt, ‘+’, and then S-Plus responded with the result of the evaluation of the complete
expression.

Sometimes you may want to stop the evaluation of an S-Plus expression. For example,
you may suddenly realize you want to use a different command, or the output display of
data on the screen is extremely long and you do not want to look at all of it. To interrupt
S-Plus, use the UNIX interrupt command, which on most systems consists of CTRL-C
(pressing the C key while holding down the CONTROL key).

Elementary commands consist of either expressions or assignments. If an expression is
given as a command, it is evaluated, printed, and the value is discarded. An assignment
also evaluates an expression and passes the value, which can be changed, but the default
is assumed here. In fact it is kept in the (hidden) variable .Last.value:

> .Last.value

[1] 1 5 8 9

So far, in all of the examples, S-Plus has simply returned a value. To reuse the value of
an S-Plus expression, you must assign it with the ‘<-’ operator. For example, to assign
the expression c(1,5,8,9) to an S-Plus object named myvector, you would type

8 CHAPTER 1. INTRODUCTION

> myvector <- c(1,5,8,9)

S-Plus creates the object myvector and returns an S-Plus prompt. To view the contents
of the newly created object, just type its name

> myvector

[1] 1 5 8 9

Like most UNIX-based packages S-Plus is case sensitive, and so all S-Plus objects,
arguments, names, and so on. In the following example, you get an error message if you
do not type myvector exactly as stated, including matching all upper case and lower case
letters.

> Myvector

Error: Object "Myvector" not found

> MYVECTOR

Error: Object "MYVECTOR" not found

To get a list of all the S-Plus objects in your .Data directory — the S-Plus working
directory, where all the objects you create are stored — type

> ls()

[1] "myvector"

A more sophisticated version of ls is the function objects, which can be used to list only
a subset of the objects. To find all the objects starting with ‘m’ in the working directory,
use

> objects(pattern="^m")

[1] "myvector"

To remove a object, say myvector, from this directory, type

> rm(myvector)

It is important to note that objects in your .Data directory will take precedence over
system objects of the same name. This is a frequent cause of rather obscure errors, and
can cause apparently correct behavior but erroneous results. Avoid using names such as
c, s, t, etc. for your own objects. Say you want to create an object called t:

> t <- c(1,5,8,9)

> t

[1] 1 5 8 9

1.4. ESSENTIALS 9

Everything seems to work fine, but in removing t from your .Data directory and in
recalling t,

> rm(t)

> t

function(x)

UseMethod("t")

you see that this object already exists — as we will see later, it returns a matrix which
is the transpose of the input matrix. Note that this is a generic function (UseMethod),
meaning that the action depends on the type of object given as an argument. These func-
tions are utility functions for object-oriented programming. The idea of object-oriented
programming is simple, but carries a lot of weight. Here is the whole thing: if you told
a group of people to dress for work, then you would expect each to put on clothes ap-
propriate for that individual’s job. Likewise it is possible for S objects to get dressed
appropriately depending on what class of object they are. Object-orientation simplifies.
If you want to print an object, you do not need to find out what type of object it is, then
try to remember the proper function to use on that type of object, and then do it. You
merely use print and the right thing happens, e.g.

> print(myvector)

[1] 1 5 8 9

It can also simplify programming. Programming is simplified for the reason above, and
it also suggests a proper ensemble of functions to write for a particular application. Al-
though technical information is more sparse than one would hope at the S-Plus site of
MathSoft, there is a very useful article on this issue by Richard Calaway:

http://www.mathsoft.com/spress/Oop.htm

1.4.2 Quitting

Finally, to quit S-Plus and get back to UNIX, use the q function:

> q()

The ‘()’ are required with the q command to quit S-Plus because q is an S-Plus

function. Parentheses are required with all S-Plus functions.

1.4.3 The Help System

If you need help at any time during an S-Plus session, you can obtain it easily with the
? and help functions. The ? function has simpler syntax — it requires no parentheses
in most instances:

10 CHAPTER 1. INTRODUCTION

> ?t

Matrix Transpose

DESCRIPTION:

Returns a matrix which is the transpose of the input.

This is a generic function. In particular, there are t

methods for various matrix classes in the Matrix library.

USAGE:

t(x)

t.default(x)

REQUIRED ARGUMENTS:

x: matrix. Missing values (NAs) are allowed.

VALUE:

transpose of x (rows of x are columns of the result, so

that t(x)[j, i] is the same as x[i, j]).

SEE ALSO:

aperm for the generalized transpose of arrays. solve for

the inverse of a matrix. library(help = Matrix) for a

general description of the Matrix library.

EXAMPLES:

amat <- author.count[1:2,]

t(amat)

The same result is given by help(t). Both ? and help use the less pager (provided with
S-Plus) to display the requested help. You can use the ‘d’ and ‘u’ keys to page down
and up, respectively; use the ‘q’ key to exit help and return to the S-Plus prompt. The
? command is particularly useful for obtaining information on classes and methods. If
you use ? with a function call, S-Plus offers documentation on the function name itself
and on all methods that might be used with the function if evaluated. In particular,
if the function call is methods(name), where name is a function name, S-Plus offers
documentation on all methods for name available in the current search list. For example,

> ?methods(t)

The following are possible methods for t

Select any for which you want to see documentation:

1: t.data.frame

2: t.default

3: t.test

Selection:

1.4. ESSENTIALS 11

You enter the number of the desired method and S-Plus prints the associated help file,
if it exists — the ? command does not check for the existence of the help files before
constructing the menu. After each menu selection, S-Plus presents an updated menu
showing the remaining choices. To get back to the S-Plus prompt from within a ? menu,
enter ‘0’. You call help with the name of an S-Plus function, operator, or data set as
argument.

To get the most information from the S-Plus help system, you should become familiar
with the general arrangement of help files. Help files are organized as follows (not all files
contain all sections):

• DESCRIPTION. A brief description of the function’s main use.

• USAGE. Provides the correct syntax for a call to the function. Arguments for which
just the argument name is given are required, while arguments stated in the form
name = value are optional arguments, where the given value is the default value.

• REQUIRED ARGUMENTS. Lists arguments required in every call to the function. If not
supplied, an error results.

• OPTIONAL ARGUMENTS. Lists arguments that may be supplied in a call to the func-
tion. If not supplied, default values are used.

• SIDE EFFECTS. Lists any effects of the function other than returning a value.

• DETAILS. Documents some of the computational details describing the implementa-
tion of the function.

• REFERENCES. References to scientific literature or books which describe in further
detail the methodology or interpretation of the results of this function.

• SEE ALSO. Lists related S-Plus functions.

• EXAMPLES. Gives examples of use of the function.

Under the X11 window system, the help file can be forced to appear in its own window,

> help(t, window=T)

where T stands for TRUE. Assumed that the printer environment variable is set, the help
page can be printed by

> help(t, offline=T)

For a feature specified by special characters care is needed. For example:

12 CHAPTER 1. INTRODUCTION

> help(+)

Syntax error: ")" used illegally at this point:

help(+)

In such cases the argument must be included in double (""), or single quotes (’’), making
it an entity known in S-Plus as character string. Two alternative ways of getting help
on the addition operator are

> help("+")

> ?"+"

The S-Plus version 3.4 for UNIX has also a window system, which allows you to search
for help files by topic and to display them. You can look at many help files at the same
time and keep them on the screen as you continue working. Type

> help.start(gui=’motif’)

S-Plus 5.1 introduces a new help system to replace the nroff-based system used in earlier
versions of S-Plus. The new help system displays help as HTML-formatted text, by
default using a modified version of the Lynx terminal-based browser. If you have Netscape
Navigator on the machine you use to run S-Plus, you can choose to have help displayed
in your Navigator window. The help.start function has been restored, but now uses
your Netscape Navigator window to display its menu of function and dataset help files.
A short comparison of S-Plus 5.x with S-Plus 3.4 is given in Chapter 10.

1.4.4 General Information

All the objects you create in S-Plus are stored in a directory .Data. Note that as the
directory name .Data begins with ‘.’ it will normally be hidden in file listings from UNIX
by ls. To see it, type the following at the UNIX shell prompt:

$ ls -al

If there is a .Data directory in the current directory when S-Plus is invoked, that di-
rectory is used rather than the directory of your home directory, or such a directory is
created with a warning:

Initializing login directory for new S-PLUS user.

The following provides one way to organize your S-Plus, using separate directories for
each project, e.g. suppose you want to have a new working directory for S-Plus, say
mysplus:

1.4. ESSENTIALS 13

$ mkdir mysplus

Now, change to this directory:

$ cd mysplus

and make a subdirectory of mysplus called .Data:

$ mkdir .Data

This subdirectory is for use by S-Plus itself. Note that this directory only has to be cre-
ated once. An advantage of S-Plus is that all created objects are stored in the directory
.Data, and they are retained until explicitly deleted. So, in in contrast to other statisti-
cal softwares, where you have to explicitly state what you want to save before quitting,
the created S-Plus objects remain permanently even after quitting S-Plus. By the time
your .Data directory may contain a few hundred objects, and so you should clean up your
.Data directory from time to time in order to not be yelled by your system administrator
for hogging all the disk-space.

S-Plus keeps a record of all commands in the .Audit file in your .Data. This is a
hidden file and can grow rather fast as well. To clean out the .Audit file entirely, type

$ Splus TRUNC_AUDIT 0

The following output is produced:

Truncating audit file (.Data/.Audit) to most recent 0 characters

Audit file reset

If you like to keep the most recent 100000 characters, type

$ Splus TRUNC_AUDIT

1.4.5 Command Line Editing

Included with S-Plus is a command line editor that can help improve your productivity
by enabling you to recall and edit previously issued S-Plus commands. The editor can
do either emacs- or vi-style editing. To be valid, the value for the environment variable
S CLEDITOR must be ‘vi’ or ‘emacs’, i.e. in the UNIX shell type

$ setenv S_CLEDITOR emacs

14 CHAPTER 1. INTRODUCTION

To use the command line editor within S-Plus, start S-Plus with the following com-
mand:

$ Splus -e

Table 1.1 summarizes the most useful editing commands for the emacs mode of the com-
mand line editor.

Table 1.1: Command line editing for the emacs mode in S-Plus.

Action Emacs keystrokes

backward character CTRL-B
forward character CTRL-F
previous line CTRL-P
next line CTRL-N
beginning of line CTRL-A
end of line CTRL-E
forward word ESC-F
backward word ESC-B
kill char CTRL-D
kill line CTRL-K
delete word ESC-D
search backward CTRL-R
transpose chars CTRL-T

Moreover, to avoid forgetting to involve these two commands in order to start S-Plus,
you can use an alias, which for C-shell users would look like:

alias S ’setenv S_CLEDITOR emacs; Splus -e’

As an example of using the command line editor, suppose you have started S-Plus with
the emacs option. Suppose you wanted to get some help on the plot function by typing
the following:

> help(plto)

No documentation available for ’plto’

Type CTRL-P to recall the previous line, then use CTRL-B to return to the ‘t’ in ‘plto’.
Finally, type CTRL-T to transpose the ‘t’ and the ‘o’. Press RETURN to issue the edited
command.

Chapter 2
Introductory Session: How to Beat the

Lottery

One of the best ways to getting acquainted with S-Plus is to use it to help you to
understand a particular set of data. So let us consider data issued from the lottery, where
you might be motivated to perform data analysis. The readers are invited to work through
the following familiarization session and see what happens. First-time users may not yet
understand every detail, but the best plan is to type what you see and observe what
happens as a result.

This chapter is mainly based on Becker, Chambers and Wilks’s book (1988, The New

S Language, Chapter 1).

The specific data we will look at concerns the New Jersey Pick-It Lottery. Our data is
for 254 drawings just after the lottery was started, from May, 1975 to March, 1976. Pick-
It is a parimutuel game, meaning that the winners share a fraction of the money taken
in for the particular drawing. Each ticket cost fifty cents and at the time of purchase the
player picks a three-digit number ranging from 000 to 999. The money bet during the
day is placed in a prize pool and anyone who picked the winning number shares equally
in the pool.

The data available gives for each drawing the winning number and the payoff for a
winning ticket. The winning numbers and the corresponding payoffs are:

> lottery.number # print the winning numbers

> lottery.payoff # print the payoffs

To get a description of the data, type

> help(lottery.number)

> help(lottery.payoff)

15

16 CHAPTER 2. INTRODUCTORY SESSION: HOW TO BEAT THE LOTTERY

This data are an example of so-called built-in data, which come with S-Plus. A list
of all built-in data is given in the printed S-Plus manuals.

From the print of the two data we notice that, for the first drawing, the winning
number was 810 and it paid $190.00 to each winning ticket holder. In what follows we
will try to examine the data. Numerical summaries provide a statistical synopsis of the
data in a tabular format. Such a function is summary. The following displays a summary
of the lottery payoffs:

> summary(lottery.payoff)

Min. 1st Qu. Median Mean 3rd Qu. Max.

83 194.2 270.2 290.4 364 869.5

We read from this that the mean payoff was $290.4, that the payoffs ranged from $83 to
$869.5 and that 50% off all payoffs lay between $194.2 and $364. The quantiles for a set
of data x can also be computed by means of quantile(x, quantiles). For example,

> quantile(lottery.payoff, c(.25, .75))

25% 75%

194.25 364

This means that 25% of the values are less than 194, and 75% of the payoffs are less than
365.

A better way to understand the data is to look at it graphically. To do so, you have
to turn on the graphics window. For the X11 window system a possible device is:

> motif()

A separate window should appear on your screen.

In our data, to detect long-term irregularities we will look at the winning numbers to
see if they appear to be chosen at random. To do so we could produce a histogram of the
lottery numbers:

> hist(lottery.number)

The histogram is shown in Figure 2.1. Since there are 10 bars, the count should be
approximately 25 bar at the left represents the one time that 000 was the winning num-
ber. It looks fairly flat — no need to inform a jury.

Of course, most of our attention will probably be directed at the payoffs. Elementary
probabilistic reasoning tells us that a single number we pick has a 1 in 1000 chance of
winning. If we play many times, we expect about 1 winning number per 1000 plays. Since
a ticket costs fifty cents, 1000 plays will cost $500, so we hope to win at least $500 each
time we win, otherwise we will lose money in the long run. So, let us make a histogram

17

0 200 400 600 800 1000

0
10

20
30

lottery.number

Figure 2.1: Histogram of the winning numbers from 254 lottery drawings.

of the payoffs.

> hist(lottery.payoff)

Figure 2.2 shows that payoffs range from less than $100 to more than $800, although the
bulk of the payoffs are between $100 and $400, i.e. there were a number of payoffs larger
than $500 — perhaps we have a chance. The widely varying payoffs are primarily due to
the parimutuel betting in the lottery: if you win when few others win, you will get a large
payoff. If you are unlucky enough to win along with others, the payoff may be relatively
small.

0 200 400 600 800

0
20

40
60

80

lottery.payoff

Figure 2.2: Histogram of the lottery payoffs.

Let us see what the largest and the smallest payoffs and corresponding winning num-
bers were:

> max(lottery.payoff) # the largest payoff

[1] 869.5

> lottery.number[lottery.payoff==max(lottery.payoff)]

18 CHAPTER 2. INTRODUCTORY SESSION: HOW TO BEAT THE LOTTERY

[1] 499

> min(lottery.payoff) # the smallest payoff

[1] 83

> lottery.number[lottery.payoff==min(lottery.payoff)]

[1] 123

Winners who bet on ‘123’ must have been disappointed; $83 is not a very large pay-
off. On the other hand $869.50 is very nice. Since the winning numbers and the payoffs
come in pairs, a number and a payoff for each drawing, we can produce a scatterplot of
the data to see if there is any relationship between the payoff and the winning number.
S-Plus provides a generic plotting function, plot, which produces different kinds of plots
depending on the data passed to it. In its most common use, it produces a scatterplot of
two numeric objects:

> plot(lottery.number, lottery.payoff)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•

••

• •

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

• •
•

•
•

•

•

•

•

•

• •

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

• • •

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

• ••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

lottery.number

lo
tte

ry
.p

ay
of

f

0 200 400 600 800 1000

20
0

40
0

60
0

80
0

Figure 2.3: Scatterplot of winning number and payoff for the 254 drawings.

