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Self-energy of a charge near a surface
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A new, general expression for the space-dependent self-energy of a projectile interacting with
a many-particle target is derived. The exchange-correlation potential or image potential experi-
enced by a charged particle exterior to, but near a surface, is calculated from this expression us-
ing a model in which the charge interacts with collective surface excitations. It is found that
recoil is important near the surface and gives rise to interesting new quantum effects. Previous-
ly obtained classical and semiclassical results are shown to arise simply and readily from the for-
malism. The connection with surface bound states is discussed briefly.

The long-range attractive potential between a
charged particle and a semi-infinite polarizable medi-
um has been the subject of renewed interest in recent
years because of its importance in the interpretations
of low-energy electron diffraction (LEED) and
reflection-electron energy loss (REEL) experiments
and in electron energy loss spectroscopy. A detailed
knowledge of this potential is important to the ques-
tion of bound polaron states in ionic solids or bound '
positron states in metals. The potential is usually ex-
pressed in terms of a complex self-energy. The real
part leads, at sufficiently large distances, to the classi-
cal picture of a charge interacting with its image in
the solid, while the imaginary part can be associated
with the damping or loss of scattered electrons from
the incident beams.

It has been shown that outside the surface the
forces on a charge are due, to a good approximation,
entirely to surface electronic excitations'™ (i.e., sur-
face plasmons in metals or surface optical phonons in
ionic solids*) since the fields due to bulk excitations
do not penetrate more than a few atomic units.>¢
The problem of the external charge has been treated
by a variety of classical’® and semiclassical ap-
proaches,!®!! but these methods have the inherent
disadvantage of being restricted to distances far from
the surface and to relatively large energies.

Near the surface it is necessary to use a quantum-
mechanical approach which includes recoil effects due
to exchange of virtual excitations with the surface.
Models have been proposed demonstrating that the
image potential becomes finite at the surface if the
charge approaches with nonzero speed.'>~'® Investi-
gations of bound surface polaron states!>?° or bound
surface states for positrons?! have demonstrated that
even for a charge moving arbitrarily slowly near the
surface the potential still approaches a finite value

due to recoil effects. However, we note that all of
the previous calculations which included recoil al-
lowed the particle to recoil only in directions parallel
to the surface and not in the perpendicular direc-
tion,12:20.21

In this Communication we reexamine the problem
and show that the quantal self-energy can be ob-
tained from an exact solution of second-order pertur-
bation theory including full three-dimensional recoil
effects. The semiclassical results are recovered in the
appropriate limit, while near the surface we show that
inclusion of three-dimensional recoil substantially af-
fects the self-energy, both quantitatively and qualita-
tively.

We begin by presenting a new, general expression
for the space-dependent, complex self-energy (or op-
tical potential) of a projectile interacting with a speci-
fied N-particle target. The expression found may be
generalized easily to higher orders of perturbation
theory. Suppose that |y, ) is the exact state vector of
the target in its nth excited state with energy E,. Let
the state vector of the projectile be |¢,) when it has
the energy €. In ordinary second-order perturbation
theory the energy shift due to the projectile-target in-
teraction may be written
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Here V=3 V(¥ — 7)) is the interaction energy,
T is the projectile coordinate, and T; is the coordi-
nate of the ith target particle. The state vector of the
noninteracting system is |00) = |} | o) and

|nk) =|yn)|dx). Mixed representation is used in
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Eq. (1) and it is assumed that the order of the in-
tegral over T and the sums over intermediate states
may be inverted from the usual sequence.

We assert that AE may also be written as the in-
tegral of a spatially dependent self-energy 2o( T),
weighted by the probability density of the projectile in
its original state, viz.,

AEo=fd3r (ol TYZ(T) (T o) - @

Equating the integrands of Egs. (1) and (2) and di-
viding the resulting equation by (o] ') ( T'| o) we
find
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a result that may be obtained from the definition of
the exchange and correlation potential,'®2? but whose
derivation is considerably more transparent. It is im-
portant to note, however, that our approach leads
directly to a systematic generalization of the space-
dependent self-energy to arbitrarily high orders of
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perturbation theory.

The problem of an external charge interacting with
the surface modes can be represented by the Hamil-
tonian H = Hy+ V where

V= Zl“gexp(—lel +i6-§)(a3 +a_3) ., @
Q

and where Hj describes noninteracting surface modes
and an incident charge. This model of the surface
response is adopted for simplicity, but should be ac-
curate up to distances >1 A from the surface. In
this paper we focus on effects arising from the quan-
tal properties of the incident particle. Capital letters
are used for vectors parallel to the surface (6, R)
and lower case is used for perpendicular components
(¢,2). The constant I'g for surface plasmons on met-
als is given by I'} = e?nkw,/AQ, where 4 is the area
of the surface and e is the charge. For surface optical
phonons it is multiplied by the factor

(eg—1)/(eg+1) — (€ —1)/(en+1) ,

where ¢ is the static dielectric constant of the lattice
and e, is the same at very high frequencies. For a
plane-wave basis set Eq. (3) becomes

(5)
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where for compactness we consider a metal surface and Q. =2m w,/k with m the particle mass and w, = wp/ V2 is
the surface plasmon frequency which is assumed dispersionless for the remainder of this paper. Equation (5) is
the complex self-energy of a charge moving with respect to the surface at velocity @ =# (Ko, kq)/m, the factor of
k? as well as Q? in the energy denominator being the manifestation of full three-dimensional recoil. The solution
has two regimes depending upon whether or not the particle has sufficient energy to excite a surface excitation.
In the above-threshold case (ko > Q,) we have for a charge moving perpendicular to the surface (K, =0)

Re3(2) = —(e2wy/2v) { £ (2w, |z|/v) +cos(koz) [Ag (L) =T, (¢) 1+sin(koz) [sgn(2) H(¢) + @,(01) (6)
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where f(x) and g(x) are the auxiliary functions to the exponential integral,?

