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In recent years there have been a number of interesting developments in the
theoretical description of elastic diffraction of low energy neutral atoms by crystal
surfaces. The first treatment of the problem was carried out some years ago by
Lennard-Jones and coworkers [1] within the framework of the distorted wave Born
approximation. However, this approximation is valid only when the scattering is
very nearly entirely specular (the weak scattering limit) and recent experiments
have shown this to be the exception rather than the rule for the scattering of light
atoms from a large variety of surfaces [2—4]. _

The theory has been extended to the strong scattering limit by Cabrera et al.

[5-7], using methods of the type which are called coupled channel calculations.-

These types of calculation have been extended and improved by Tsuchida [8],
Wolken [9] and others [10—12]. The basic approach of this method is to write the
atom—surface interaction potential as a Fourier series in directions parallel to the
surface, i.e.

V= ? Vc(z) exp(iG* R) , (1)

where the position vector is written as r = (R, z) with R parallel to the surface and z
perpendicular, and G is a surface reciprocal lattice vector. The Schrodinger equation

* Work carried out while the author was on sabbatical leave at the Centre d’Etudes Nucléaires
de Saclay.
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can then be developed into a set of linear coupled equations, with one equation for
each diffracted or evanescent beam. The implicit assumption of this method is that
it is reasonable to truncate the series (1) after a small number of terms.

The validity of this assumption appears to be confirmed by recent experimental
results which seem to indicate, through the analysis of resonance splitting, that only
the first one or two Fourier components of the potential are important [13,14].

In a typical calculation the Fourier components ¥g(z) are assumed to be expo-
nential (the zero order usually being a Morse potential) with the strength of each
component considered as an adjustable parameter, or the components are calcu-
lated directly from a summation of pairwise atomic potentials. From such a starting
point the coupled channel calculations can be carried out in a manner which is free
of further approximation. The splitting of energy levels observed in selective
adsorption experiments is very well described. However, the difficulty is that away
from resonance conditions, such calculations are only in qualitative agreement with
the measured intensities of the diffracted peaks.

A quite different approach to the same problem has been to assume that the sur-
face can be represented by a hard corrugated wall. This approach has been very suc-
cessful as it gives, with few adjustable parameters (only one Fourier component of
the shape function) results which are in quantitative agreement with experiment for
the diffraction peak intensities [15]. Furthermore, the effects of resonance with
the bound states are very well depicted by adding an attractive well in front of the
surface [16,17].

The difference between these two approaches lies in the fact that the hard cor-
rugated wall potential is the “steepest” of all possible potentials, and in fact is dis-
continuous at the surface and infinite below. Furthermore, it contains an infinity
of slowly varying Fourier components in a compact manner. In order to establish
this last statement, let us calculate the Fourier transform of a hard corrugated wall
potential. It is usually taken to be infinite if z < ¢(x) and zero if z> #(x), where
¢(x) is the corrugation function. We will assume for simplicity that the corrugations
are only in one dimension. The difficulty with discussing directly the behavior of
the Fourier components is that they are all infinite due to the singular nature of the
potential for z < ¢(x). Thus we choose to consider the finite corrugated wall poten-
tial defined by

Vo s z < ¢px),
= 2
Vix, z) 0. 2> 600). )

This potential becomes a hard corrugated wall in the limit ¥, - . Furthermore, it
has been shown that the diffracted intensities produced by such a potential are very
nearly the same as for the corrugated hard wall, even under conditions in which ¥,
is only a factor 3 or 4 larger than the energy of the incident beam [18].

In order to write the potential of eq. (2) in the series form eq. (1), we make use
of the integral representation of the Heaviside function S(»), i.e.
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V(X, Z)= VO S(Qb(X)—Z), (3)
where _
1 7 e 1, y>0,
Sy)=lim — | dg——F= (4)
e—0 2miYJ T g-1€ |o y<0.
The Fourier components V(z) are given by
l a
=_ —-iGx
Vo) =- Of dx e™ I V(x, 2) (%)
where a is the period of the corrugation.
Using (3) and (4), and interchanging integrations, this becomes
Vo e e . X
Velz)=lim — [ d dx e 10% l20(x) 6
¢@) el_r.n 2mia _fm q—ieof ¢ © ©)

In order to go further it is necessary to choose ¢(x), and we take the simplest and
most often used form which is the sinusoidal corrugation,

¢(x) = ha sin(2mx/a) . @)

With this choice we can make use of the well known integral representation of the
Bessel function in order to carry out the integral over x

f dx exp[—iGx + igha sin(2nx/a)] = aJy(qha) , (8)
0

where g =aG/2w is an integer. First, however, in order to avoid the appearance of
Bessel functions of negative argument, it is convenient to transform the part of the
integral over negative g into one over positive g. This gives

Vo o —iqz iqz
V)= Ve =22 | Wl @ O T (¥ s et Jaha) .
0
©)

We must consider separately the cases g even and g odd. Looking first at the case g
even we have

—Vo

f g 54— 2 Py J¢(qha) sm(qz)+—— f dg—5—— e g(qha)cos(qz) (10)

Taking the limit € = 0 is trivial for the first term and leads to the Lorentzian repre-
sentation of the Dirac §-function in the second term. Thus we have



L596  J.R. Manson et al. [ Fourier components of atom —surface scattering potential