What do you see in the Figure 2.3? Does the payoff seem to depend on the position of
the winning number? Perhaps it would help to add a ‘middle’ line that follows the overall
pattern of the data:

> lines(lowess(lottery.number, lottery.payoff, f=.2))

This command superimposes a smooth curve on the winning number and payoff scat-
terplot. The result is given in Figure 2.4. Can you see the interesting characteristics
now?

There are substantially higher payoffs for numbers with a leading zero, meaning fewer
people bet on these numbers. Perhaps that reflects people’s reluctance to think of num-
bers with leading zeros. After all, no one writes $010 on a ten dollar check! Also note
that, expect for the numbers with leading zeros, payoffs seem to increase as the winning

19

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•

••

• •

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

• •
•

•
•

•

•

•

•

•

• •

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

• • •

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

• ••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

lottery.number

lo
tte

ry
.p

ay
of

f

0 200 400 600 800 1000

20
0

40
0

60
0

80
0

Figure 2.4: A smooth curve is superimposed on the winning number and payoff scatterplot.

number increases. It would be interesting to see exactly what numbers correspond to the
large payoffs. Fortunately, with an interactive graphical input device, we can do that by
simply pointing at the ‘outliers’:

> identify(lottery.number, lottery.payoff, lottery.number)

To identify a payoff with its corresponding winning number just click on a point using the
left mouse button. Once you have pointed out the ‘outliers’ just click on the middle mouse
button. Can you see in Figure 2.5 the pattern in the numbers with very high payoffs?

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•

••

• •

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

• •
•

•
•

•

•

•

•

•

• •

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

• • •

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

• ••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

lottery.number

lo
tte

ry
.p

ay
of

f

0 200 400 600 800 1000

20
0

40
0

60
0

80
0

20
77

87

199 282

499

767

919

Figure 2.5: Outliers on the scatterplot are labelled with the actual winning number.

As a little help it is to say that the lottery has a mode of betting, called ‘combination

20 CHAPTER 2. INTRODUCTORY SESSION: HOW TO BEAT THE LOTTERY

bets’ where players win if the digits in their number appear in any order (Ticket 123
would win on 321, 231). The pattern in the numbers is that most of the numbers with
high payoffs have duplicate digits. This results from the fact that payoffs for the numbers
with duplicate digits are not shared with combination betters, and thus are higher.

Another method to look out for ‘outliers’ is to make a boxplot of the data. We no-
ticed before that the payoffs seem to depend on the first digit of the winning number.
So it would be interesting to draw boxes for the ten subsets of payoffs in a single plot to
study this phenomenon graphically. Rather than extracting each set separately, we use
the S-Plus function split to create a list, where each element of the list gives all of the
payoffs that correspond to a particular first digit of the winning number. The boxplot

function will draw a box for each element in the list.

> digit<-trunc(lottery.number/100) # the first digits

> boxplot(split(lottery.payoff, digit)) # boxplot of data split by groups

> title(xlab="First Digit of Winning Number", ylab="Payoff")

> abline(h=500) # horizontal line at 500

The box in a boxplot contains the middle half of the data; the whiskers extending from
the box reach to the most extreme non-outlier; outlying points are plotted individually.
Notice in Figure 2.6 the high payoffs for the first box. The graphic shows us as well that
it is rare for a payoff to exceed $500. So, place your bet if you enjoy gambling. Do not
expect to win.

20
0

40
0

60
0

80
0

0 1 2 3 4 5 6 7 8 9

First Digit of Winning Number

P
ay

of
f

Figure 2.6: Boxplot of payoffs grouped by leading digit of the winning number.

Chapter 3
Data Manipulation

3.1 Basic Data Manipulation

The basic data objects in S-Plus are vectors, arrays, lists and data frames. In this
section, each of them will be described in more detail.

3.1.1 Numbers and Vectors

S-Plus operates on named data structures. The simplest such structure is the vector,
which is a single entity consisting of an ordered collection of numbers. For example,

> x.vector <- c(5.1, 6.3, 7.8, 9.3, 10.5)

is a vector consisting of five numbers, namely 5.1, 6.3, 7.8, 9.3 and 10.5. The previous
S-Plus command is an assignment statement (<-) using the function c, which combines
the five values into a vector. Note that the assignments can also be made in the other
direction, using the obvious change in the assignment operator. So the same assignment
could be made using

> c(5.1, 6.3, 7.8, 9.3, 10.5) -> x.vector

If an expression is used as a complete command, the value is printed and lost. So if
we were to use the command

> 1/x.vector

the reciprocals of the five values would be printed and, of course, the value of x.vector
would be unchanged,

21

22 CHAPTER 3. DATA MANIPULATION

> x.vector

[1] 5.1 6.3 7.8 9.3 10.5

Vectors can be used in arithmetic expressions, in which case the operations are performed
element-by-element. The following elementary arithmetic operations work on each ele-
ment of x.vector:

> x.vector - 1

[1] 4.1 5.3 6.8 8.3 9.5

> 2*(x.vector - 1)

[1] 8.2 10.6 13.6 16.6 19.0

> x.vector^2

[1] 26.01 39.69 60.84 86.49 110.25

where ‘^’ stands for raising to a power. Any time you use an operator with a vector as
one argument and a number as the other argument, the operation is performed on each
component of the vector. Let us construct a second vector,

> y.vector <- c(1.3, 3.4, 8.1, 3.6, 5.7)

which has the same length as x.vector. Vectors occurring in the same expression need
not all be of the same length. If they are not, the value of the expression is a vector with
the same length as the longest vector which occurs in the expression. Shorter vectors in
the expression are recycled as often as they need to be until they match the length of
the longest vector; for this the length of the vectors have to be multiples. In particular a
constant is simply repeated. So with the above assignments the command

> new.vector <- 4*x.vector - y.vector + 2

generates a new vector new.vector of length 5 constructed by adding together, element-
by-element, 4*x.vector, - y.vector, and 2 repeated five times. In addition all of the
common arithmetic functions are available, e.g. log, log10, exp, sin, cos, tan, sqrt,
and so on, all have their usual meaning. max and min select the largest and smallest
elements of an vector respectively. range is a function whose value is a vector of length
two, namely the vector containing the minimum and the maximum of all of the elements,
e.g.

> range(x.vector)

[1] 5.1 10.5

> c(min(x.vector), max(x.vector))

[1] 5.1 10.5

The element-by-element maximum and minimum of two or more vectors are given by
pmax and pmin. The function length gives the number of elements,

3.1. BASIC DATA MANIPULATION 23

> length(x.vector)

[1] 5

Hence, valid indices for the vector x.vector are in the range 1:length(x.vector). El-
ements of a vector may be extracted by specifying the element in square brackets, ‘[]’.
For example, x.vector[3] is the third component of x.vector, and

> x.vector[1:3]

selects the first three elements of x.vector, assuming length(x.vector) ≥ 3. The
same is obtained by x.vector[c(1,2,3)]. Of particular interest are the following two
functions: sum gives the total of the elements and prod their product,

> sum(x.vector)

[1] 39

> prod(x.vector)

[1] 24472.46

So far, we have only seen vectors consisting of numbers, but a vector can also consist of
an array of logical values:

> c(T, F, T, F, T)

where T stands for TRUE and F stands for FALSE. Or you can have a set of character strings:

> c("DMA", "EPFL")

S-Plus has a number of facilities for generating commonly used sequences of numbers.
For example 1:10 is the vector

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

The colon operator has highest priority within an expression, so, for example 2*1:10 is the
vector c(2, 4, 6, 8, 10, 12, 14, 16, 18, 20). To construct a backwards sequence,
you can use 10:1.

The function seq is a more general facility for generating sequences. From its help file

> ?seq

we see that it has five arguments. The first two arguments, if given, specify the be-
ginning and end of the sequence, and if these are the only two arguments given the result

24 CHAPTER 3. DATA MANIPULATION

is the same as the colon operator, i.e. 1:10 is the same vector as

> seq(1, 10)

So are seq(from=1, to=10) and seq(to=10, from=1). The next two parameters to
seq specify a step size and a length for the sequence respectively. If neither of these is
given, the default is assumed. To generate a sequence from 0 to 1 with spacing of 0.1
between successive values, type

> seq(0, 1, 0.1)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Or you can specify the beginning, the increment, and the length with either the length

argument or the along argument:

> seq(0, by=0.1, length=11)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> seq(0, by=0.1, along=1:11)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A related function is rep which repeats a value by specifying either a times argument
or a length argument. If times is specified, the value is repeated the number of times
specified (the value may be a vector):

> rep(1, 5)

[1] 1 1 1 1 1

> rep(c(1, 2, 3), 2)

[1] 1 2 3 1 2 3

If times is a vector with the same length as the vector of values being repeated, each
value is repeated the corresponding number of times.

> rep(c("DMA", "EPFL"), c(4,2))

[1] "DMA" "DMA" "DMA" "DMA" "EPFL" "EPFL"

Moreover, the function paste can be used to create some special vectors, e.g.

> paste("no", 1:3, sep=".")

[1] "no.1" "no.2" "no.3"

The order function produces the vector of indices that will sort a vector. That is,
x.vector[order(x.vector)] is the same as sort(x.vector). The function order is
useful when you want to sort several vectors in parallel:

3.1. BASIC DATA MANIPULATION 25

> x.order <- order(x.vector)

> x.order

[1] 1 2 3 4 5

> x.sorted <- x.order[x.order]

> y.sorted <- y.vector[x.order]

> y.sorted

[1] 1.3 3.4 8.1 3.6 5.7

x.sorted is actually sorted; y.sorted probably is not sorted but it is in the order that
made x.vector sorted. To reverse the order of a vector or list, one can use the rev

function. So you might have

> x.vector[rev(order(x.vector))]

[1] 10.5 9.3 7.8 6.3 5.1

Additional functions for manipulating vectors are unique and duplicated, which re-
turns the values of the input without any repetition, or a logical vector denoting which
elements duplicate previous elements. For example, to get the sorted list of

> tosort.vector <- rep(c("DMA", "EPFL"), c(4,2))

with no duplicates, type

> sort(unique(tosort.vector))

[1] "DMA" "EPFL"

3.1.2 Matrices and Arrays

Matrices

An important data object type in S-Plus is the two-way array, or matrix object. Matrices
and their higher-dimensional analogues, arrays, are related to vectors, but have an extra
structure imposed on them. Matrices are used to arrange values by rows and columns in a
rectangular table. For data analysis, different variables are usually represented by different
columns, and different cases or subjects are represented by different rows. Thus matrices
are convenient for grouping together observations that have been measured on the same
set of subjects and variables. Matrices differ from vectors by having a ‘dimension’, that is,
the number of rows and columns. For example, the vector x.vector has no ‘dimension’:

> dim(x.vector)

NULL

To turn x.vector into a matrix one has simply to specify its dimension,

26 CHAPTER 3. DATA MANIPULATION

> dim(x.vector) <- c(1,5)

> x.vector

[,1] [,2] [,3] [,4] [,5]

[1,] 5.1 6.3 7.8 9.3 10.5

In addition to dim the function as.matrix can be used as well:

> x.vector <- c(5.1, 6.3, 7.8, 9.3, 10.5)

> dim(x.vector)

NULL

> x.matrix <- as.matrix(x.vector)

> dim(x.matrix)

[1] 5 1

To create a matrix, one can use the matrix function. The matrix function takes as
arguments a vector and two numbers which specify the number of rows, nrow and columns,
ncol. For example:

> mymatrix <- matrix(1:15, nrow=3, ncol=5, byrow=T)

> mymatrix

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

The argument byrow=T assumes the data values to be the first row, then the second row,
and finally the third row. More often, you need to combine several vectors or matrices
into a single matrix. To combine vectors (and matrices) into matrices, one can use the
functions cbind and rbind. The cbind function combines vectors column by column,
and rbind combines vectors row by row.

> rbind(1:5, 6:10, 11:15)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

> cbind(1:5, 6:10, 11:15)

[,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

3.1. BASIC DATA MANIPULATION 27

When vectors of different lengths are combined using cbind or rbind, the shorter ones are
replicated cyclically so that the matrix is ‘filled in’. If matrices are combined, they must
have matching numbers of rows when using cbind and matching numbers of columns
when using rbind. Otherwise, S-Plus prints an error message and the objects are not
combined. For example, using rbind:

> rbind(mymatrix, 16:20)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

[4,] 16 17 18 19 20

To name the rows or/and columns of a matrix, one can use the function dimnames. For
example, suppose that the columns of mymatrix contain the colors, say, of different flowers.
In typing

> dimnames(mymatrix)

NULL

one sees that this information is not included in the matrix, so one may like to pass a list
of names to mymatrix,

> dimnames(mymatrix) <- list(NULL, c("red", "brown", "purple",

+ "silver", "blue"))

> mymatrix

red brown purple silver blue

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

An additional example on the use of the function order is to sort the columns of a matrix
relative to one of the rows, say in the reversed order:

> mymatrix[, rev(order(mymatrix[1,]))]

blue silver purple brown red

[1,] 5 4 3 2 1

[2,] 10 9 8 7 6

[3,] 15 14 13 12 11

28 CHAPTER 3. DATA MANIPULATION

Table 3.1: Access elements of the matrix A.mat.

Command Description

A.mat[i, j] Access the element in the ith row jth column
A.mat[i,] Access ith row
A.mat[, j] Access jth column
A.mat[-i,] A.mat without ith row
A.mat[, -j] A.mat without jth column
A.mat[vec,] Access the rows defined by the vector vec

Different ways of how to access matrix elements are given in Table 3.1. For matrix
multiplication the operator ‘%*%’ is used. For example

> matrix.1 <- matrix(1:4, 2)

> matrix.1

[,1] [,2]

[1,] 1 3

[2,] 2 4

> matrix.2 <- matrix(5:8, 2)

> matrix.2

[1,] 5 7

[2,] 6 8

are square matrices of the same size. So,

> matrix.1 * matrix.2

is the matrix of element by element product and

> matrix.1 %*% matrix.2

is the matrix product. Moreover, the function t produces the matrix transpose, diag
either creates a diagonal matrix or extracts the diagonal elements of a matrix, eigen

returns the eigenvalues and eigenvectors of a square matrix, chol returns the Choleski
decomposition of a symmetric matrix, qr computes a QR matrix decomposition, and
solve performs matrix inversion if given a single argument, or solves systems of linear
equations if given two arguments.

