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ELASTIC AND INELASTIC SCATTERING OF NEUTRAL ATOMS BY A
CORRUGATED HARD WALL

G. ARMAND and J.R. MANSON *

CEN—Saclay, Service de Physique Atomique, Section d’Etudes des Interactions Gaz—Solides,
BP 2, F-91190 Gif-sur-Yvette, France

A general treatment of the elastic and inelastic scattering of neutral atoms by a corrugated
hard wall potential is presented. The influence of the atomic thermal motion is divided into two
parts, one corresponding to a translation of the whole profile and due to long wavelength
phonons, and the other inducing a deformation of the potential shape corresponding
predominately to short wavelength phonons. The Debye—Waller factor (for both the elastic and
inelastic contributions) has the expected form and contains terms which correspond to a
translation of the profile. However a correction term is introduced by the profile deformation.
The one phonon exchange can occur with all the crystal phonons but it appears more important
with those of long wavelength. The inelastic cross section is expected to be larger in the vicinity
of diffracted peaks of large intensity. The only approximation is made in the determination of
the source function where one supposes that a limited and small amount of energy is exchanged
between the particle and the crystal.

1. Introduction

As the static corrugated hard wall model has proven to be realistic in interpret-
ing the elastic experimental data of thermal neutral helium atoms scattered by a
clean crystalline surface, it is now interesting to introduce the thermal motion
of the wall. Previous works in this field have been done by Garibaldi et al. [1] who
used the eikonal approximation and by Beeby [2], who obtained an approximate
solution to the time dependent scattering equation. We present here some results
using a time independent approach which treats the thermal motion of the lattice
using many-body statistical mechanics in the harmonic approximation. The
approximations made are less severe than in the previous works.

2. The corrugated hard wall potential including thermal crystal motion

We consider the whole system composed of the scattered particle and the
crystal. The hamiltonian is
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H=—~®*A12m) + H® + V(r, u) (1)

the sum of the particle kinetic energy, the crystal hamiltonian taken in the
harmonic approximation, and the interaction potential ¥(r, u) which in the follow-
ing will be represented by the corrugated hard wall potential:

Vir,uy=o, z<o(R,u), regionl, o
Vir,u)=0, z>¢(R,u), regionll.

Here the position vector 7 is (R, z) and u is the displacement due to the atomic
thermal motion.

Generally speaking an incoming atom such as helium experiences a repulsive force
very near the surface which is the resultant of the interaction between the helium
electron shell and the surface electronic structure. As the helium atom diameter
is of the same order of magnitude as the distance between neighbouring crystal
atoms, many surface atoms will simultaneously participate in the interaction.
However their number will be limited as the forces involved have a short range.
Consequently we can consider that the repulsive part of the potential V(r,u) is
formed from the contribution of a limited number of surface atoms located in the
vicinity of the helium position . For the corrugated hard wall potential this implies
that the shape function ¢(R, #) will be dependent on the thermal displacements of
atoms which belong to the unit cell denoted by the R value and also, depending
on the unit cell dimension, of atoms located in its vicinity. Note that this function
is continuous with respect to the R variable and that o(R, u = 0) is periodic.

Let us consider now the contribution to the thermal motion of the phonons
with wavelength long compared to the unit cell dimension. They produce only a trans-
lation of the potential. On the contrary the displacements due to phonons of short
wavelength, less than a few unit cell dimensions, will contribute mainly and largely to
a deformation or distortion of the potential shape. As the atomic thermal displace-
ment is a sum over all crystal modes we can consider that the thermal motion is
made up of two parts, the first corresponding to a translation (uy, %) and the
second to a deformation (#4, u%). Thus we can write

kp(R,ll)=£p(R — Uy, Uy, u§)+uf . (3)

Let us illustrate this point by a very simple example. We suppose that the potential
shape between two atoms labelled 1 and 2 is represented by a straight line. If we
restrict the thermal motion to the direction normal to the surface the atoms are
located respectively at x,, ©:] and x, + @, 5. We have

= z _
o(x, u) = (u3 — uj 5 - 5

Z)(Jc—“x1)+uf=(u§—uf)l:2(x_xl)_a] R SR
a

This expression shows clearly that the effects of thermal displacement can be
divided into a translational part uf = (u} +u3)/2 (which vanishes for phonons of
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short wavelength, ~2a) and a distortion u§= (45 ~ u%)/2 (which on the contrary,
vanishes for long wavelength phonons).

