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In the present state of the art it seems that the so-called Hard Corrugated Wall is
a potential which gives one of the best representations of the neutral atom—solid
surface diffraction phenomena. In fact this potential has recently been coupled
with an attractive well to give some very impressive agreement with experimental
data [1,2]. In this paper we develop a formalism for the repulsive hard corrugated
wall which is valid for all corrugations, even in the case of discontinuities in the
shape function. Taking Oz as the direction normal to the surface, this potential is
defined by

Vi, )=0 if  z>¢x,¥)=dR),
Vix, )= if  z<olx, y)=¢@R).

With this particular type of potential the Lippmann—Schwinger equation can be
solved and one gets for the incoming plus scattered waves 131

exp[i(Ko + G) - R]

Y =expli(Ko R —ko,z)] + %}

sz
X [ F(R)exp(~iG - R") explikc:|z — o(R)I] ’R’, (1)
unit
cell
where

ko =ki — (Ko + G,

in which, as usual, ko is the incident particle wavevector of component K, parallel,
and ko, perpendicular to the surface, G is a surface reciprocal lattice vector, and
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(R, z) is the position vector. F(R) is the unknown source function which is to be
determined by applying the boundary condition

Y(R,z=¢p(R))=0, (2)
i.e., by solving the following integral equation:
0 = exp[—ik o {R)] + 2 M
G sz
X [ FR)exp(~iG- R') explikg;|o(R) — ¢(R)I] d°R’" . (3)

unit
cell

For z greater than the maximum value of p, Y consists of an incoming plus a
sum of outgoing diffracted waves of amplitude

Ag=(ke)™ [ FR)exp(~iG" R") exp[-ikg(R)) d°R . @
unit
cell
So knowing the source function F the reflection coefficients are easily calculated
using

_cosbg

o= 14g1?,

cos f¢

where 0 is the scattering angle measured from the normal. The set of R values
will satisfy the unitarity condition

Z; RG=1 . (5)

2
G(kGz>0)

Several other methods of applying the boundary conditions giving simpler
equations for determining the source function have been presented. A comparison
with these other methods and a discussion of the problems involved with them is
given elsewhere [4]. Recently, Garcia and Cabrera [S] have presented a numerical
method which allows one to solve the integral equation (3). They restrict their
calculation, without loss of generality, to the two-dimensional case: the corrugation
function i, and consequently the source function F' are not dependent ony, a
description which gives a good representation of stepped surfaces, for instance.
Their method, called RR’, consists in replacing the integral in eq. (3) with a finite
sum by dividing the one-dimensional unit cell of length a into 2N intervals of equal
length. The resulting equation is regarded as a system of 2N linear algebraic equa-
tions for the 2V unknown values F(X,,). In other words, the ¥ function is forced to
be zero at the set of 2NV points X = X,, Z = ¢(Xp,). The system is inverted to obtain
the F(X,) values and then the reflection coefficients are calculated by numerical
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Fig. 1. (a) The triangular corrugation profile; (b) the saw-tooth profile; (¢) the dental profile.

integration of eq. (4). The number N should be sufficiently large so that the cal-
culated R values satisfy the unitarity relationship (5).

This method, which has been successfully applied to the interpretation of dif-
fracted peak intensities from a vicinal surface [6,7] where the corrugation is of a
triangular type (fig. 1a), is not suitable when the profile presents a “vertical” part
(a discontinuity in the ¢(x) function) such as the saw-tooth corrugation (fig. 1b).
In this latter case the numerical integration does not take into account the vertical
line of the discontinuity and consequently the Y function does not necessarily
vanish on this part of the profile. We propose here a numerical method, called
RR'Z, which allows the problem to be solved for any kind of corrugation, even in
the case of discontinuities.

‘91()() ¥, (x)
2ha

b a X
Fig. 2. A general corrugation profile of height 2ha, described by the two functions yq(x) and
p2 (x).
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Let us consider the one-dimensional profile of a unit cell of length a (fig. 2)
defined by
z=p(x), 0<x<b; z=p(x), b<x<a,
where, for simplicity, ¢; and ¢, are taken to be monotonic functions. Eq. (1)

reduces to:

> expli(Ko - R + G,x)]
Gy sz

Y=exp[i(Ko: R —kozz)] +
b
X { f F(X) exp(—iG,X) exp[ikg;lz — 0, (X)!] dX
0

+ [ F(X) exp(—iGX) explikg: |z — ¢, (X)1] dX} (6)
b

where
szz = k(2) - (KOx + Gx)2 - (KOy)2 .
We change the variable of integration from X to Z. Putting

d(o Y (Z
Flo(2)) ——(ﬁd——z—(l -F(2),

we get for the boundary condition and beam amplitudes:
exp(iG
0= exp(—ikozz) + E __P_(__)s_xl
Gx sz

2ha
X{[ F\(2)exp[-iGxoi' (2)] explike:|z - Z1) dZ
0

2ha
— [ Fy(2) exp(—iG03"(2) explikg,|z - Z1) dZ} M
0
1 2ha ' _1 S
Ag= " f {F1(Z) exp[—iGyp1 1 (Z)] — F3(Z) exp[-iGy; ' (Z)]}
Z0
X exp(—ikg;Z) dZ . ®

Now we divide the integration interval (0 < Z < 2ha) into N subintervals and put
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Z,, = n(2ha/N). Carrying out the numerical integration, eq. (7) can be written as