Arrays

To create an array in S-Plus, one has to use the array function. The array function is
analogous to matrix. It takes data and the appropriate dimensions as arguments, then

3.1. BASIC DATA MANIPULATION 29

produces the array. If no data is supplied, the array is filled with NAs. In the following
example we create a 2 by 4 by 3 array,

> myvect <- c(1:8, 11:18, 111:118)

> newarray <- array(myvect, dim = c(2,4,3))

> newarray

, , 1

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

, , 2

[,1] [,2] [,3] [,4]

[1,] 11 13 15 17

[2,] 12 14 16 18

, , 3

[,1] [,2] [,3] [,4]

[1,] 111 113 115 117

[2,] 112 114 116 118

The first dimension (the rows) is incremented first. This is equivalent to placing the values
column by column. The second dimension (the columns) is incremented second. The third
dimension is incremented by filling a matrix for each level of the third dimension. For
creating arrays from existing vectors, the dim function works for arrays in the same way
it works for matrices. For example, if the data above were stored in the vector myvect,
you could create the above array by defining the ‘dimension’ with the vector c(2,4,3):

> myvect

[1] 1 2 3 4 5 6 7 8 11 12 13

[12] 14 15 16 17 18 111 112 113 114 115 116

[23] 117 118

> dim(myvect) <- c(2,4,3)

To name each level of each dimension, one can use the dimnames function in the same
way as it is done for matrices.

3.1.3 Lists and Data Frames

Lists

An S-Plus list is an object consisting of an ordered collection of objects known as its
components. There is no particular need for the components to be of the same mode or

30 CHAPTER 3. DATA MANIPULATION

type, and, for example, a list could consist of a numeric vector, a logical value, a matrix, a
character array, a function, and so on. Components are always numbered and may always
be referred to as such.

New lists may be formed from existing objects by the function list. Consider for
example the following list

> mylist <- list("First element"=1, "Second"=1:2, "Third"=1:4,

+ "Fourth"="This is a simple list.")

> mylist

$"First element":

[1] 1

$Second:

[1] 1 2

$Third:

[1] 1 2 3 4

$Fourth:

[1] "This is a simple list."

Components are always numbered and may always be referred to as such. The func-
tion length(mylist) gives the number of (top level) components it has: 4; specified as
mylist[[1]], mylist[[2]] and so on. And the command mylist[1:3] (!) gives the
first three components. As we named the components of the list, the component may
be referred to either by giving the component name as a character string in place of the
number in double square brackets, or, more conveniently, by giving an expression of the
form

> mylist$Second

when we want to list the component Second of mylist. This is a very useful conven-
tion as it makes it easier to get the right component if you forget the number, and is
strongly advised. You can find out the names of the components by the function names,

> names(mylist)

This generates much less output that printing the object, which will achieve the same
purpose. The names of components may be abbreviated down to the minimum number
of letters needed to identify them uniquely. Most of the datasets are in fact lists (or can
be treated as lists), so we could refer to the component Second of mylist as mylist$S.
Moreover, note that lists can be attached, by means of the function attach, as well as
directories, and this allows their components to be accessed as if they were stand-alone
entities.

3.1. BASIC DATA MANIPULATION 31

Data Frames

Data frames can be thought of as closely coupled lists of data vectors of the same length.
Unlike matrices, the data vectors can be of different types, including character data. The
main benefit of a data frame is that it allows you to mix data of different types into a
single object in preparation for analysis and modeling. The idea of a data frame is to
group data by variables (columns) regardless of their type. Then all the observations on
a particular set of variables can be grouped into a single data frame. This is particularly
useful in data analysis where it is typical to have a ‘character’ variable labeling each
observation, one or more ‘numeric’ variables of observations, and one or more categorical
variables for grouping observations. Consider the built-in data frame catalyst, which
represents all possible combinations of two temperatures (160, 180), two concentrations
(20, 40), and two catalysts (A, B). The fourth column represents the response variable
Yield.

> catalyst

Temp Conc Cat Yield

1 160 20 A 60

2 180 20 A 72

3 160 40 A 54

4 180 40 A 68

5 160 20 B 52

6 180 20 B 83

7 160 40 B 45

8 180 40 B 80

One remarks that this data frame has both row and column labels. The columns can be
treated as components of a list:

> catalyst$Temp

[1] 160 180 160 180 160 180 160 180

and the structure can be treated as a two-dimensional array:

> catalyst[2, 4]

[1] 72

> catalyst[1, "Yield"]

[1] 60

> catalyst[1,]

Temp Conc Cat Yield

1 160 20 A 60

Note how the row label is carried along. Data frames can be attached just as lists can,
and this allows their columns to be accessed as if they were named vectors.

32 CHAPTER 3. DATA MANIPULATION

> attach(catalyst)

> Cat

[1] A A A A B B B B

A data frame can be created from vectors and matrices by the data.frame function. For
example:

> treeframe <- data.frame(diameter=c(10,15,20,25),

height=c(1.5,1.6,1.2,2.1))

> treeframe

diameter height

1 10 1.5

2 15 1.6

3 20 1.2

4 25 2.1

Finally, note that you can create data frames in several ways:

• read.table reads in data from an external file (see Section 3.2.1);

• data.frame binds together S-Plus objects of various kinds; and

• as.data.frame coerces objects of a particular type to objects of class data.frame.

You can also combine existing data frames in several ways, using the cbind, rbind, and
merge functions.

3.1.4 Logical and Missing Values

Logical Values

Comparisons and logical operations are frequently convenient for extracting subsets of
data, and conditionals using logical comparisons play an important role in flow of control
in functions. Table 3.2 lists the S-Plus logical and comparison operators. The elements
of a logical vector have just two possible values, represented formally as F (for ‘false’) and
T (for ‘true’). Note that TRUE and FALSE are also valid representations. Logical vectors
are generated by conditions. For example

> z.vector <- 1:10

> z.vector > 5

[1] F F F F F T T T T T

3.1. BASIC DATA MANIPULATION 33

Table 3.2: Logical and comparison operators in S-Plus.

Operator Explanation

== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
& vectorized ‘And’
| vectorized ‘Or’
&& control ‘And’
|| control ‘Or’
! not

produces a vector of the same length as z.vector with values F corresponding to elements
of z.vector where the condition is not met and T where it is.

Subsets of a vector (or any expression that evaluates to a vector) may be selected
by appending to the name of the vector an index vector in square brackets. Such index
vectors can be any logical vector, which must be of the same length as the vector from
which elements are to be selected. Values corresponding to T in the index vector are
selected and those corresponding to F omitted. For example

> index <- (z.vector > 5)

> newz.vector <- z.vector[index]

> newz.vector

[1] 6 7 8 9 10

creates a vector newz.vector satisfying the condition (z.vector > 5). Additional ex-
amples of the S-Plus logical and comparison operators listed in Table 3.2 follow:

> (z.vector == 5)

[1] F F F F T F F F F F

> (z.vector > 5)&(z.vector < 8)

[1] F F F F F T T F F F

> (z.vector < 5)|(z.vector > 8)

[1] T T T T F F F F T T

Moreover, the functions all and any can also be useful:

> all(z.vector<5)

[1] F

34 CHAPTER 3. DATA MANIPULATION

> any(z.vector<5)

[1] T

Missing Values

In some cases the components of a vector may not be completely known. When an element
or value is ‘not available’ or a ‘missing value’ in the statistical sense, a place within a vector
may be reserved for it by assigning it the special value NA. In general any operation on
an NA becomes an NA. The motivation for this rule is simply that if the specification
of an operation is incomplete, the result cannot be known and hence is not available.
For example, let na.vector be the vector c(1, 2, NA). The is.na(na.vector) gives a
logical vector of the same size as na.vector with value T if and only if the corresponding
element in na.vector is NA.

> na.vector <- c(1, 2, NA)

> is.na(na.vector)

[1] F F T

For example,

> no.na.vector <- na.vector[!is.na(na.vector)]

creates (or re-creates) an object no.na.vector which will contain the non-missing val-
ues of na.vector, in the same order. Note that as na.vector has missing values,
no.na.vector is shorter than na.vector.

Infinite values are represented as INF and is.infinite is TRUE for values that are ei-
ther plus or minus infinity.

3.2 Importing and Exporting Data

The actual version 5.x of S-Plus for UNIX makes it easy to read data from virtually
any source. Its comprehensive import/export capabilities (like the functions importData,
exportData, openData, readNextDataRows) free you from spending time moving data
from source to source, allowing you to focus on your analysis. You can directly import
and export data in the following formats and databases: Oracle, Sybase, Informix, SAS,
SPSS, Excel, ODBC databases, Text (ASCII) files, Quattro Pro, Lotus 1-2-3, dBase,
Formatted ASCII, Systat, Stata, Gauss, and MatLab.

But, unfortunately, this functions does not exist for S-Plus version 3.4 for UNIX.
I refer readers using S-Plus version 5.x for UNIX to the ‘S-Plus 5 for UNIX User’s
Guide’ and to Chapter 10 of the present manuscript. Note that while importData is the

3.2. IMPORTING AND EXPORTING DATA 35

recommended method for reading data files into S-Plus, there are several other functions
that you can use to read ASCII data into S-Plus. These functions are commonly used
by other functions in S-Plus and are already part of S-Plus 3.4, so it is a good idea
even for S-Plus 5.x users to familiarize with them. In S-Plus version 3.4 for UNIX, the
principal tools for importing/exporting data are the following functions: source, scan,
read.table, dump, restore, cat, write, write.table and sink.

3.2.1 Notes on Importing

Commands can be stored in an external file and executed using the source function. For
example, if a series of S-Plus instructions were stored on a file commands.q they would
be caused to run by the command:

> source("commands.q")

The read.table function reads in a file and creates a data frame. Data frames in S-

Plus were designed to resemble tables. They must have a rectangular arrangement of
values and typically have row and column labels. Data frames arise frequently in designed
experiments and other situations. If you have a text file with data arranged in the form
of a table, you can read it into S-Plus using the read.table function. For example,
consider the data file auto.dat:

Model Price Country Reliab Mileage Type

AcuraIntegra4 11950 Japan 5 NA Small

Audi1005 26900 Germany NA NA Medium

BMW325i6 24650 Germany 94 NA Compact

ChevLumina4 12140 USA NA NA Medium

FordFestiva4 6319 Korea 4 37 Small

Mazda929V6 23300 Japan 5 21 Medium

MazdaMX-5Miata 13800 Japan NA NA Sporty

Nissan300ZXV6 27900 Japan NA NA Sporty

OldsCalais4 9995 USA 2 23 Compact

ToyotaCressida6 21498 Japan 3 23 Medium

All fields are separated by spaces and the first line is a header line. To create a data frame
from this data file, use read.table as follows:

> auto <- read.table("auto.dat", header=T)

> auto

Price Country Reliab Mileage Type

AcuraIntegra4 11950 Japan 5 NA Small

Audi1005 26900 Germany NA NA Medium

BMW325i6 24650 Germany 94 NA Compact

36 CHAPTER 3. DATA MANIPULATION

ChevLumina4 12140 USA NA NA Medium

FordFestiva4 6319 Korea 4 37 Small

Mazda929V6 23300 Japan 5 21 Medium

MazdaMX-5Miata 13800 Japan NA NA Sporty

Nissan300ZXV6 27900 Japan NA NA Sporty

OldsCalais4 9995 USA 2 23 Compact

ToyotaCressida6 21498 Japan 3 23 Medium

The scan function, which can read from either standard input or from a file, is com-
monly used to read data from keyboard input. By default, scan expects numeric data
separated by white space, although there are options with scan that let you specify the
type of data being read and the separator. When using scan to read data files, it is helpful
to think of each line of the data file as a record, or case, with individual observations as
fields. For example, the following expression creates a matrix named test.file from a
data file specified by the user:

> test.file <- matrix(scan("filename"), ncol = 6, byrow = T)

Here the data file is assumed to have 6 columns of numeric data; the matrix contains
a number of observations for each of these ten variables. To read in a file of character
data, use scan with the what argument:

> test.file <- matrix(scan("filename", what = ""), ncol = 6, byrow = T)

The what argument to scan can also be used to read in data files of mixed type, for
example, a file containing both numeric and character data, as in the following sample
file, table.dat:

Tom 93 37

Joe 47 42

Dave 18 43

In this case, you provide a list as the value for what, with each list component correspond-
ing to a particular field:

> test.file <- scan("table.dat", what=list("",0,0))

> test.file

[[1]]:

[1] "Tom" "Joe" "Dave"

[[2]]:

[1] 93 47 18

[[3]]:

[1] 37 42 43

3.2. IMPORTING AND EXPORTING DATA 37

S-Plus creates a list with separate components for each field specified in the what list.
You can turn this into a matrix, with the subject names as column names, as follows:

> test.matrix <- rbind(test.file[[2]], test.file[[3]])

> dimnames(test.matrix) <- list(NULL, test.file[[1]])

> test.matrix

Tom Joe Dave

[1,] 93 47 18

[2,] 37 42 43

You can scan files containing multiple line records by using the argument multi.line=T.

3.2.2 Notes on Exporting

When you want to export data to share with another S-Plus user, use the to S-Plus

data.dump function:

> data.dump("test")

By default, the data object test is exported to the file dumpdata in your S-Plus startup
directory. You can specify a different output file with the file argument to data.dump:

> data.dump("test", file="test.dmp")

To bring back into S-Plus dumped objects, i.e. objects created by data.dump, you
have to use the restore function.

The inverse operation to the scan function is provided by the cat and write functions.
Similarly, the inverse operation to read.table is provided by write.table. The result
of either write or cat is just an ASCII file with data in it. There is no S-Plus structure
written in. Of the two commands, write has an argument for specifying the number of
columns and thus is more useful for retaining the format of a matrix. By default, write
writes matrices column by column, five values per line. If you want the matrix represented
in the ASCII file in the same form it is represented in S-PLUS, transform the matrix
first with the t function and specify the number of columns in your original matrix:

> mymatrix

[,1] [,2] [,3] [,4] [,5]

[1,] 5.1 6.3 7.8 9.3 10.5

[2,] 5.1 6.3 7.8 9.3 10.5

[3,] 5.1 6.3 7.8 9.3 10.5

> write(t(mymatrix), "mymatrix", ncol=5)

38 CHAPTER 3. DATA MANIPULATION

You can view the resulting file with a text editor or pager; it contains the following three
lines:

5.1 6.3 7.8 9.3 10.5

5.1 6.3 7.8 9.3 10.5

5.1 6.3 7.8 9.3 10.5

The cat function is a general-purpose writing tool in S-PLUS, used for writing to the
screen as well as writing to files. To use cat to write to a file, simply specify a file name
with the file argument:

> test.vector <- 1:1000

> cat(test.vector, file="test.vector", fill=T)

The argument fill=T limits line length in the output file to the width specified in your
options object. The files written by cat and write do not contain S-Plus structure
information; to read them back into S-Plus you must reconstruct this information! The
write.table function can be used to export a data frame, say the built-in data frame
fuel.frame, into an ASCII text file:

> write.table(fuel.frame, "fuel.txt")

Finally, the S-Plus command

> sink("sink.txt")

will divert all subsequent output from the terminal to an external file sink.txt. The
command sink() will restore output to the terminal.

3.3 Exercises

Exercise 3.1. For the numbers

7.3 6.8 0.005 9 12 2.4 18.9 0.9

(a) Find their mean.

(b) Substract the mean from each number.

(c) Calculate the square roots of the numbers.

(d) Print those numbers which are larger than their square roots.

3.3. EXERCISES 39

Exercise 3.2. Put n <- 10 and compare the sequences 1:n-1 and 1:(n-1).

Exercise 3.3. What is the value of the expression 1:6 * 1:2. Explain how this partic-
ular result is computed.

Exercise 3.4. Generate a sequence from 1 to 10 with spacing 0.5 in three different ways
using the seq function.

Exercise 3.5. Use the seq and rep functions to produce a vector containing:

(a) the values: 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4;

(b) the values: 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1;

(c) the values: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5; and

(d) the values: 1, 1, 3, 3, 5, 5, 7, 7, 9, 9.

Exercise 3.6. Use the function paste to create the following character vector:
"X1" "Y2" "X3" ... "X9" "Y10"

Exercise 3.7. Suppose you have an object, X, containing some numbers ranging from 0
to 100 (maybe repeated). Now you would like to create another object Y from X in such
a way that all numbers which are less than 10 or greater than 90 must be excluded. How
can do you that?