3. Solution of the Schrédinger equation

The incident plus scattered state function ; (i.e. the solution of the
Schrédinger equation) must be equal to zero in region 1. This condition is fulfilled
by writing that the product ¥y; is equal to zero in this region.

In region II, V=0, and the product Vy; also vanishes. The solution of the
Schrodinger equation is of the form

i = Z)aj(pjlnj) s (4)
]

¢; being a plane wave and In;} a crystal state. At the boundary z = o(R, u), ¢;
must be equal to zero but its first derivative with respect to z has a discontinuity.
The quantity Ay; is consequently a Dirac delta function at the surface. If yi
is to satisfy the Schrodinger equation the product ¥y must also have the same
behaviour.

It is also clear that the transition operator T operating on an unperturbed state
should give the same result as the potential operating on yi. Therefore the fol-
lowing two relations

VUi =Tl¢in) = L™3%f(R, u) & [z — ¢(R, u)] exp(iK, * R) In;) , (5)
ViR, z =¢(R,u)] =0, (6)

are necessary and sufficient to determine y; everywhere [3].

Note that L=3/ is the box normalization factor and K, the surface parallel
component of the incident particle wavevector k, = (Ko, k3).

Starting with the Lippmann—Schwinger equation [3] together with relation
(5) one obtains:

Vi = lginy — im(2an) 2L 732 E In;) ff dK; (k7)™ exp(iK; - R)
i Lo
X (njl ff dR' f(R', u) exp{i[(Ko — K;) - R' + K¥1z — o(R', )]} Iny) , (7)

with m the mass of the incident particle and
ki = [(E — Ef) 2mn™* + lko 2 — |K; P72, (8)

where E7 is the energy of the crystal state ;.

Eq. (8) expresses the fact that in the hard wall formalism only those
intermediate states which conserve the total energy contribute to the scattering
process.
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For z greater than the maximum value of o(R, #), ¥ is the sum of an incoming
plane wave, outgoing diffracted waves, and inelastically scattered waves, and
corresponds to the expected form (4) of the Schrédinger equation. Thus the
solution is uniquely specified if the emitting or source function f{R,u) can be
evaluated by applying the boundary condition (6) to ¥j of eq. (7).

4. Determination of the source function

If the surface profile is translated as a whole in the direction normal to the
surface by a quantity «?, it is easy to show that the source function is multiplied
by a phase factor exp(-ik§®). Thus using the decomposition (3) we can write:

f(R, u) :f(R — U, Uy, uf‘l) exp(_lk(z)uf) . (9)

Introducing this expression into (7) together with (3) and making the change of
variable $ =R — u, gives an expression for y; where the ¢ and f functions are now
dependent only upon that part of the thermal displacement which produced a
deformation of the corrugation shape (u4, 43). The boundary condition (6) gives:

. i -7 dK;
0=exp{i[Ko (S +u) — k§((S, ug, u?) +ud)]}n — (2—‘% _f “f 7(}—'

+o0

Xexp{i[K; - (S + uy)]}nn;! ff dS’ exp {i[Ko —K;] - (S" +uy) — ikGui}

X exp {ikF lo(S, ug, ug) — o(S', ug, ud)} fS', uq, ud)ny , (10)
with
2m
kf = [(Ef - E}’)F +k2 — K212,

In order to obtain a manageable integral equation we suppose now that E} is not
very different from EY, that is to say we suppose that the exchange of energy
between the particle and the crystal is very small. Thus the sum over ln;) reduces
to a projector and the boundary condition becomes:

ab "% dK;
0=exp{i[Ko S — K o(S, ug, uD)]} + = [ L exp(iK; - S)
° 2n) _fl i !

+ oo

X ff dS’ exp{i(Ko — K;) - 8'} exp {ikF (S, ug, ud) — oS, ug, ud'}

XF(S',ud, uy), (11)
with F = (—im/h%ab)f, and ab is the area of the surface unit cell. This integral
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equation which determines the source function F is dependent only upon that
part of the thermal motion which produces a deformation of the infinite barrier
shape. This is a reasonable result from a physical viewpoint as the part of the
motion giving only a profile translation should not modify the source function
apart from a phase factor.