Vo 1 Ve
V== [ 4 Jaha)sinGaz) + S200) (D)
0

Clearly the term involving J/(0) will contribute only for g =0 since for all other

cases Jg % o(0) = 0. The remaining integral is a well known Fourier transform [19].
For the case g = 0, we have the final result

Vo, z < ~ha,
Voz)={ Vo — (Vo/m)sin”(z/ha), —ha<z<ha, (12)
0, z>ha;

while for g # 0, we have
{ (~=Volng) sin[gsin™ (z/ha)] , —ha<z<ha,

V,(z) = (13)
¢ 0, 21> ha .
The situation for the case g odd is very similar and we obtain
Vo [, 1
Velz) = -2 f dq —J4(qha) cos(gz) , (14)
mi q

where the contribution corresponding to the §-function term appearing in (10) is

always vanishing. This is the cosine analog of the Fourier transform appearing in
(11) and is

Velz) =

{(Vo/frig) cos[gsin"(z/ha)], —ha<z<ha,
(15)

0, zI>ha.

We note in passing that the expressions in egs. (13) and (15) can obviously be
written as polynomials in z/ha multiplied by [1—(z/hz)?]!/2. In fact, in terms of
the Chebyshev polynomial of the second kind Ug(z/ha) [20], we have for g > 1

{(Vo/g)(—i)g[l — (z/ha)* Y2 U, \(z/ha), (z/ha)* <1, 16
z =

s 0, (z/ha)* > 1.

For the negative reciprocal lattice vectors we have the relation

V_g(z) = (=1)f V,(2). (17)

The first five of the Fourier components V(z) are shown in fig. 1. We note that
Vo(z) which represents the average of the repulsive force at each point z, is zero for
z > ha and rises to Vg for z < —ha. It is clearly a potential which gives rise to purely
specular scattering for all particles incident with energy less than V. The higher
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Fig. 1. The first Fourier components of the corrugated wall potential, where un(y) = vp(zfha) =
ﬂVn(Z)/ VQ.
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order components have an oscillatory behavior in z with the number of nodes
increasing as g. The most important observation concerning these higher order com-
ponents, however, is the fact that their strength decreases only as-1/g. This is an
extremely slow decay of the strength of the components and means that in order to
adequately represent a corrugated wall potential, it is necessary to keep a large
number of terms.

Before going further, we would like to point out that this slowly decreasing
behavior of the Fourier components is not due solely to the discontinuous nature
of the potential. We can demonstrate this by considering the continuous “corru-
gated exponential” potential defined by

V=Cexp[—k(z — ¢(x))] . (18)

Note that eq. (18) approaches a corrugated hard wall as k — . With ¢(x) given by
(7), the Fourier expansion is straightforward giving

Vg(z) = (i) I(xha) exp(—«kz) , (19)

where I is the modified Bessel function of the first kind. If the argument kha > 1
(i-e. for sufficiently “stiff” potentials), it is clear that there will be many important
Fourier components.

Thus we are faced with the following problem. Calculations incorporating a hard
corrugated wall potential, which contains a large number of non-negligible Fourier
components, give a substantially better agreement with the experimental data than
the coupled channel calculation (for all systems for which comparisons exist). On
the other hand, the experimental results for resonance splitting, as interpreted by a
coupled channel analysis seem to indicate that only one (for He—graphite [13]) or
two (for He—alkali halide [14]) Fourier components are important.

In the light of this discrepancy it is perhaps interesting to consider again the
question of level splitting in selective adsorption experiments as explained in a
coupled channel analysis. Such splittings occur whenever two different reciprocal
lattice vectors can provoke a transition into the same bound state while still preserv-
ing the conservation of total energy. The simplest of these calculations [10,12]
assumes that the only important component of the potential is the one which
directly links the two states involved and in this manner the treatment is com-
pletely analogous to the standard textbook calculation for the splitting of two
degenerate states by a small perturbation. The agreement of the calculation with
the observed values of the energy splitting is assured by adjusting the parameter
associated with the strength of the Fourier component involved. However, if the
potential has a large number of important Fourier components, a simple two-state
analysis is no longer valid and one must consider the effects of all possible transi-
tions linking the two states [10,21]. (Such effects are automatically taken into
account in the hard corrugated wall calculations.) A simple calculation may be use-
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ful for weakly corrugated surfaces or for merely estimating the strengths of few low
order components of the potential, but it must be emphasized that the success of
such calculations depends on the adjustment of parameters and in no way excludes
the possibility of many other important Fourier components. Such a conclusion is
supported by the previously mentioned fact that potentials determined from the
coupled channel appraoch have not shown the same good quantitative agreement as
the corrugated hard wall calculations for the diffracted intensities. The fact that
degenerate bound state splittings are observed only for those transitions corre-
sponding to the lowest reciprocal lattice vectors, can be explained as due to inter-
ferences between the higher order terms, or due to the fact that certain matrix ele-
ments can be small in spite of the fact that the corresponding potential components
are large.

As a final remark, we should mention the fact that there have been a number of
calculations of the He—alkali halide potential by summation of the pairwaise atomic
potentials, and in general these calculations have a small number of important
Fourier components {8,10]. However, it must also be mentioned again that none of
these potentials have been shown to give good quantitative agreement for both the
splitting and the diffracted intensities. Thus, if we can assume, as the calculations
seem to indicate, that the true interaction potential is indeed reasonably well
approximated by a very stiff corrugated wall, both egs. (19) and (16) make it clear
that the true potential must contain many important terms in its Fourier expan-
sion.
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