Exercise 3.8. Suppose you have an object A containing the following characters:
"M","M",...,"M","A","A",...,"A","N","N",...,"N","Y","Y",...,"Y"

Create an object B from A containing only the four characters "M","A","N","Y"

Exercise 3.9. Consider the two matrices M1

[,1] [,2]

[1,] 1 2

[2,] 2 1

and M2

[,1] [,2] [,3]

[1,] 3 5 7

[2,] 4 6 8

(a) Create M1 and M2 in S-Plus.

(b) Multiply M1 by itself element by element, and by matrix multiplication.

(c) Multiply M1 by M2, and multiply the transpose of M2 by M1.

40 CHAPTER 3. DATA MANIPULATION

Exercise 3.10. Consider the following matrix Exo.mat:

[,1] [,2] [,3]

[1,] 12 10 3

[2,] 15 2 2

[3,] 6 9 1

(a) Create Exo.mat in S-Plus.

(b) Extract the diagonal elements of Exo.mat, and create a square matrix with this
elements.

(c) Invert the matrix Exo.mat, and calculate the eigenvalues of Exo.mat.

(d) Let b the vector c(9,5,14), and solve the following system of linear equations:
Exo.mat x = b. Verify the solution.

Exercise 3.11. Create the following matrices as simple as possible:

[,1] [,2] [,3] [,4]

[1,] 3 1 1 1

[2,] 1 3 1 1

[3,] 1 1 3 1

[4,] 1 1 1 3

[,1] [,2] [,3] [,4] [,5]

[1,] 0 -1 -2 -3 -4

[2,] 1 0 -1 -2 -3

[3,] 2 1 0 -1 -2

[4,] 3 2 1 0 -1

[5,] 4 3 2 1 0

Exercise 3.12. Solve the following system of linear equations:

2x + 3y - z = 4

5x - 10y + 2z = 0

x + y - 4z = 5

Exercise 3.13. Consider the built-in data frame catalyst:

> catalyst

Temp Conc Cat Yield

1 160 20 A 60

2 180 20 A 72

3.3. EXERCISES 41

3 160 40 A 54

4 180 40 A 68

5 160 20 B 52

6 180 20 B 83

7 160 40 B 45

8 180 40 B 80

(a) Reconstruct this data frame by means of functions like rep, data.frame, etc.

(b) Export the created data frame by means of write.table to a file named catalyst.dat,
and view the resulting file with a text editor (e.g. emacs, jot, nedit) or a pager (e.g.
more, cat, less).

(c) Import the file catalyst.dat into S-Plus using read.table under the name
catalyst.two

(d) Extract the entries for temperature 160, and those for concentration 20.

Exercise 3.14. Consider the built-in data frame kyphosis, which represents data on 81
children who have had corrective spinal surgery.

(a) Store the entries for children, which had a postoperative deformity (Kyphosis), in
child.yes.

(b) Store the entries for children, which had no postoperative deformity (Kyphosis), in
child.no.

(c) Extract the entries for one month (age) old children.

Exercise 3.15 (LATEX data). To get this data, which is not built-in, you must attach
the library s+intro by typing

> library("s+intro")

This library contains the data frame LaTeX.dat, which gives information on the use
of LATEX for writing PhD thesis at the EPFL for the years 1993-1998.

> LaTeX.dat

Year Dept LaTeX

1 1997 DP F

2 1993 DP F

3 1993 DGM F

4 1994 DGC F

...

563 1993 DP T

564 1993 DP F

565 1996 DGC F

566 1997 DGC F

42 CHAPTER 3. DATA MANIPULATION

The data frame has 566 rows and three columns: the Year of the PhD thesis, the depart-
ment (Dept) in which the thesis was made, and the third column represents the response
variable LaTeX, i.e. if the thesis has been written in LATEX or not.

(a) From LaTeX.dat create a data frame, or a matrix, containing only the entries for
1997, and denore it by Y1997.dat.

(b) From Y1997.dat create a data frame, or a matrix, containing only the entries for a
particular department.

(c) For this subset of the data calculate the number of thesis for which LATEX was used,
and compute its percentage.

(d) From LaTeX.dat create a data frame, or a matrix, containing only the LaTeX=="T"

entries, and calculate for each department the number of thesis using LATEX.

Exercise 3.16. Consider the data from the New Jersey Pick-it Lottery, which are in
S-Plus under the names lottery.number and lottery.payoff.

(a) Find which winning numbers had payoffs of more than $500.

(b) Find the 10 smallest payoffs and the corresponding ‘unlucky’ numbers. Hint: the
function order is helpful.

Chapter 4
Graphics

Note that S-Plus 4.0 for Windows introduced a completely separate style of graphics
based on menus and toolbars with simple command-line equivalents. The style of the
interface is designed for intuitive exploration by experienced Windows users; most of the
options are set from dialog boxes brought up by selecting and double-clicking or right-
clicking elements on the plot. There are separate dialog boxes for different plot elements.
This graphical system works in a new graphical device called a Graph Sheet. As this guide
is intended for S-Plus for UNIX users, this device will not be treated in this guide.

4.1 Introduction

Graphics are an integral part of S-Plus. The topic deserves a book of its own, and is
only skimmed in this chapter. Two principles that S-Plus graphics follow is that they
are device independent, and that each graph can be built up with numerous commands.
Device independence means that the same commands are used to create a graph on a
PostScript printer as on a monitor running Motif — the only difference is what type of
graphics device the user has set to listen for graphics commands. The ability to add to
plots means that complex graphics can be created easily. A graphics device is a S-Plus

function that arranges for graphics to be rendered. For example, the postscript function
makes it so that a file of PostScript commands will result when a graphics command is
given. Graphics devices are put into one of three categories. Hard-copy devices are for
creating a physical picture; the most common is the postscript device. Window devices

produce graphics when you are running a window system on the network where S-Plus

is running; the S-Plus motif device is an example. Finally there are terminal devices

that are used when S-Plus is run remotely. To inform you of graphics devices available
to you, type

> help(Devices)

43

44 CHAPTER 4. GRAPHICS

A graphics device has a state that is queried and modified by the par function. The
state is described by a reasonably large number of graphics parameters, which will be
described later on. Graphics functions that say what to draw, as opposed to graphics
devices, are divided into high-level and low-level functions. High-level functions, like plot

and barplot, create an entire new figure. Low-level functions (points and lines, for
example) merely add to the existing figure. Some functions have an add argument so that
they can function in either capacity.

Note that in addition to the graphics features described in this chapter, S-Plus in-
cludes the ‘Trellis Graphics’ library. You will find information at:

http://www.research.att.com/~rab/trellis/

During this chapter, a graphics device is assumed to be running; the S-Plus motif

device is an example,

> motif()

4.2 High-level Plotting Commands

High-level plotting functions are designed to generate a complete plot of the data passed
as arguments to the function. Appropriate, axes, labels and titles are automatically
generated (unless you request otherwise). Note that high-level plotting commands always
start a new plot, erasing the current plot if necessary.

The most frequently used S-Plus plotting function is plot. This is a generic function:
the type of plot produced is dependent on the type or class of the first argument. When
you call a plotting function, the S-Plus graphics window displays the requested plot:

> plot(car.miles)

This plot is shown in Figure 4.1. The argument car.miles is a S-Plus built-in vec-
tor data object. Since there is no other argument to plot, the data are plotted against
their natural index or observation numbers, 1 through 120. Since you may be interested
in your gas mileage, you may want to plot car.miles against car.gals. This is also easy
to do:

> plot(car.gals, car.miles)

The result is shown in Figure 4.2.

You can use many high-level plotting functions besides plot to display graphical
results in the S-Plus graphics window. These functions are listed in Table 4.1.

4.2. HIGH-LEVEL PLOTTING COMMANDS 45

•
•

•

•
•

•

•

•

•

•

•
••

•

••

••
•
••

•

•

•

•

•••
•
•

•

••••
•••

•

•
•

•

•

•

•

••

•

•

••

•

••

•
•
•

•

•
•

•

•

••

•

••
•

•

••

•

•

•

•
••

•

•
•

•

•

•

•
•
••

••

•

••

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•••
•

•

•
•

•

•
•
•

Index

ca
r.

m
ile

s

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

Figure 4.1: Default plot for the car.miles vector data object.

•
•

•

•
•

•

•

•

•

•

•
••

•

• •

• •
•

••
•

•

•

•

• •
•

•
•

•

•• •• •• •
•

•
•

•

•

•

•

• •

•

•

••

•

••

•
•

•

•

•
•

•

•

• •

•

••
•

•

••

•

•

•

•
••

•

•
•

•

•

•

•
•

••
••

•

• •

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

• ••
•

•

•
•

•

•
•
•

car.gals

ca
r.

m
ile

s

10 15 20 25

10
0

15
0

20
0

25
0

30
0

35
0

Figure 4.2: Scatterplot of car.miles against car.gals.

A funny example is given in Figure 4.3, where each observation of the cereal.attitude
data, giving consumer attitudes towards breakfast cereals, is represented as a face. The
following S-Plus command was used:

> faces(t(cereal.attitude), labels=dimnames(cereal.attitude)[[2]],

+ ncol=3)

Which cereal did the consumers like best? You may find the response in Chernoff (1973,
‘The Use of Faces to Represent Points in k-Dimensional Space Graphically’, Journal of

the American Statistical Association, 68, 361-368).

46 CHAPTER 4. GRAPHICS

Table 4.1: Common high-level plotting functions in S-Plus.

Name Description

barplot, hist Bar graph, histogram
boxplot Boxplot
brush Brush pair-wise scatter plots; spin 3-D axes
contour, image, persp 3-D plots
coplot Conditioning plot
dotchart Dotchart
faces, stars Display multivariate data
pairs Plot all pair-wise scatter plots
pie Pie chart
qqnorm, qqplot Normal and general QQ-plots
scatter.smooth Scatter plot with a smooth curve
tsplot Plot a time series
usa Plot the boundary of the U.S.

corn flakes

weet abix

rice krispies

shreaded wheat

sugar puffs

special k

frosties

all bran

Figure 4.3: Plot of symbolic faces for the cereal.attitude data.

4.3. LOW-LEVEL PLOTTING COMMANDS 47

Note that S-Plus provides very useful functions for representing multivariate data, which
will be illustrated in Section 5.1. Moreover, there are a number of arguments which may
be passed to high-level graphics functions. A selected list is given in Table 4.2, and Figure
4.4 illustrates different type arguments in order to control the type of plot.

Table 4.2: Selected list of arguments to high-level plotting functions.

Argument Description

add=T Forces the function to act as a low-level graphics function,
superimposing the plot on the current plot (some functions
only).

axes=F Suppresses generation of axes — useful for adding your own
custom axes with the axis function. The default, axes=T,
means include axes.

log="x"

log="y"

log="xy"

Causes the x, y or both axes to be logarithmic. This will work
for many, but not all, types of plot.

type="p" Plot individual points (the default)
type="l" Plot lines
type="b" Plot points connected by lines (both)
type="o" Plot points overlaid by lines
type="h" Plot vertical lines from points to the zero axis (high-density)
type="s"

type="S"

Step-function plots. In the first form, the top of the vertical
defines the point; in the second, the bottom.

type="n" No plotting at all. However axes are still drawn (by default)
and the coordinate system is set up according to the data.
Ideal for creating plots with subsequent low-level graphics
functions.

xlab="string"

ylab="string"

Axis labels for the x and y axes. Use these arguments to
change the default labels, usually the names of the objects
used in the call to the high-level plotting function.

main="string" Figure title, placed at the top of the plot in a large font.
sub="string" Sub-title, placed just below the x-axis in a smaller font.

4.3 Low-level Plotting Commands

Sometimes the high-level plotting functions do not produce exactly the kind of plot you
desire. In this case, low-level plotting commands can be used to add extra information
to the current plot. Some of the more useful low-level plotting functions are listed in
Table 4.3. Low-level plotting functions usually require some positioning information (e.g.
x and y coordinates) to determine where to place the new plot elements. Coordinates are

48 CHAPTER 4. GRAPHICS

• •
•

•
•

•
•

•

•

•
•

•
• • • •

•

•

•

•

•

•

•
• •

•
•

•

x

si
n(

x^
2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

type="p"

x

si
n(

x^
2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

type="l"

• •
•

•
•

•
•

•

•

•
•

•
• • • •

•

•

•

•

•

•

•
• •

•
•

•

x

si
n(

x^
2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

type="b"

• •
•

•
•

•
•

•

•

•
•

•
• • • •

•

•

•

•

•

•

•
• •

•
•

•

x
si

n(
x^

2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

type="o"

x

si
n(

x^
2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

type="h"

x

si
n(

x^
2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

type="n"

Figure 4.4: Different type arguments to high-level plotting functions.

given in terms of ‘user coordinates’ which are defined by the previous high-level graphics
command and are chosen based on the supplied data.

Table 4.3: Common low-level plotting functions in S-Plus.

Name Description

abline Add line in intercept-slope form
axis Add axis
box Add a box around plot
legend Add a legend to the plot
lines, points Add lines or points to a plot
mtext, text Add text in the margin or in the plot
stamp Add date and time information to the plot
symbols Add 3-D information to plot
title Add title to the plot

4.4. INTERACTIVE GRAPHICS FUNCTIONS 49

4.4 Interactive Graphics Functions

S-Plus also provides functions which allow users to extract or add information to a
plot using a mouse. The simplest of these is the locator function, which waits for
the user to select locations on the current plot using the left mouse button. The type

argument allows for plotting at the selected points and has the same effect as for high-
level graphics commands; the default is no plotting. locator returns the locations of the
points selected as a list with two components x and y. Note that locator is usually called
with no arguments. It is particularly useful for interactively selecting positions for graphic
elements such as legends or labels when it is difficult to calculate in advance where the
graphic should be placed.

Moreover, the identify functions performs no plotting itself, but simply allows the
user to move the mouse pointer and click the left mouse button near a point, i.e. the
mouse is used to identify points on a graph.

4.5 Graphics Parameters

You can customize almost every aspect of the display using so-called graphics parameters.
S-Plus maintains a large list of graphics parameters which control things such as line
style, colors, figure arrangement and text justification among many others. Every graphics
parameter has a name (such as col, which controls colors) and a value (a color number,
for example). A separate list of graphics parameters is maintained for each active device,
and each device has a default set of parameters when initialized. Graphics parameters
can be set in two ways: either permanently, affecting all graphics functions which access
the current device; or temporarily, affecting only a single graphics function call. To get
the entire list, containing all graphical parameters, type

> help(par)

The par function is used to access and modify the list of graphics parameters for the
current graphics device. Instead of describing in more detail all of the commonly-used
graphical parameters, consult the S-Plus help documentation for the par function, which
provides a concise summary, including adj, cex, pch, ask, col and lwd. Moreover, as
examples, I will describe in this section only pty and mfrow.

When you use a S-Plus plotting function, the default shape of the box enclosing the
plot is rectangular. Sometimes you prefer to have a square box around your plot. You
get a square box by using the global graphics parameter function par as follows:

> par(pty="s")

All subsequent plots are made with a square box around the plot. If you want to return to
making rectangular plots, use par(pty=""). The pty stands for ‘plot type’ and the "s"

50 CHAPTER 4. GRAPHICS

stands for square. You may also want to display more than one plot on your screen or on
a single page of paper. To do so, you use the layout parameter mfrow to control the layout
of the plots. If you want to set up a four-plot layout, with two rows of two plots each, type

> par(mfrow=c(2,2))

When you are ready to return to one plot per figure, use par(mfrow=c(1,1)); a similar
parameter is mfcol. As a final example, the various possibilities of the pch, the number
of a plotting symbol to be drawn when plotting points, and lty, the device dependent
line type, arguments are given in Figure 4.5.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1
2
3
4
5
6
7
8

pch=n lty=n

Figure 4.5: Various possibilities of the pch and lty arguments.