Eq. (11) is still rather difficult to handle since it depends on a large number of
phonon variables. We now proceed to give two different approximations which lead
to manageable equations. The first consists in neglecting the influence of the
thermal deformation (uy, u3). The ¢ and F functions are now periodic and the
integral over S’ which extends over the whole surface can then be reduced to an
integral over a single surface cell together with a sum over all surface reciprocal
lattice vectors G. We recover the integral equation which determines the source
function in the purely elastic case and which has recently been solved exactly [4,3].
In fact this approximation leads to an exact result if one considers in the elastic or
inelastic cross section calculation the influence of the thermal translation alone.
Therefore the results obtained will be certainly good if the influence of the thermal
deformation is comparatively less than the translational effects. In either case the
exchange of energy between particle and crystal should be small as we have
supposed above. This should correspond to a system with particles scattered around
each diffraction peak which are due mainly to single phonon exchange.

A more elaborate and perhaps less severe approximation consists in linearizing
first the ¢ and F functions

oS, ug, ug) = ¢(S) +&(S)  uq + E(S) v ,

12
F(S’ Uy, uﬁ)=F(S)+n(S)-ud+nz(S) ufi’ ( )
and then taking the thermal average of (11). As the thermal average of ¢ and con-
sequently of F' are periodic, eq. (11) contains only periodic functions of S. The
same procedure as above reduces this equation to an integral over a unit cell with a
sum over reciprocal lattice vectors. The four unknown functions, F, n*, ¥’ and n*
can be determined by a procedure like those used in the preceeding case if the

thermal averaged value of ug, u}, and u3 are known. This leads to functions which
are temperature dependent.

5. Transition rate
The transition matrix element between final (f) and initial (i) states is given by:
Tfi = <’7f¢f|V\l/i+> = <nf¢fIT'¢ini> = <flf|ffi|ﬂi> .

As above using the Vyj product expressed by relation (5), the decomposition
(3) (which implies relation (9)), and the change of variables S = R — u, one gets



at
er

mn

of
1d
1€
1€
n

ce
or
al
1e
e

1d

13

2)

G. Armand, J.R. Manson | Scattering of neutral atoms by hard wall 537

+ oo

tei =L-3 exp{—-l[AK C Uy + (klz""k%) ut2]} ff de(S, ud’u(z'l)

Xexp{—i[AK - S + kfo(S, uq, u3)l} , (13)
with
AK = Kf - Ki .

The mean transition rate is then deduced in the usual way and one finds:

-+ oo

We; =h2 f dt exp{it(R) " (ER — EP)} Kt£;[u(0)] ¢4 [u ()], (14)

in which EP denotes the particle energy and {)) indicates that one has to make the
thermal average over crystal states. In general the effect of this last operation is
to produce the exponential of mean square and mean correlated displacements
which gives a so-called Debye—Waller factor, and the exponential of a time
dependent correlation function between displacements. If this latter exponential
factor is expanded in powers of the correlation function, the zeroth order term is
just the elastic case, the first order term gives the single phonon scattering and the
higher order terms give the multiphonon events. The Debye—Waller factor, of
course, appears in all of these terms. An important result of the thermal averaging
of eq. (14) is that it leaves the transition rate independent of all phonon variables.
In the integral over S appearing in #¢; the part of the integrand depending on ¢
and f becomes periodic in S as the thermal average of ¢ and consequently of f are
periodic in S. The integral can be reduced to an integral over a single unit cell with
the sum over reciprocal lattice vectors and, with the exception of the elastic case,
over phonon momenta parallel to the surface. In all cases the source function is
determined by one of the procedures outlined in section 4.