) 2ha
0= exp(—ikos2) + -

N-1 . -
y { S gy T ORGE = E@Y
n=0 Gx

sz
N , -
2 Fy(Z,) 2 exp{lGx[xk— o Znl} exp(ikgzlz — Z,D) | - 9)
n=1 Gx Gz

For a given point on the profile, that is to say for a pair z, x = ¢~ 1(2), this equation
contains N unknown values of each function F1(Z) and F5(Z) or a total of 2NV
unknown quatities. To convert eq. (9) into a system of linear algebraic equations
one choose N points on each profile section, X,,' = ¢7'(Z,) and X' = 0 (Zy),
with for instance Z,y = (n' + €) 2ha/N, 0 < e < 1. Note that, with e different from
zero, the set of points X,,» where ¥ =0, is different from the set X,, where the F
function is determined. Evaluating eq. (9) at the set of points Xy, Z, gives a set of
2N linear equations in the 2V unknown quantities ; and F3. The system can be
inverted and the diffraction amplitudes are obtained from (8) by numerical integra-
tion.

With this procedure we have forced the { function to be zero on only 2V points
of the profile, and not, as it should be, on the continuous set of profile points. In
order for the boundary conditions to be well approximated, the number NV will be
certainly large. Furthermore, we will obtain a good evaluation of the integrals in
egs. (1) and (8) by the numerical procedure only if the integral does not vary
strongly over the interval Z,,4; — Z, = 2ha/N. This condition is difficult to formu-
late as the F function is unknown, but it certainly implies again that ;V should be
equal to a large number and additionally imposes a condition on |Gmax | = 2n/a)P
the maximum value of G in the sum of eq. (9). (In principle this sum extends from
—o0 to +90,) In this way the sum becomes

+P

2ha 1 o i o 2ha

~ 20— exp{iGlv12(Zn) — ¢12Z)]} eXp(lkczM +e—n|—-—)- (10)
-P kg, N

For the particular case where n=nr" and both ¢(Z,) and ¢(Z,’) lie on the same
portion of the profile, it reduces to

+P
2ha 1 2ha)
—_— ik —1, 11
Y - exp(l e (11)

a sum which remains convergent as V goes to infinity even in the case € = 0 if Pis
of the order of V.
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Table 1
Comparison of the RR’ method and the RR’Z method with a triangular corrugation profile for
a system exhibiting seven diffracted beams; the incident beam is perpendicular to the surface

Beam RR',e=0.5 RR',e=0 RR'Z,e=0
30 0.236 X 1072 0.236 x 1072 0.224 X 1072
20 0.434 X 107 0.434x 1072 0.430 X 1072
io 0.52340 0.52368 0.52203

00 0.18088 0.18069 0.18218

10 0.14749 0.14739 0.14859

20 0.10796 0.10804 0.107812

30 0.3336 x 107" 0.3347 x 107! 0.3269 x 107"
=Rg 0.99981 1.00000 0.99987

h=0.05a=3x10"% cm, kg1 =7.06 x 108 cm™, 1k la = 21.18, b/a = 0.75, Kq = 0.

Thus, it appears that in the numerical procedure one has to choose two values,
P and N, the Pvalue being certainly equal to or near the N value. The numerical
result should be a convergent process: the calculated peak intensities should reach
their asymptotic values and the unitarity sum should approach unity as & increases.
In practice one increases NV until the desired unitarity is obtained.

Table 1 gives result obtained with a triangular shaped profile (fig. 1a). Between
the two results € = 0.5 and € = 0 with the RR' method there is only a difference of
3X10™ on the most intense peak (10) which is of the order of the unitarity
defect. The € =0 procedure seems to be the best one for this profile. Calculation
with the new saw-tooth corrugation leads to the same conclusion. This means that
in either case the sums over G are sufficiently precise takingP=A/ in (10) and
consequently in (11). But the difference probably comes from the fact that the
source function F is not determined on the same set of profile points. Particularly,
if € = 0, the vertices of the profile are points where the wave function is forced to
zero, but if € # O this is no longer the case. Between the RR' and RR'Z methods,
the difference is a little greater (0.5% on the 00 peak) but this can certainly be
reduced by increasing the number of points 2V which would have the effect of
improving the unitarity of the RR'Z procedure. Nevertheless, the two methods are
seen to be equivalent for this profile.

Table 2 gives the results for the saw-tooth profile (b/a = 1). As the relative height
increases, the unitarity given by the RR' method is progressively destroyed, as
could be expected, if the ¥ function does not completely vanish on the vertical part
of the corrugation. With the new method exposed here (RR'Z), the unitarity slowly
decreases as & increases but remains within 1% of 1. In fact, for the highest profile
taking 2V =150 in place of 100, the unitarity becomes better. This illustrates the
convergence of the process and confirms the validity of the method used.

Note that for # = 0.15 the classical rainbow coincides approximately with the 20
peak.
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The two methods of solution, integration over Ox and Oz, can be combined in
order to calculate diffraction peak intensities from corrugation profiles having both
horizontal and vertical part like the “dental” corrugation depicted in fig. 1c.

Although one does not normally expect surface profiles with discontinuous
¢(x) in atom—surface scattering this approach may be a useful method for certain
types of stepped surfaces. In addition, such surfaces are often found in the field of
acoustic wave scattering, which is relevant to the same formalism.
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