4.6 Exercises

Exercise 4.1. Create a sequence, x, from −10 to 10 with spacing 0.5.

(a) Create a vector, y, containing the squares of x.

(b) Make a scatterplot of the two vectors.

(c) Reproduce additional scatterplots by changing its arguments, like type, xlab, ylab,
lwd, col.

4.6. EXERCISES 51

Exercise 4.2. Plot a pie chart with 15 colors on the background color, color 0, for a total
of 16 colors. This pie chart is of particular interest as the default color map for graphsheet
has sixteen colors: fifteen foreground and one background color. So, this chart can be
used to see all the colors in the default color map.

Exercise 4.3. Plot sin(x) against x, using 200 values of x between -pi and pi, but do
not plot any axes yet (use parameter axes=F in the call to plot). Add an y-axis passing
through the origin using the ‘extended’ style and horizontal labels. Add an x-axis with
tick-marks from -pi to pi in increments of pi/4, twice the usual length.

Exercise 4.4. Reproduce the following figure.

X

X

X

X

X

X

X

X

X

2 4 6 8

2
4

6
8

10

Introduction
to

S-Plus

Exercise 4.5. Try out the various features of the motif device. To do so, use the fol-
lowing S-Plus commands to generate an easily-reproducible graphic:

> plot(corn.rain, corn.yield, type="n", main="Plot Example")

> points(corn.rain, corn.yield, pch="*", col=2)

> lines(lowess(corn.rain, corn.yield), lty=2, col=3)

> legend(12, 23, c("Color 1", "Color 2", "Color 3"), pch="*",

+ lty=c(1, 0, 2), col=c(1, 2, 3))

Try to understand this commands and play around with its arguments.

Exercise 4.6. The data frame survey.dat from the library s+intro contains the results
of a survey of 237 first-year Statistics students at Adelaide University. This data is taken
from Venables and Ripley (1999).

(a) For a graphical summary of all the variables, use plot(survey.dat). What kind
of plots are produced?

(b) One component of this data frame, Exer, is a factor object containing the responses
to a question asking how often the students exercised.

52 CHAPTER 4. GRAPHICS

(i) Produce a barchart of these responses.

(ii) Use table and pie (or piechart) to create a pie chart of the responses. Do
you like this better than the barplot? Which is more informative? Which gives a
better picture of exercise habits of students?

(iii) The pie function takes an argument names which can be used to put labels on
each pie slice. Redraw the pie chart with labels.

(iv) Alternatively, you could add a legend to identify the slices.

(c) Try the same things with the Smoke variable, which records responses to the ques-
tion: ‘How often do you smoke?’

Hint: note that table and levels ignore missing values; if you wish to include non-
respondents in your chart use summary to generate the values, and names on the summary
object to generate the labels.

Chapter 5
Exploring Data

5.1 Multivariate Data Exploration

The ethanol data (stored in the data frame ethanol) records 88 measurements for three
variables NOx, C, and E from an experiment in which ethanol was burned in a single cylin-
der automobile test engine. A short description can be obtained by

> ?ethanol

A summary of this data is given by

> summary(ethanol)

NOx C E

Min. :0.370 Min. : 7.500 Min. :0.5350

1st Qu.:0.953 1st Qu.: 8.625 1st Qu.:0.7618

Median :1.754 Median :12.000 Median :0.9320

Mean :1.957 Mean :12.030 Mean :0.9265

3rd Qu.:3.003 3rd Qu.:15.000 3rd Qu.:1.1100

Max. :4.028 Max. :18.000 Max. :1.2320

S-Plus provides two very useful functions for representing multivariate data. First, to
produce a pairwise scatterplot matrix of the variables defined by the columns of ethanol,
you can use

> par(pty="s") # square plotting regions

> pairs(ethanol)

The resulting plot appears as in Figure 5.1. Using the function persp, a perspective
plot for the ethanol data can be easily computed:

53

54 CHAPTER 5. EXPLORING DATA

NOx

8 10 12 14 16 18

•

•

•

•

•

•

•

•

•

•

•

• •
•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•
•

•

•

•

•

•

•

•

•

•

• •

•

•

•• • •
•

•

•

1
2

3
4

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

••••
•

•

•

8
10

12
14

16
18

••• ••

•• •

•• ••

•

•

•

• •

• •

••

••

• •

• •

• •

•

• •• ••

• •

•• •

•• ••

• •• •

• ••

•

• •

••

• ••• • ••

•• •

••

•• •

• • •••

••

•

•

••

•

•

•

•

• •

C
•• •• •

• ••

• •• •

•

•

•

• •

••

• •

• •

••

• •

• •

•

•• •• •

••

• ••

• •• •

• •• •

• ••

•

••

••

• •• •• • •

• ••

• •

• ••

• • • • •

• •

•

•

• •

•

•

•

•

• •

1 2 3 4

•

•

•

•

•

•

•

•

•

•

•

••

•

• •

• •

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

••

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•••• •

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

• •

• •

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

••

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

• • • • •

•

0.6 0.8 1.0 1.2

0.
6

0.
8

1.
0

1.
2

E

Figure 5.1: Pairwise scatterplots of the variables in the ethanol data.

> attach(ethanol)

> inter <- interp(E, C, NOx) # interpolate the value of NOx

> persp(inter, xlab="E", ylab="C", zlab="NOx")

Note the the actual S-Plus 3D-plots need to be on a evenly spaced grid, i.e. the third
variable needs to be interpolated onto an evenly spaced grid (!) of the first two variables.
Figure 5.2 shows this three-dimensional perspective plot, whereas two-dimensional plots,

0.6
0.7

0.8
0.9

1
1.1

1.2

E

8

10

12

14

16

18

C

 0
1

2
3

4
5

N
O

x

Figure 5.2: Perspective plot for the ethanol data.

5.1. MULTIVARIATE DATA EXPLORATION 55

namely contour and image, are represented in Figure 5.3. For the later, the following
S-Plus commands were used:

> par(mfrow=c(1,2), pty="s")

> contour(inter, xlab="E", ylab="C")

> title("Contour Plot")

> image(inter, xlab="E", ylab="C")

> title("Image Plot")

E

C

0.6 0.8 1.0 1.2

8
10

12
14

16
18

1 12 23 3

4

Contour Plot

E

C

0.6 0.8 1.0 1.2

8
10

12
14

16
18

Image Plot

Figure 5.3: Contour and image plots for the ethanol data.

When three or four variables are involved a coplot may be more enlightening.

> par(pty="n")

> E.intervals <- co.intervals(E, 9, 0.25)

> coplot(NOx ~ C | E, given.values=E.intervals, data=ethanol,

+ panel=function(x, y) panel.smooth(x, y, span=1, degree=1))

NOx ~ C | E means that the function produces a number of scatterplots of NOx, the
response, against C, a predictor, for given values of E, a predictor; see Section 7.1. This
plot provides a graphical look at cross-sectional relationships, which enable you to assess
potential interaction affects. Figure 5.4 clearly shows the effect of the interaction between
C and E on values of NOx.

56 CHAPTER 5. EXPLORING DATA

•
•

••

••

•
• • •

• •

•

8 10 12 14 16 18

1
2

3
4

•

•

• •

•

•
••••

•
•

•
•

•

•
•

•

•
•

•
•

•

•

•

8 10 12 14 16 18

•
••••

•

•

•

• •
• ••

•

•
•

•
••

•
••

•
••

•

•
•

•
•• •

•
•

•
•

•
•

•

1
2

3
4

•
•

•
• ••

•
•

•

•
•

•

1
2

3
4

•
• • •• ••

••
•

• ••

8 10 12 14 16 18

•• • •
•

•
•
••

•• • •

0.6 0.8 1.0 1.2

C

N
O

x

Given : E

Figure 5.4: Coplot of response and predictors for the ethanol data.

5.2 Exercises

Exercise 5.1 (LATEX data). Consider the data frame LaTeX.dat described in Exercise
3.15.

(a) By means of summary compute a summary of the data.
Hint: use the argument maxsum.

(b) Compute the overall percentage of the use of LATEX.

(c) Produce a summary of the 1996 entries, and calculate the percentages for this par-
ticular year.

(d) Make a plot of the data LaTeX.dat:

> par(mfcol=c(3,1))

> plot(LaTeX.dat, ask=F)

What happens if you omit the argument ask=F?
Comment the produced graphics.

Exercise 5.2 (Phone data). Consider the artificial data frame phone.dat from the
course library "s+intro". This data set consists of the length in seconds of 200 phone
calls.

(a) Determine what the distribution looks like by using the stem and leaf display.

5.2. EXERCISES 57

(b) Make a histogram showing 10 classes, i.e. bars. First, by using the breaks argument,
and second by specifying the nclass argument.

(c) Produce a boxplot of the data, and compute the 10%, 25%, 50%, 75% and 90%
quantiles, as well as the mean, the interquartile distance and the standard deviation.
What do you conclude?

Exercise 5.3 (Old Faithful geyser data). The ‘Old Faithful Geyser Data’, geyser,
contains the waiting time between eruptions, waiting, and the duration of the eruption,
duration, for the Old Faithful geyser in Yellowstone National Park, Wyoming. The data
were collected continuously from August 1st until August 15th, 1985. There are a total
of 299 observations. The waiting time is the time interval between starts of successive
eruptions. The times are measured in minutes. If you type

> geyser

you see that this data is represented in form of list containing the two variables waiting
and duration. Our aim is to look at some simple descriptive techniques to help under-
stand the relationship between the interval between eruptions and the duration of the
eruption.

(a) Make a summary for the two variables waiting and duration. Comments?

(b) Produce histograms, normal probability plots, boxplots and summary statistics for
the duration and interval between eruptions.

(c) Produce a scatterplot of the data, showing the relationship between the time be-
tween eruptions and the duration of the eruption.

Is there a relationship between the interval between eruptions and the duration of the next
eruption? How does the length of the interval effect the duration and does this account
for the bimodal histograms found?

Exercise 5.4 (Car data). Do an analysis of the car data set provided with S-Plus. The
data set, stored under car.all, contains a set of cars plus a variety of their attributes,
like fuel consumption, price, and many more.

(a) Before starting the analysis, determine which car models are contained in the data
and what the variables given in the data set are.

(b) Extract the fuel consumption (miles per gallon) and determine for each type of car
(small, medium, compact, large, van, sporty) the model with the lowest and the
highest fuel consumption.

(c) On the basis of average fuel consumption and tank size, calculate the maximum
travel distance without a gas refill.

58 CHAPTER 5. EXPLORING DATA

(d) Take the variables maximum travel distance, tank size, mileage, and horsepower,
and display them graphically.

(e) Try to determine, using only graphics, the two variables with the strongest depen-
dency. Check your guess by calculating the correlation matrix (using the function
cor) for these variables.

Exercise 5.5 (U.S. States data). The data frame state.x77 contains the following
statistics for the States of the U.S.: population estimate as of July 1, 1975; per capita
income (1974); illiteracy (1970, percent of population); life expectancy in years (1969-
71); murder and non-negligent manslaughter rate per 100,000 population (1976); percent
high-school graduates (1970); mean number of days with minimal temperature smaller
than 32 degrees (1931-1960) in capital or large city; and land area in square miles.

S-Plus provides a very useful function for representing such multivariate data: brush.
This functions creates a matrix of all two-dimensional scatterplots of the data plus optional
histograms and three-dimensional spinning plot, all of which may have points highlighted
interactively. By typing

> brush(state.x77, hist=T)

you should see a full-screen graphics window appear with the title ‘Brush’.

(a) Try to understand the graphics given.

(b) Highlight several points with the left mouse button. What happens?

(c) Above to the right of the scatter plots, there is a separate sub-window with three-
dimensional coordinate axes and a 3-D point cloud. Rotate or spin the 3-D point
cloud. Do you see any particular structure?

To exist brush at any time, click on the ‘Quit’ button. Note that the sub-window with the
three-dimensional coordinate axes and the 3-D point cloud can also be obtained by typing

> spin(state.x77)

Comments?

Chapter 6
Statistical Functions

6.1 Densities and Distributions

S-Plus has built-in functions to compute the density, cumulative distribution function
(CDF), quantile function (the inverse of the CDF) and to generate random samples from
many standard distributions. In all, there are four functions for each distribution. The
function names begin with one of the four letters:

• d: is for density, e.g. dnorm;

• p: stands for probability , e.g. pnorm;

• q: is for quantile, e.g. qnorm; and

• r: stands for random, e.g. rnorm.

The function names end with a code for the distribution. The random functions generate
numbers from the distribution, the probability functions give the probability of being
less than or equal to the value given (probability distribution function), and the quantile
functions return the value where the distribution function achieves the probability given.
The list of available distributions in S-Plus is given in Table 6.1.

59

60 CHAPTER 6. STATISTICAL FUNCTIONS

Table 6.1: Available standard distributions in S-Plus.

Name Distribution Parameter(s)

beta Beta shape1, shape2
binom Binomial size, prob
cauchy Cauchy location, scale
chisq χ2 df= degrees of freedom
exp Exponential rate

f Fisher’s F df1= degrees of freedom for the numerator
df2= degrees of freedom for the denominator

gamma Gamma shape

geom Geometric prob

hyper Hypergeometric m= number of red balls in the urn
n= number of black balls in the urn
k= number of balls drawn from an urn
with m red and n black balls

lnorm Lognormal meanlog= log of the mean
sdlog= log of the standard deviation

logis Logistic location, shape
nbinom Negative binomial size= number of successes

prob= probability of a success
norm Normal (Gaussian) mean= mean

sd= standard deviation
pois Poisson lambda

t Student’s t df= degrees of freedom
unif Uniform min, max
weibull Weibull shape

wilcox Wilcoxon m= number of observations in first sample
n= number of observations in second sample

6.1. DENSITIES AND DISTRIBUTIONS 61

6.1.1 Randomness

Pseudo-random functions within S-Plus use a single random number generator. The
seed for the generator is stored in .Random.seed, which is a vector of 12 small integers.
So, if you want to reproduce results of random functions, then you need to save the seed
and restore it just before the call that is to reproduce the results:

save.seed <- .Random.seed

> runif(4)

[1] 0.5354037 0.5107591 0.1341979 0.3324095

> runif(4)

[1] 0.6010147 0.2729012 0.8917196 0.3833721

> .Random.seed <- save.seed

> runif(4)

[1] 0.5354037 0.5107591 0.1341979 0.3324095

Another way of ensuring reproducibility is to use the function set.seed, which puts the
random number generator in a reproducible state. set.seed takes an integer that should
be between 1 and 1024, and sets the random seed to a certain value based on the integer
given.

> set.seed(1023)

> print(.Random.seed)

> [1] 21 14 49 16 62 1 32 22 36 23 28 3

> set.seed(-1)

> print(.Random.seed)

> [1] 21 14 49 16 62 1 32 22 36 23 28 3

The example above shows that set.seed returns the same answer for arguments that are
the same modulo 1024.