6. Elastic events

In this section, and in the following section on inelastic events, we will assume
the linearization of the ¢ and F functions given by eq. (12). Formally, one can
readily include the higher order terms and the associated thermal averages can be
carried out. However, we will make the reasonable assumption that the coefficients
of these higher order terms are small and hence their influence can be neglected.
The elastic reflection coefficient is composed of a sum of three terms which give
respectively the influence of F(S),n(S) and n*(S), and the influence of the coupl-
ing between F' and n. As the terms depending upon n and n® seem to give much
smaller contributions certainly the contributions of higher order terms in the
expansion of F' can be neglected. As a zeroth order approximation one has:
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Rf=G,i = (kf)sz)_l lAGIZ eXp(—2Wt,G) , (15)
with
Ag= [[dS F(S) exp{—i[G- § + Kop(S)]} exp[~Wa oS, TY] , 16)

where Wy ¢ is a temperature dependent function given by

Wa,6 = kG K[(k + k) uf + G - u][§(S)- ug + £(S) u])
3 (k8)* €(&(S) - ug + E¥S) uD™ (17)
Wi6 = 1[Ik + kG uf + G- 1) . (18)

The reflection coefficient contains the term exp(—2W,¢) which is similar to a
Debye—Waller factor. We note that this Debye—Waller factor is of the same form as
the corresponding factor which is often used in an ad hoc manner for interpreting
experimental data [S], however, we have shown that it results naturally from a
general formalism and is not restricted to the Born or eikonal approximation. It
contains only the translational thermal displacement part, that is to say the
influence of phonons of wavelength long compared to the unit cell dimension,
The effect of the distortional phonons is to introduce a position dependent correc-
tion to this Debye—Waller factor through the deformation displacement term
-exp[—Wq (S, T)]. The reason one obtains this position dependent term is because
of the unusual manner in which the distortional phonons enter the potential.
Standard treatments of the Debye—Waller factor, such as for neutron or electron
diffraction, depend on a potential of the form Zu(r — r; — u;) or V(r — u). If the
phonon operators do not appear in the potential in the linear form 7 — u one is
immediately lead to a much more complicated analysis, which in the present case
gives rise to the position dependent correction. The physical interpretation is that due
to distortions, the effective shape’of the surface corrugation in the unit cell can
change with temperature and hence give a redistribution of the relative intensities
of the diffracted beams.

In the case of helium atoms scattered by the (100), (110) or (111) faces of
- copper no diffracted peaks have been observed experimentally. This means
certainly that the amplitude of the surface corrugated wall is very small. Therefore
we may suppose that the correction introduced by the ¢ functions is negligible.
Taking a uf displacement equal to the average displacement of atoms belonging to a
surface unit cell we recover a previous result for the Debye—Waller factor which has
given a good understanding of the rather high effective surface Debye temperature
found experimentally [5,6].
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7. One phonon events

In order to obtain a result consistent with previous calculations we suppose now
that the 0 components of u; and u4 are respectively given by

n n
o =l g ag_, =_]'__ ag
UL n 2 O ULy, UdL n _;?1 ﬁsuL's ,
where the n atoms considered belong to the unit cell L or L', a; being a positive
coefficient whereas f; can be postive or negative. As mentioned above the thermal
average reduces the ¢ and consequently the F functions to periodic functions on
the surface. Thus the integrals over S are reduced to a single unit cell and in doing
so the summation over all lattice cells gives a 6§ function which guarantees the
momentum conservation.

Using the linearization of ¢ and F (expression 12)) and neglecting as above the
terms given by the n functions one gets for the differential scattering intensity

dR _ mb kel AQ)
dEdx @n)K K1 Q
Wi G+q and W4 g.q which enter into eq. (20) below are given respectively by (18)
and (17) upon replacing k% by kf and G by G + ¢, and
Kf = KO +G+ q,
ki = [2m(h)*hw + lko* — |IKy + G +q*]V2
where ¢ is the parallel phonon momentum. The function 4(2) = n(£2) for phonon
annihilation and equals n(§2) + 1 for phonon creation, with n(§2) the mean number
of phonons of the dimensionless frequency = (M/K)'/2 ), M being an atom mass

and K a constant force of the harmonic lattice taken as reference. The three P
terms are given by:

Py = [Q AK°AK*AZ@)AHE))" 0742, 9)] 1CE 4P

2 exp(~2W; Go)Pr + Pra + Pad) - (19)