6.1.2 QQ-Plots

One of the best ways to compare the distribution of a sample, x.sample, with a dis-
tribution is to use a QQ-plot, of which the normal probability plot is the best-known
example. QQ-plots can also be used to compare two samples. The function qqplot plots
the quantile functions of two samples x.sample and y.sample against each other, and
so compares two samples. The function qqnorm replaces one of the samples by a sample
at the quantiles of a standard normal distribution. This idea can be applied quite gen-
erally, see the ppoints function. Finally, the command qqline helps assess how straight
a qqnorm plot is by plotting a straight line through the upper and lower quartiles. The
examples, which are shown in Figure 6.1, are

62 CHAPTER 6. STATISTICAL FUNCTIONS

> par(mfcol=c(1,2), pty="s")

> qqplot(lottery.payoff, lottery3.payoff)

> abline(0, 1)

> qqnorm(lottery.payoff)

> qqline(lottery.payoff)

•••••
•
•••••••
•••••••••••
••••••••••••
•••••••••••••••••••

••••••••••••••••••••
•••••••••••••••••••••••

•••••••••••••••••••
••••••••••••••••••••••••••

••••••••••••••••••••••
•••••••••••••••••••••

•••••••••••
••••••••••••••

••••••••••
••
•••••••

••
•
• ••

•

•
•

lottery.payoff

lo
tte

ry
3.

pa
yo

ff

200 400 600 800

10
0

20
0

30
0

40
0

50
0

60
0

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

• •
•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•
•

•
•

••

••

•

• •
•

•

•

•

••
•

•

•

•

•

•

••

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

••

•

•

•
•

•

•

•

••

•

•

•

•

•

•••

••

•
•

•

•

• •

•

••

•

•

•

•
•

•

•

•

•••

•••

•
•

•

•

••

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•••

•

•
•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•••

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

••

•

•
•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

•

•

Quantiles of Standard Normal

lo
tte

ry
.p

ay
of

f

-3 -2 -1 0 1 2 3

20
0

40
0

60
0

80
0

Figure 6.1: Two examples of the use of QQ-plots in S-Plus.

The left panel in Figure 6.1 suggests a basically different distribution for the two sets
of data. If both data would have a similar distribution the presented line would match
the plot. In the right panel of Figure 6.1 one notices that the payoffs are not normal
distributed, especially in the tails; whereas the middle part of the payoffs seems to be.
If they were, the plot would be fairly linear matching the line resulting from the qqline

command.

6.2 Basic Statistics

S-Plus includes functions for calculating all the standard summary statistics for a data
set, together with a variety of robust and/or resistant estimators of location and scale.
Table 6.2 gives a list of the most common functions for summary statistics.

6.2. BASIC STATISTICS 63

Table 6.2: Common functions for summary statistics in S-Plus.

Statistic Description

cor Correlation coefficient
cummax, cummin Cumulative maximum and minimum
cumprod, cumsum Cumulative product and sum
diff Create sequential differences
max, min Maximum and minimum
pmax, pmin Maxima and minima of several vectors
mean Arithmetic mean
median 50th percentile
prod Product of elements of a vector
quantile Compute empirical quantiles
range Returns minimum and maximum of a vector
sample Random sample or permutation of a vector
sum Sum elements of a vector
summary Summarize an object
var Variance and covariance

Consider as example the sample function. In its simplest use, it returns a permutation
of its argument:

> names.vector <- c("Introduction", "to", "S-PLUS", "for", "Unix")

> sample(names.vector)

[1] "S-PLUS" "to" "Introduction" "Unix" "for"

> sample(1:10)

[1] 6 5 1 2 3 8 7 10 4 9

An important argument is replace which tells whether or not items are to be replaced
after they have been selected:

> sample(names.vector, replace=T)

[1] "Introduction" "for" "Introduction" "S-PLUS" "S-PLUS"

> sample(1:10, replace=T)

[1] 10 10 1 10 2 5 3 6 7 10

There is also a probability argument, prob, that takes the relative probabilities for each
item in the population. This need not sum to one, sample will normalize it.

> sample(names.vector, replace=T, prob=1:5)

[1] "S-PLUS" "Unix" "for" "Unix" "Unix"

64 CHAPTER 6. STATISTICAL FUNCTIONS

6.3 Standard Tests

S-Plus contains a number of functions for doing classical hypothesis testing; see Table 6.3.

Table 6.3: S-Plus functions for hypothesis testing.

Test Description

binom.test Exact binomial test
chisq.gof χ2 goodness-of-fit test
chisq.test Pearson’s χ2 test for 2-D contingency table
cor.test Test for zero correlation
fisher.test Fisher’s exact test for 2-D contingency table
friedman.test Friedman rank sum test
kruskal.test Kruskal-Wallis rank sum test
ks.gof Kolmogorov-Smirnov test
mantelhaen.test Mantel-Haenszel χ2 test
mcnemar.test McNemar’s χ2 test
prop.test Proportions test
t.test Student’s one-or two-sample t-test
var.test F test to compare two variances
wilcox.test Wilcoxon rank sum and signed-rank sum tests

The following example illustrates how to use t.test to perform a two-sample t-test to
detect a difference in means. This example uses two random samples generated from
N(0, 1) and N(1, 1) distributions. The random number seed is set with the function
set.seed, so this example is reproducible:

> set.seed(17)

> x.sample <- rnorm(10)

> y.sample <- rnorm(5, mean=1)

> t.test(x.sample, y.sample)

Standard Two-Sample t-Test

data: x.sample and y.sample

t = -1.3353, df = 13, p-value = 0.2047

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.4926916 0.3522959

sample estimates:

mean of x mean of y

0.1375302 0.707728

6.4. EXERCISES 65

As the p-value of this two-sample t-test is 0.2047, there is no significant difference
between both means.

As an additional example, suppose you toss a coin 1000 times, with heads coming up
473 times. To test the coin for ‘fairness’; that is, to test that the probability of heads
equals 0.5, you can use the following:

> binom.test(473, 1000)$p.value

Exact binomial test

data: 473 out of 1000

number of successes = 473, n = 1000, p-value = 0.0937

alternative hypothesis: true p is not equal to 0.5

This test suggests that you do have a fair coin. You may not want to take another coin.

6.4 Exercises

Exercise 6.1. Generate 100 and 1000 random numbers, both samples from a normal
distribution with mean value 3 and variance 5. Draw histograms with bin width 0.5, 1 and
2 for each of the two samples. Remember that all figures have exactly the same underlying
distribution. Plot them all in a single graphics window and label them accordingly. What
is visible?

Exercise 6.2. Generate a sample of size 50 from a Poisson distribution with rate 2.

(a) Put this sample into a 10× 5 matrix A.

(b) Name the rows of A with r1,..., r10 and the columns with c1,..., c5.

(c) Divide each element in a row of A by the sum of the corresponding row.

Exercise 6.3. Generate a 20×3 matrix of data using the lrnorm function. Produce a
‘bubble plot’ of the data, i.e. a scattergram of the values in the first two columns which
includes the values in the third column represented by circles with appropriate radii.
Hint: use the symbols function.

Exercise 6.4. Generate a sample of size 100 from a t-distribution with 5 degrees of
freedom. Produce a QQ-plot of this sample and assess how straight the produced plot
is by plotting a straight line. Moreover, in order to reproduce the same plots, set the
random seed.

Exercise 6.5. In Chapter 2 we noticed that the distribution of payoffs for winning num-
bers with a leading zero digit was different from the rest of the payoffs. Use a QQ-plot
to investigate this difference.

66 CHAPTER 6. STATISTICAL FUNCTIONS

Exercise 6.6. Suppose you play roulette in Las Vegas and bet on red. You expect your
probability of winning to be close to, but slightly less than, 0.5, because a roulette wheel
has 18 red slots, 18 black slots, and two additional slots labeled ‘0’ and ‘00’, for a total of
38 slots into which the ball can fall. Thus, for a ‘fair’ wheel, you expect the probability
of red to be p0 = 18/38 = 0.474. You hope that the casino is not cheating you altering
the roulette wheel so that the probability of red is less than 0.474.

Suppose that you bet on red 100 times and red comes up 42 times. Test the hypothesis
that p = p0, using the binom.test function,

(a) against the two-sided alternative that p 6= 0.474; and

(b) against the one-sided alternative p < p0, i.e. you are concerned that the casino
might cheat you.

Finally, as the function binom.test does not compute a confidence interval for the
probability p of success, compute a confidence interval for p by using the prop.test

function. Comments?

Exercise 6.7 (IQ data). To get this data, which is not built-in, you must attach the
library s+intro by typing library("s+intro"). This library contains the data frame
iq.data, which consists of the IQ scores and behavioural problem (BP) scores of children
of age five, labelled according to whether or not their mothers had suffered an episode of
postnatal depression.

(a) Store the IQ scores of children of non-depressed mothers in iqnd, and those of
children of depressed mothers in iqd.

The main questions of interest about these data are as follows:

(b) Do the two groups of children have different IQ and/or BP scores? Most commonly
a t-test is used to assess these hypothesis. The test assumes that the observations:

1. are independent of one another (here they are);

2. come from populations having normal distributions (verify with histograms,
boxplots, and probability plots and exclude the outliers); and

3. come from populations having the same variance (verify with the var.test

function).

Assess the hypothesis that the two groups have the same population mean with with
the S-Plus function t.test and with the Wilcoxon rank-sum test (wilcox.test).

(c) Is there any evidence of a relationship between the two variables? Plot BP versus
IQ scores and add a linear regression line. Moreover, the correlation between the
two variables can be calculated, and the hypothesis that the population value is zero
tested, using the cor.test function.

6.4. EXERCISES 67

(d) Assess whether there is any evidence of an association between mother’s mental
state at the birth of her child, and the child’s behavioural problems scores at five,
in particular whether this score is above 8 or not.
Hint: make a χ2-test by means of chisq.test, followed by Fisher’s exact test
(fisher.test).

68 CHAPTER 6. STATISTICAL FUNCTIONS

Chapter 7
Statistical Models

Most of the statistical modeling functions in S-Plus follow a unified modeling paradigm
in which the input data are represented as a data frame and the model to be fit is
represented as a formula. Formulas can be saved as separate S-Plus objects and supplied
as arguments to the modeling functions. A partial listing of S-Plus modeling functions
is given in Table 7.1.

Table 7.1: Listing of some S-Plus modeling functions.

Function Description

aov, manova, raov Analysis of variance models
lm Linear model (regression)
glm Generalized linear model
gam Generalized additive model
loess Local regression model
tree Classification and regression tree models
nls, ms Nonlinear models
lme, nlme Mixed-effects models
factanal Factor analysis
princomp Principal components analysis

7.1 Basic Formulas

In a formula, you specify the response variable first, followed by a tilde, ‘~ ’, and the terms
to be included in the model, separated by operators. Variables in formulas can be any
expression that evaluates to a numeric vector, a factor or ordered factor, or a matrix.
Table 7.2 gives a summary of the formula syntax.

69

70 CHAPTER 7. STATISTICAL MODELS

Table 7.2: Summary of the S-Plus formula syntax.

Expression Meaning

A ~ B A is modeled as B
B + C Include both B and C in the model
B - C Include all of B except what is in C in the model
B:C The interaction between B and C

B*C Include B, C, and their interaction in the model
C %in% B C is nested within B

B/C Include B and C %in% B in the model

An example of a simple formula linking your chosen response variable to the predictor
variable is given by:

> cost ~ age

Both, cost and age, are variables from the claims data. So, the previous formula specifies
that the variable cost is modeled as a function of age.

7.2 Linear Models: lm

Simple linear regression explores relationships that are readily described by straight lines.
The classical simple regression uses the method of least squares to fit a continuous, uni-
variate response as a linear function of a single predictor variable. In the method of least
squares, we fit a line to the data so as to minimize the sum of the squared residuals.

As example, consider the air pollution data in the built-in data set air, which is taken
from an environmental study that measured the four variables ozone, solar radiation,
temperature, and wind speed for 111 consecutive days. A scatter plot of temperature
against ozone is shown in Figure 7.1;

> attach(air)

> plot(temperature, ozone)

From the scatter plot, we may hypothesize a linear relationship between temperature

and ozone concentration. We choose ozone as the response, and temperature as the
single predictor. The choice of response and predictor variables is driven by the subject
matter in which the data arise, rather than by statistical considerations. To fit the model,
we can use the lm function as follows:

> ozone.lm <- lm(ozone ~ temperature, data=air)

7.2. LINEAR MODELS: LM 71

•
•

•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

••
•

•
•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

temperature

oz
on

e

60 70 80 90

1
2

3
4

5

Figure 7.1: Scatterplot of temperature against ozone for the air data.

The first argument, ozone ~ temperature, is the formula specifying that the variable
ozone is modeled as a function of temperature. The second argument specifies that the
data for the linear model is contained in the data frame air. The summary function can
be used to obtain a summary of the fitted model:

> summary(ozone.lm)

Call: lm(formula = ozone ~ temperature, data = air)

Residuals:

Min 1Q Median 3Q Max

-1.49 -0.4258 0.02521 0.3636 2.044

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -2.2260 0.4614 -4.8243 0.0000

temperature 0.0704 0.0059 11.9511 0.0000

Residual standard error: 0.5885 on 109 degrees of freedom

Multiple R-Squared: 0.5672

F-statistic: 142.8 on 1 and 109 degrees of freedom, the p-value is 0

Correlation of Coefficients:

(Intercept)

temperature -0.9926

The Value column under Coefficients gives the coefficients of the linear model, allowing
us to read off the estimated regression line: ozone = -2.2260 + 0.0704 temperature.
The estimated standard error is given in the column labelled Std. Error, and the term

72 CHAPTER 7. STATISTICAL MODELS

Multiple R-Squared tells us that the model explains about 57% of the variation in
ozone. The F-statistic is the ratio of the mean square of the regression to the estimated
variance; if there is no relationship between temperature and ozone, this ratio has an F
distribution with 1 and 109 degrees of freedom. The ratio here is clearly significant, so
the true slope of the regression line is probably not zero.

But how good is the fitted regression model? To answer this question the simplest
and most informative method consists in looking at the model graphically. Therefore we
can use the default plotting method for lm objects by means of:

> par(mfrow=c(2,3))

> plot(ozone.lm, ask=F)

If you are not interested in all of the plots created by the default plotting method, call
plot with the argument ask=T. As shown in Figure 7.2, this yields the following six plots:

1. Residuals against fitted values. This plot reveals unexplained structure in the resid-
uals.

2. Square root of absolute residuals against fitted values. This plot is useful in identi-
fying outliers and assessing variability in the residuals.

3. Response against the fitted values. This gives a good idea of how well the model has
captured the broad outliers of the data.

4. Normal quantile plot of residuals. This plot provides a visual test of the assumption
that the model’s errors are normally distributed.

5. Residual-Fit spread plot. This plot compares the spread of the fitted values with the
spread of the residuals. Since the model is an attempt to explain the variation in
the data, one hopes that the spread in the fitted values is much greater than that
in the residuals.

6. Cook’s distance plot. Cook’s distance is a measure of the influence of individual
observations on the regression coefficient.

The line shown as a dashed line in the third plot (far right of top row in Figure 7.2) is
in the case of simple regression visually equivalent to the regression line. The regression
line appears to model the trend of the data reasonably well. The residuals plots (left
and center, top row) show no obvious pattern, although five observations appear to be
outliers. By default, as in Figure 7.2, the three most extreme values are identified in each
of the residuals plots and the Cook’s distance plot; see id.n argument in the call to plot.
Another useful diagnostic plot is the normal plot of residuals (left plot, bottom row).
The normal plot gives no reason to doubt that the residuals are normally distributed.
The Residual-Fit spread plot, on the other hand (middle plot, bottom row), shows a
weakness in this model; the spread of the residuals is actually greater than the spread in
the original data. However, if we ignore the five outlying residuals, the residuals are more

7.3. OTHERS MODELS 73

•

•

•

• •

•

• •
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

• ••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•
•

•

Fitted : temperature

R
es

id
ua

ls

2.0 2.5 3.0 3.5 4.0 4.5

-1
0

1
2

45

23

77

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

• •

•

•

• •

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

Fitted : temperature

sq
rt

(a
bs

(r
es

id
(o

zo
ne

.lm
))

)

2.0 2.5 3.0 3.5 4.0 4.5

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

4523

77

•
•

•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

••
•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

Fitted : temperature

oz
on

e

2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

5

•

•

•

••

•

••
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•••
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-1
0

1
2

45

23

77

•
•
••
•••
•••
••
••
•••••
••••
•••
•••
•••
••••••

••
••••••••••

••••
•••
•••••••••••••

•••••••
•••
••••••

•••••
•••••

••
•••
••••
••
••
•
•

Fitted Values

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

•
•

••
•
••••
••••••

•••
••••••••

••••••
••••
•••
••••••••

••••••
•••••
•••••

•••••
••••••

•••••••
••••••••••

••••••
•••
••
••
••
•
•

•
•

•

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

f-value

oz
on

e

Index

C
oo

k’
s

D
is

ta
nc

e
0 20 40 60 80 100

0.
0

0.
02

0.
04

0.
06 17

77

20

Figure 7.2: Use of the default plotting method for lm objects for ozone.lm.

tightly bunched than the original data. The Cook’s distance plot shows four or five heavily
influential observations. As the regression line fits the data reasonably well, the regression
is significant, and the residuals appear normally distributed, we feel justified in using the
regression line as a way to estimate the ozone concentration for a given temperature.

One important issue remains — the regression line explains only 57% of the variation
in the data. Therefore, we may want to consider the effect of other variables on the ozone
concentration. Constructing linear models involving more than one predictor is as easy
in S-Plus as models with a single predictor. One possible way is to use the lm function
with the formula ozone ~ temperature + wind + radiation.

7.3 Others Models

A variety of statistical models are analyzed in Becker and Hastie’s book (1992, Statistical

Models in S), including analysis of variance, generalized linear models, additive models,
local regression, nonlinear models, mixed-effects models, and tree-based models. As they
go far beyond the coverage of this guide, only the names of the corresponding S-Plus

functions are listed in Table 7.1. In addition, you may want to look at the excellent book
by Venables and Ripley (1999, Modern Applied Statistics with S-Plus).

74 CHAPTER 7. STATISTICAL MODELS

7.4 Exercises

Exercise 7.1 (Simple linear regression). Consider the cell survival data, which is in
the course library s+intro. The two variables are dose, the dose of drug given to each
cell, and logsurv, the logarithm of the resulting survival time.

> cell.dat

dose logsurv

1 1.175 -0.8209806

2 1.175 -0.5978370

3 2.350 -1.8325815

4 2.350 -2.0402208

5 4.700 -3.2188758

6 4.700 -3.9322257

7 4.700 -2.7936081

8 7.050 -5.2983174

9 7.050 -5.7446045

10 9.400 -6.8124451

11 9.400 -8.8048753

12 9.400 -8.5684865

13 14.100 -4.9618451

14 14.100 -9.7211660

(a) Make a scatter plot of the data, i.e. plot dose against logsurv.

(b) Do a simple linear regression with S-Plus in choosing logsurv as the response and
dose as the predictor variable. Fit the model by means of the function lm. Produce a
summary of the fitted model. Finally, plot the fitted line using the function abline.
Comments?

(c) Redo (b) by using cell.dat without the 13th observation, and compare with (b).
What do you conclude?

Exercise 7.2 (Multiple Regression). Consider the Scottish hill races data, which is
in the course library s+intro. The data set is taken from Staudte and Sheather (1990,
Robust Estimation and Testing, Wiley and Sons, New York). The data is in the data
frame race.dat.

(a) Fit a linear model in taking as dependent variable the record time in minutes
(RecTime) and as independent variables the distance in miles (Dist) and the climb
in feet (Climb).

(b) Use the S-Plus function summary to obtain the summary of the fitted model. What
model do you read off?

7.4. EXERCISES 75

(c) Look at the fit graphically. To do this use the plot function. In considering the
resulting plots, what do you conclude?

(d) Try to fit a generalized additive model. Do you think the linear model is appropriate?

Exercise 7.3 (Advanced). Nonparametric regression with the Great Barrier Reef data.
In a survey of the fauna on the sea bed in an area lying between the coast of northern
Queensland and the Great Barrier Reef, data were collected at a number of locations.
Data and the needed functions are in the S-Plus library sm, which comes with Bowman
and Azzalini (1997). This library can be downloaded directly from

http://www.stats.gla.ac.uk/~adrian/sm/

Try the following commands :

> library(sm)

> provide.data(trawl)

> par(mfrow=c(2,2))

> plot(Longitude, Latitude, type="n")

> points(Longitude[Zone == 1], Latitude[Zone == 1])

> text(Longitude[Zone == 0], Latitude[Zone == 0], "o")

> Zone93 <- (Year == 1 & Zone == 1)

> Position <- cbind(Longitude - 143, Latitude)

> sm.regression(Latitude[Zone93], Score1[Zone93], h=0.1)

> sm.regression(Position[Zone93,], Score1[Zone93],

h=c(0.1, 0.1), eye=c(8,-6, 5), xlab="Longitude - 143")

> sm.regression(Longitude[Zone93], Score1[Zone93], h=0.1)

> par(mfrow=c(1,1))

The top left panel displays the sampling points. The dots are taken from a closed region,
where commercial fishing is not allowed to protect the nature. The circles refer to areas
outside, which were surveyed to allow comparisons. Due to large numbers and types of
species captured in the survey, the response variable is expressed as a score, on a log
weighted scale, which combines information across species. The two right panels of the
plot show nonparametric estimates of the relationship between the catch score within the
closed zone and the spatial coordinates, latitude and longitude, for the 1993 survey.

(a) Can we observe a change in the catch score with latitude ?

(b) Can we observe a change in the catch score with longitude ?

Exercise 7.4 (Advanced). Generate artificial data. Generate data using the following
code:

76 CHAPTER 7. STATISTICAL MODELS

> n <- 100

> x <- sort(runif(n))

> m <- (sin(2*pi*x^3))^3

> y <- m + rnorm(n)*sqrt(0.1)

> plot(x, y, main="Generated data")

> lines(x, y)

Apply smoothing techniques like ksmooth, lowess, loess and smooth.spline to the gen-
erated data. Choose different smoothing parameters and observe their influence on the
smoother.

Exercise 7.5 (Advanced). Kernel or wavelet smoothing. In this exercise we propose
to compare the predictive performance of the kernel smoother with that of the wavelet
smoother, based on simulated data. We generate data according to the additive model

yi = f(xi) + εi,

where ε
iid
∼ N(0, 1). Here we use the following non-smooth block function for f(·):

blocks <- function(x, snr = 5)

{

pos <- c(0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81)

hgt <- c(4, -5, 3, -4, 5, -4.2, 2.1, 4.3, -3.1, 2.1, -4.2)

y <- rep(0, length(x))

for(j in 1:length(pos)) y <- y + ((1 + sign(x - pos[j])) * hgt[j])/2

(snr * y)/1.914

}

The following commands create a plot in which the dots are the noisy data yi and the
dotted line is the true block function.

> n <- 256

> x <- seq(0, 1, length=n)

> ytrue <- blocks(x)

> ynoise <- ytrue + rnorm(n)

> plot(ynoise)

> lines(ytrue, lty=2)

(a) First we try the kernel smoother ksmooth. After typing the following commands,
choose your ‘best’ bandwidth among (0.001, 0.01, 0.1, 1) to estimate block:

for(bandwidth in c(0.001, 0.01, 0.1, 1))

{

7.4. EXERCISES 77

plot(ynoise, pch=".")

kernel.estimate <- ksmooth(x, ynoise, bandwidth=bandwidth)

lines(kernel.estimate$y)

lines(ytrue, lty=2)

title(paste("bandwidth=", as.character(bandwidth)))

}

You may want to set par(mfrow=c(2,2)).

(b) Second we try the wavelet smoother waveshrink, assuming you have the S+Wavelets
module:

http://www.insightful.com/products/wavelets/

Again choose your ‘best’ threshold among (0.1, 1, 5, 10):

module(wavelets)

for(vshrink in c(0.1,0 1, 5, 10))

{

plot(ynoise, pch=".")

wavelet.estimate <- waveshrink(ynoise, wavelet="haar", vshrink=vshrink)

lines(wavelet.estimate)

lines(ytrue, lty=2)

title(paste("Threshold=", as.character(vshrink)))

}

module(wavelets, unload=T)

(c) Finally put your ‘best’ bandwidth and threshold in place of ??? in the following
commands:

> par(mfrow=c(2,2))

> kernel.best.estimate <- ksmooth(x, ynoise, bandwidth=???)

> plot(ytrue, type="l", ylim=c(-6,16))

> lines(kernel.best.estimate$y, lty=2)

> title("Kernel")

> plot((ytrue-kernel.best.estimate$y)^2, type="l", ylim=c(0,25),

ylab="errors")

> ME <- round(mean((ytrue-kernel.best.estimate$y)^2), 2)

> title(paste("Residuals. ME=", as.character(ME)))

> module(wavelets)

> wavelet.estimate <- waveshrink(ynoise, wavelet="haar", vshrink=???)

> module(wavelets, unload=T)

> plot(ytrue, type="l", ylim=c(-6,16))

78 CHAPTER 7. STATISTICAL MODELS

> lines(wavelet.estimate, lty=2)

> title("Wavelet")

> plot((ytrue-wavelet.estimate)^2, type="l", ylim=c(0,25), ylab="errors")

> ME <- round(mean((ytrue-wavelet.estimate)^2), 2)

> title(paste("Residuals. ME=", as.character(ME)))

The ‘Model Error’, ME =
∑

n

i=1
(f̂(xi) − f(xi))

2/n, was calculated for both estimates.
Based on that measure of goodness-of-fit and on the two left residuals plots, which estimate
gives the best predictive performance?

Chapter 8
S-Plus Functions

In this chapter, the basics of S-Plus functions are described briefly, like using loops and
conditional execution, the syntax and the use of the apply functions. For an additional
and a more detailed account of S-Plus functions, consult books given in Section 1.3.5.

8.1 Loops and Conditional Execution

8.1.1 Grouped Expressions

Commands may be grouped together in braces, { expression1; expression2; . . . },
in which case the value of the group is the result of the last expression in the group
evaluated. Since such a group is also an expression it may, for example, be itself included
in parentheses and used a part of an even larger expression, and so on.

8.1.2 Control Statements

Conditional execution: if statements

S-Plus has a conditional construction of the form

if (expression1) expression2 else expression3

where expression1 must evaluate to a logical value and the result of the entire ex-
pression is then evident. For example, suppose that for a vector, x.vector, we want to
calculate its logarithm by first checking if the vector is larger than zero. This could be
done by

79

80 CHAPTER 8. S-PLUS FUNCTIONS

> if (min(x.vector)>0) log(x.vector) else cat("min(x.vector)<=0.")

With x.vector <- c(-1,0,1) this would produce the following output:

min(x.vector)<=0.

Repetitive execution: for loops, repeat and while

There is also a for loop construction which has the form

for (name in expression1) expression2

where name is the loop variable. expression1 is a vector expression, often a sequence like
1:10, and expression2 is often a grouped expression with its sub-expressions written in
terms of the dummy name. expression2 is repeatedly evaluated as name ranges through
the values in the vector result of expression1.

As an example, suppose that for a vector, x.vector, we want to check element by
element if its components are all larger than zero. For example, we could use the following
code:

for (i in 1:length(x.vector))

{

if (x.vector[i]>0) cat("Element", i, "is >0.\n")

else cat("Element", i, "is <=0.\n")

}

With x.vector <- c(-1,0,1) this would produce the following output:

Element 1 is <=0.

Element 2 is <=0.

Element 3 is >0.

Another example of a for loop is

for (i in 1:length(x.vector)) x.vector <- x.vector + i

Note that the use of for loops will result in relatively slow evaluation. Therefore, they
should be avoided if possible. Many functions, such as apply, tapply, sapply and others,
are written primarily to avoid using explicit for loops; see Section 8.3. Other looping
facilities include the statement

repeat expression

8.2. FUNCTION SYNTAX 81

and the statement

while (condition) expression

The break statement can be used to terminate any loop, possibly abnormally. This
is the only way to terminate repeat loops. The next can be used to discontinue one par-
ticular cycle and skip to the ‘next’. Control statements are most often used in connection
with functions, which are discussed in the next section.

8.2 Function Syntax

A function is defined by an assignment of the form

name <- function(argument1, argument2, ...) expression

The expression is an S-Plus expression (usually a grouped expression) that uses the
arguments, argument1, argument2, ..., to calculate a value. The value of the expres-
sion is the value returned for the function. A call to the function then usually takes the
form name(expression1, expression2, ...) and may occur anywhere a function call
is legitimate. An example is given by the function mean:

> mean

function(x, trim = 0, na.rm = F){

if(na.rm) {

wnas <- which.na(x)

if(length(wnas)) x <- x[- wnas]

}

if(mode(x) == "complex") {

if(trim > 0) stop("trimming not allowed for complex data")

return(sum(x)/length(x))

}

x <- as.double(x)

if(trim > 0) {

if(trim >= 0.5) return(median(x, na.rm = F))

if(!na.rm && length(which.na(x))) return(NA)

n <- length(x)

i1 <- floor(trim * n) + 1

i2 <- n - i1 + 1

x <- sort(x, unique(c(i1, i2)))[i1:i2]

}

sum(x)/length(x)

}

82 CHAPTER 8. S-PLUS FUNCTIONS

Easier examples of S-Plus functions are given by

std.dev <- function(x){

std.x <- sqrt(var(x))

std.x

}

mean.var <- function(x){

x.mean <- mean(x)

x.var <- var(x)

return(x.mean, x.var)

}

sum.squares <- function(x, y = 0){

(x + y)^2

}

The function std.dev returns the standard deviation of a vector x, mean.var its mean
and variance, and sum.squares calculates the sum of squares of the sum of x and y. Note
that the default value of y is zero. Possible uses and outputs of these three functions are

> std.dev(x=1:10)

[1] 3.02765

> std.dev(1:10)

[1] 3.02765

> mean.var(1:10)

$x.mean:

[1] 5.5

$x.var:

[1] 9.166667

> sum.squares(1:4)

[1] 1 4 9 16

> sum.squares(1:4, 5)

[1] 36 49 64 81

8.3 The apply Family

The functions apply, lapply, sapply and tapply all apply a function to sections of some
object. These are used instead of a for loop. In general, the appropriate apply function
is faster than the equivalent for loop. Each of the four apply functions have an argument

8.3. THE APPLY FAMILY 83

named FUN which can be either a function or the name of a function. When you use apply,
the MARGIN argument specifies the dimensions that you want to keep. For example,

> mymatrix <- matrix(1:10, nrow=2)

> mymatrix

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> apply(mymatrix, 2, "mean")

[1] 1.5 3.5 5.5 7.5 9.5

The result is a vector of length 5, representing the average of each column. The function
lapply applies a function to each component of a list, and sapply is used in the same
situations as lapply, but generally returns a simplified object. sapply produces a matrix
when all of the results are the same length. If the results vary in length, then sapply is
the same as lapply. Finally, tapply is used in situations where you have one or more
categories, but there is not necessarily an equal number of points in each combination of
categories.