Pyq = (k7)’ g AN @)@ p%*(2, qX(CE+q)" Cé4q o,a=x,yorz,

Py = 2kE Re[2 AK(AY(9))" @) P72 0)(CE+q)" CBrql
ox

with

AK®Y =(G+q)™, AK* =K +KE,

C&eqg= [[dS HYS) exp{-il(G +q)- S + Kio(S)]} exp{-Wac+q(STI},  (20)

HXS)=F($)£XS), H°®)=F(S);
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p°*(R2,q) is the spectral density for given ¢ between direction ¢ and a for the sur-
face plane [7], and

n
1 .
At(d) = ;l—r(sz)z . o, (B) exp(iq - Rg(s)) ’ R?‘(s) = Rr(s) —Rywy-

The two first terms Py and Pyqy give a predominant one phonon cross section for
long and short wavelength waves respectively as they come from the translation
and deformation part of the thermal displacement. This behaviour is produced by
the form of the A; and A4 factors which, for example are equal respectively to
3(1 + exp iga) and (1 — exp iga) for the very simple model depicted in section 2.
The modulus of A, varies continuously from 1 to 0 while |A4! varies from 0 to 1
as ¢ increases from 0 to m/a.

The P;q term gives the interference of u, and uy as it is composed of the product
AtAg. It will be maximum for phonons of medium wavelength.

The appearance of the factors Ay and A4 in eq. (19) represents an extension of
. previous work [5] based on a simpler model exhibiting no distortion. With the
present model the one phonon exchange can occur for phonons over the entire
Brillouin zone. However it seems that the cross section for phonons of parallel
momentum falling near or in the vicinity of the Brillouin zone edge will be small
due to the presence of the ¥(S) function in the integral giving the C%J,qlmatrix
element.

Another important fact should be pointed out here. The inelastic matrix element
C'%H, and the elastic matrix element Ag are very similar as we have C%(Q =0)=
Ag. In an experimental situation in which there are several neighbouring diffracted
peaks which are large compared to the surrounding peaks it is clear that the
corresponding A are large. One can then expect that C‘&W will also be large for
scattering angles near these peaks and in fact will probably exhibit a maximum. In
other words the inelastic matrix elements should be large for roughly the same
scattering conditions in which the elastic matrix elements are large. Physically, this
implies that in a given scattering experiment, wherever one finds strong elastic
peaks these should also be a strong inelastic background. It is likely that the inelastic
scattering will be particularly important at angles near to the classical rainbow
angles.

8. Conclusion

The results presented here have been obtained in a closed form using the two
important facts:
— The thermal average over crystal states of the shape corrugation function
{o(R, u)» is periodic over the surface. As a consequence the same average of the
emitting or source function is also periodic.
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— The thermal atomic motion can be decomposed into two parts. The first induces
a translation of the whole surface profile and corresponds to the motion given by
phonons of long wavelength. The second implies a deformation or 2 distorsion of
the profile shape and corresponds to the motion given by phonons of short wave-
length. The only approximation is introduced in the determination of the source
or emitting function. For that we have supposed that the exchange of energy
between the particle and the crystal is small. Furthermore we assume that the shape
corrugation function ¢(R, ug4, ug) which depends only upon that part of thermal
motion which produces the distortion (uq, u3) is periodic. This is strictly true for
the thermal average of this function but for the function itself this is not exact as
far as the phonons of medium or intermediate wavelength are concerned. The
zeroth order approximation is equivalent to taking the source function of the
purely elastic case. Note that these approximations are made only for the deter-
mination of the source function and are not made at any other point in the
formalism.
Independent of the determination of the source function two important
results have been obtained:
— The Debye—Waller factor for the elastic and inelastic cases is of the same form as
the factor usually used in the interpretation of the experimental data. We note
that it is obtained in a general formalism and not as previously done with the help
of the Bormn or eikonal approximations. However, one has to take account of a
correction term which is position dependent. Its importance should be evaluated
in each particular system studied.
— The one phonon exchange can occur with phonons of parallel momentum ¢
lying in the entire Brillouin zone. However the cross section seems to be more
important with phonons of small ¢ corresponding to a translation of the profile,
and seems to decrease as ¢ approaches the Brillouin zone edge, corresponding to a
deformation of the profile shape. Finally one can expect a greater one phonon cross
section in the vicinity of the diffracted peaks of large intensity.
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