Another interesting feature of these apply functions is that optional arguments can be
supplied and are passed unchanged (including their names) to each call of FUN. Suppose
that there is a NA in mymatrix,

> mymatrix <- matrix(c(1:9, NA), nrow=2)

> mymatrix

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 NA

Calculating the average of each column as before would result in the following output

> apply(mymatrix, 2, "mean")

[1] 1.5 3.5 5.5 7.5 NA

If one wants to remove the missing value before computation, one can use

> apply(mymatrix, 2, "mean", na.rm=T)

[1] 1.5 3.5 5.5 7.5 9.0

where na.rm is an optional argument to the S-Plus function mean.

84 CHAPTER 8. S-PLUS FUNCTIONS

8.4 Debugging in S-Plus

When writing your own functions, you may want to have some means of exploring the
computations, say if either something is wrong or you are not sure that everything is
right. Very good S-Plus functions for this are browser, debugger, trace and inspect;
see the corresponding help documentations. Note that the inspect interactive debugger
is not available in S-Plus 5.x and there have been several changes to the browser and
the related function debugger; see Section 10.3.

8.5 Exercises

Exercise 8.1. Using the tapply function, compute a mean murder rate by region in the
state.x77 data, which contains information about the States of the U.S.

Exercise 8.2. Consider the data testscores, which contains test scores for 25 students
in each of five subject areas.

(a) Compute the total score for each student. What about the average score? Which
student was the best?

(b) Calculate the average score for each of the five subject areas.

Exercise 8.3. Write a function that takes two arguments, x and y, and returns an ob-
ject whose elements are the larger of the corresponding elements of the arguments. For
example, with x = (1, 2) and y = (2, 1) this function should return the vector (2, 2).

Exercise 8.4. Write a function that takes x- and y-coordinate data and a vector of labels
and produces a scatterplot with the labels at the points.

Exercise 8.5. Write a function that takes two vector arguments x and power and pro-
duces x^power if power is non-zero, but produces log(x) if power is zero.

Exercise 8.6. Write a recursive function to compute Fibonacci numbers, based on the
following facts: Fib(0)==0, Fib(1)==1 and otherwise Fib(n) is Fib(n-1)+Fib(n-2).
Trace its evaluation in computing Fib(5).

Exercise 8.7. Write a function to compute the factorial of a number. Trace its evaluation
in computing 10!, i.e Fact(10).

Chapter 9
Miscellany

9.1 Use a Library

An advantage of S-Plus is that a lot of recent methodology is available as free libraries
that seamlessly extend S-Plus. To use such a library, type

> library(name)

which attaches it as a data directory at the end of the search list. Thus libraries cannot
over-ride standard functions nor your own functions. To make a library over-ride the
system functions, use

> library(name, first=T)

which attaches the library name at position 2 (after the .Data directory). An exam-
ple of such a library is the course library, which is a collection of useful functions and
datasets to accompany the introduction course:

> library("s+intro")

To get the list of its contents, you need the position of the library s+intro by using:

> search()

[1] ".Data"

[2] "/usr/local/splus/splus/.Functions"

[3] "/usr/local/splus/stat/.Functions"

[4] "/usr/local/splus/s/.Functions"

[5] "/usr/local/splus/s/.Datasets"

[6] "/usr/local/splus/stat/.Datasets"

[7] "/usr/local/splus/splus/.Datasets"

85

86 CHAPTER 9. MISCELLANY

[8] "/usr/local/splus/library/trellis/.Data"

[9] "/usr/local/splus/library/s+intro/.Data"

You note that the s+intro library was attached in the ninth position, therefore ls(pos=9)
provides you with a listing of its contents.

9.2 Load C or Fortran Code

A powerful feature of S-Plus is that it allows you to extend its functionality, enabling you
to interface with other languages, namely, C and Fortran. Interfaces to other languages
allow you to combine the speed and efficiency of compiled code with the robust, flexible
programming environment of S-PLUS; see also Section 10.4 regarding S-Plus 5.x.

9.3 ESS: Emacs Speaks Statistics

ESS is an emacs package which provides a standard interface between statistical programs
and statistical processes. It is intended to provide assistance for interactive statistical pro-
gramming and data analysis, and was is based on and extends the capabilities of S-mode.
The code is freely available but is not in the public domain. It is distributed under the
GNU General Public License (GNU GPL). With ESS you are able to communicate di-
rectly with a running S-Plus process: you can use key sequences to send lines from
the S-mode file to the inferior S-Plus process, and you can edit S-Plus input files and
transcripts of previous S-Plus sessions. The latest versions of ESS are available from:

http://ess.stat.wisc.edu

9.4 R: the ‘GNU S’

R, also known as ‘GNU S’, is a system for statistical computation and graphics. It consists
of a language plus a run-time environment with graphics, a debugger, access to certain
system functions, and the ability to run programs stored in script files. R implements a
language which is not entirely unlike the S language. Indeed in the absence of a R manual,
you can (mostly) get along by using the S manual. R is very similar in appearance to S;
see the R FAQ for a discussion of the differences between R and S:

http://cran.r-project.org/doc/FAQ/R-FAQ.html

9.4. R: THE ‘GNU S’ 87

R is available as free software under the terms of Free Software Foundation’s GNU GPL.
CRAN is a network of ftp and web servers around the world that store identical, up-to-
date, versions of code and documentation for the R statistical package:

http://cran.r-project.org

or
http://www.r-project.org

88 CHAPTER 9. MISCELLANY

Chapter 10
Comparison of S-Plus 5.x with S-Plus 3.4

S-Plus 5.x is the first product that is based on the new version of the S language from
Lucent Technologies: version 4 of S. This is a major revision of S designed by John Cham-
bers to improve its usefulness at every stage of the programming process. The following
page gives some of the features of Version 4 of S

http://cm.bell-labs.com/cm/ms/departments/sia/project/S/

You can keep up to date with the latest in S programming by visiting the ‘Program-
ming with Data’ web site at

http://cm.bell-labs.com/stat/Sbook/

10.1 Backward Compatibility Issues

S-Plus 5.x for UNIX uses a completely reengineered implementation of the S language.
Objects created with S-Plus 5.x cannot be used with earlier versions of S-Plus. You
should always run S-Plus 5.x in an S-Plus 5.x working directory; this ensures that it
contains only objects created in S-Plus 5.x. Do not run S-Plus 5.x using a .Data direc-
tory created by S-Plus 3.x as your working directory. If you have extensive collections
of user-written S-Plus functions, you should run the function convertOldLibrary on
them before using them with S-Plus 5.x for UNIX. As S-Plus 5.1 includes a new help
system (see Section 10.2) you have to convert old-style help files for use with S-Plus 5.1
and later with convertOldDoc.

Additional changes include the object-oriented programming model, the functional pro-
gramming model, the equals sign, ‘=’, as an assignment operator. For more details I refer

89

90 CHAPTER 10. COMPARISON OF S-PLUS 5.X WITH S-PLUS 3.4

to ‘Release Notes: S-Plus 5.x For UNIX’.

10.2 The New Help System

S-Plus 5.1 introduces a new help system to replace the nroff-based system used in earlier
versions of S-Plus. The new help system displays help as HTML-formatted text, by de-
fault using a modified version of the Lynx terminal-based browser. If you have Netscape
Navigator on the machine you use to run S-Plus, you can choose to have help displayed
in your Navigator window. The help.start function has been restored, but now uses
your Netscape Navigator window to display its menu of function and dataset help files.
The new help system uses help files written in SGML, which are converted to HTML for
display in the browser.

To call up the help system, type

> help.start()

If you are currently running Netscape Navigator, the S-Plus help menus appear in the
running Navigator window. Otherwise, a new Navigator window is launched with the
S-Plus help menus. To turn off the help system, type

> help.off()

At this point, help requests will no longer be sent to the Navigator help window, but the
Navigator window will remain open until you close it.

The S-Plus help window contains two frames, which at start-up contain two lists of
hyperlinks, the ‘Category list’ and the ‘Function list’. The ‘Category list’, labeled ‘Cate-
gories’, is on the right side of the Netscape browser. The ‘Function list’ is on the left side
of the browser, and lists all the functions under a selected category or all the functions
whose descriptions contain a user-specified ‘Topic keyword’. Getting help on a topic can
easily obtained through scanning the ‘Category list’ on the right side of the help win-
dow until you find the desired category, selecting the category, and scrolling through the
‘Function list’ in order to select the function. To print the formatted file, click the ‘Print
button’ on your Navigator toolbar. If none of the categories in the ‘Category list’ seems
to cover what you want, you can use the ‘Search option’ (at the top of the ‘Category list’)
to provide your own topics.

You can access help easily at the S-Plus prompt with the ? and help functions. By
default, both ? and help use the slynx browser (a version of the freely available lynx
browser) to display the requested help, which is formatted for display using HTML. You
can use the ARROW keys to page down and up, respectively; use the ‘q’ key to exit

10.3. CHANGES IN DEBUGGING 91

help and return to the S-Plus prompt, or use the ARROW keys to navigate through the
hyperlinks. You can specify a different help pager by using, for example,

> options(help.pager="vi")

Since vi is just a text editor, if you use vi to view your help files, you will see all the
HTML formatting codes.

10.3 Changes in Debugging

The inspect interactive debugger is no more available in this new S-Plus release for
UNIX or Linux, and there have been several changes to the browser and the related
function debugger. In addition, a new function, recover, can be used to provide inter-
active debugging as an error action. To use recover, set your error action as follows:

> options(error=expression(if(interactive()) recover() else dump.calls()))

Then, for those type of errors which would normally result in the message

Problem in ... Dumped

you are instead asked

Debug? Y/N

If you answer Y, you are put into recover s interactive debugger, with a R> prompt. Type
? at the R> prompt to see the available commands. Use UP to move up the frame list,
DOWN to move down the list. As you move to each frame, recover provides you with a
list of local variables. Just type the local variable name to see its current value.

The browser function now works much like the recover function: you navigate using the
UP and DOWN functions, see available commands and local variables with ?, and exit
with q (in S-Plus 3.4 one had to use 0 to exit).

10.4 Migrating C and Fortran Code

‘Dynamic Linking Dynamic’ loading (that is, the dyn.load function) and static loading
(the LOAD utility) are no longer supported in S-Plus 5.x. Compiled code is now added
to S-Plus by means of dynamic linking, using the CHAPTER mechanism as described in
Chambers (1998) or in the S-Plus 5.x documentation.

92 CHAPTER 10. COMPARISON OF S-PLUS 5.X WITH S-PLUS 3.4

Chapter 11
Conclusion

The main aim of this guide was to give a solid but quick introduction to the S-Plus en-
vironment. I hope that you are now ready to tackle the really sophisticated functions and
to write your own functions. Note that space did not permit to cover recent developments
in graphics, like the Trellis library, and to treat additional or new statistical functionality,
like bootstrapping, particular statistical models, time series analysis, survival analysis,
spatial statistics, neural networks, and so on. So, if a specific problem is not covered
in the present guide, you should be able to find the answer in one of the books given
in Section 1.3.5; especially in the books by Venables and Ripley (1999, Modern Applied

Statistics with S-Plus; 2000, S Programming); see

http://www.stats.ox.ac.uk/pub/MASS3/

or

http://www.stats.ox.ac.uk/pub/MASS3/Sprog/

You will find on this page additional exercises, including selected answers, and on-line
complements of their book. Moreover, the authors have written several software libraries
which enhance S-Plus; these and all the data sets used are available as well. An up-to-
date list of texts and books on S and S-Plus is:

http://www.insightful.com/resources/biblio.html

If you really should not find what you are searching for, post your query to the S-news
mailing list or consult its archive:

http://www.biostat.wustl.edu/s-news/

Finally, note that the new version of S-Plus, S-Plus 6 for Solaris and Linux, is in
its beta stage. New features in S-Plus 6 include Java-based graphical user interface, and

93

94 CHAPTER 11. CONCLUSION

Java connectivity; multiple imputation library for analysis of data with missing values;
and a new robust statistics library.

Bibliography

Baumgartner M. (1994), Une introduction à S-Plus Version 3.1 pour Silicon Graph-

ics Iris, Département de Mathématiques, Chaire de Statistique, EPFL, CH-1015
Lausanne.

Becker R. A., Chambers J. M. and Wilks A. R. (1988), The New S Language,
Chapman and Hall, London.

Böker F. (1997), S-Plus – Learning by Doing: Eine Anleitung zum Arbeiten mit

S-PLUS, Verlag Lucius & Lucius, Stuttgart.

Bowman A. W. and Azzalini A. (1997), Applied Smoothing Techniques for Data

Analysis: The Kernel Approach with S-Plus Illustrations, Oxford University Press,
Oxford.

Chambers J. M. (1998), Programming with Data, Springer, New York.

Chambers J. M. and Hastie T. J. (1992), Statistical Models in S, Chapman and Hall,
London.

Cleveland W. (1993), Visualizing Data, Hobart Press, Summit, New Jersey.

Davison A. C. and Hinkley D. V. (1997), Bootstrap Methods and Their Application,
Cambridge University Press, Cambridge.

Everitt B. (1994), A Handbook of Statistical Analyses using S-Plus, Chapman and
Hall, London.

Härdle W. (1991), Smoothing Techniques with Implementation in S, Springer, New
York.

Krause A. (1997), Einführung in S und S-Plus, Springer, New York.

Krause A. and Olson M. (1997), The Basics of S and S-Plus, Springer, New York.

Marazzi A. (1993), Algorithms, Routines and S Functions for Robust Statistics,
Chapman and Hall, London.

Spector P. (1994), An Introduction to S and S-Plus, Duxbury Press, Belmont, Cal-
ifornia.

Suselbeck B. (1993), S und S-Plus: Eine Einführung in Programmierung und An-

wendung, Gustav Fischer Verlag, Jenna.

95

96 CHAPTER 11. CONCLUSION

Venables W. N. and Ripley B. D. (1999), Modern Applied Statistics with S-Plus,
Third Ed., Springer, New York.

Venables W. N. and Ripley B. D. (2000), S Programming, Springer, New York.

List of Figures

2.1 Histogram of the winning numbers from 254 lottery drawings. 17

2.2 Histogram of the lottery payoffs. 17

2.3 Scatterplot of winning number and payoff for the 254 drawings. 18

2.4 A smooth curve is superimposed on the winning number and payoff scat-
terplot. 19

2.5 Outliers on the scatterplot are labelled with the actual winning number. . 19

2.6 Boxplot of payoffs grouped by leading digit of the winning number. 20

4.1 Default plot for the car.miles vector data object. 45

4.2 Scatterplot of car.miles against car.gals. 45

4.3 Plot of symbolic faces for the cereal.attitude data. 46

4.4 Different type arguments to high-level plotting functions. 48

4.5 Various possibilities of the pch and lty arguments. 50

5.1 Pairwise scatterplots of the variables in the ethanol data. 54

5.2 Perspective plot for the ethanol data. 54

5.3 Contour and image plots for the ethanol data. 55

5.4 Coplot of response and predictors for the ethanol data. 56

6.1 Two examples of the use of QQ-plots in S-Plus. 62

7.1 Scatterplot of temperature against ozone for the air data. 71

7.2 Use of the default plotting method for lm objects for ozone.lm. 73

97

List of Tables

1.1 Command line editing for the emacs mode in S-Plus. 14

3.1 Access elements of the matrix A.mat. 28

3.2 Logical and comparison operators in S-Plus. 33

4.1 Common high-level plotting functions in S-Plus. 46

4.2 Selected list of arguments to high-level plotting functions. 47

4.3 Common low-level plotting functions in S-Plus. 48

6.1 Available standard distributions in S-Plus. 60

6.2 Common functions for summary statistics in S-Plus. 63

6.3 S-Plus functions for hypothesis testing. 64

7.1 Listing of some S-Plus modeling functions. 69

7.2 Summary of the S-Plus formula syntax. 70

98