) 1 .
D, (x) = Oﬁgﬁ%exp[—xu—wml , Ta(x) = Oa—‘i%exp[—x(l—uz)m] : ®)
du expl—xu —x(u?+1)'2] _ du u expl—xu —x (42 +1)17?]
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and a =(a+1/a)'2, {=koa|z| with a=(1—Q2/k¢)V2. Although we have shown in Eqgs. (6) and (7) the self-
energy contributions for both z > 0 and z < 0 it must be understood that-the present treatment is not complete
inside the solid since bulk plasmon contributions will become important there. The interior problem will be

discussed elsewhere.*
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We note that the imaginary parts of the self-energy
divide neatly into conservative and dissipative parts.!!
The dissipative parts appear only above the threshold,
while the conservative parts are those energy losses
which are recovered again as the particle leaves the
surface and appear as the antisymmetric parts of (7).
A typical plot of the self-energy for the above-

J

threshold case is shown in Fig. 1.

Physical insight on the meaning of these expres-
sions for 2(z) can be obtained by looking at the
relevant limiting cases. In the limit ko|z| — oo and
ko/ Qs — oo we recover the well-known semiclassical
results for the real'®~!S and imaginary'® parts

ReZ(2) = —(ew,/2v) [ f QQu,|z|/v) +2g (ws|z|/v) sin(ws|z|/v)O(2)] , (10)
Im3(z) — (e?w,/2v) [sgn(2) g (2w,|z|/v) —2g (w,|z|/v) cos(ws|z|/v)O(2)] . an

Not included in Egs. (10) and (11) are terms which

are oscillating in e % and which decay away from
the surface at least as fast as (koz) 2. Oscillatory
behavior near the surface of this type is a manifesta-
tion of the quantum nature of the interaction and is
analogous to similar complex behavior found in the
generalized pair distribution function of Van Hove as
applied to neutron scattering theory.?

The terms multiplied by the Heaviside function
©®(z) are nonvanishing inside the surface only and
have been discussed previously.'®!® It is particularly
satisfying to note that the quantum-mechanical calcu-
lation gives the result for 2(z) directly without the
need to resort to supplementary arguments to obtain
extra factors of %.9'“’

Of particular interest is the limit that 2(z) ap-
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FIG. 1. Real and imaginary parts of the electron self-
energy 2(z) are compared to the classical image potential for
the above-threshold case of Egs. (6) and (7) with w, =0.5
a.u. and v=2.0 a.u.

I
proaches near the surface. Although this method is
not strictly valid for z =0, since we would need to in-
troduce a maximum cutoff on Q and also take ac-
count of the bulk electron cloud which extends out a
distance given approximately by the Thomas-Fermi
wavelength, we find 2(0) is finite always. This sat-
uration of the image potential at the surface has re-
cently been demonstrated directly.? For a particle
with velocity above the threshold (ko > Q;)

2
2(z—0%) =22
2v
1 __i_ln 13 (1 —2fw,/mv?)1?
o + 1 —Kwg/mv? ’
(12)

The real part of (12) is exactly twice the value ob-
tained previously.!?”'* The usual value arises from
the limit of the function f(x) in Eq. (6); however,
an identical contribution comes from the A(x) func-
tion which can be directly -attributed to the three-
dimensional recoil.

A further limiting case is the situation of very
small velocity, which is relevant to the question of
bound states at the surface. In the limit v—0 the
self-energy is entirely real and can be written for all z
in terms of tabulated functions

3(2) =—(e¥/4|z|)[1 —exp(—Q;|z|)
+0lz|Ex(QilzPT . (3)

where E,(x) is the associated exponential integral.?’
The self-energy approaches a finite value at the sur-
face, 2(0) =—e2Q,/2, a value exactly 2/7 times the
previously obtained limit?®2! based on inclusion of
two-dimensional recoil only. This calculation indi-
cates that the effect of recoil perpendicular to the
surface further weakens the attractive potential at the
surface. Such a conclusion has bearing on the ques-
tion of bound positron surface states?! and surface
polarons.!>?® The existence of such states has been
shown to be somewhat marginal, and the present cal-
culations would indicate that the inclusion of a full
recoil treatment would make such states even more
weakly bound.
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Equation (13) also illustrates that far from the sur-
face the correction terms to the classical e%/4|z|
result decay faster than any inverse power of z. This
is at variance with the results of the approximate cal-
culation retaining only parallel recoil in which the
corrections to classical behavior appear as inverse
powers of (Q,z)%!?

We now turn to the question of the form taken by
the self-energy when the particle is bound to the sur-
face. Evans and Mills?® have given an heuristic
derivation of an expression for the self-energy of an
electron in a surface polaron state on an ionic crystal.
This expression accounts for recoil of the electron in
virtual transitions to states of different momentum
parallel to the surface, but does not include the effect
of virtual transitions to states in which excitation per-
pendicular to the surface can occur. Nieminen and
Hodges?! have considered the error incurred by this
approximation in their study of the binding of posi-
trons at metal surfaces. They find the self-energy to
be more negative by ~10% than predicted by the
Evans-Mills recipe. Since these estimates were made
by invoking closure to sum approximately over inter-
mediate states we have decided to employ a complete
basis set that allows an exact summation to be carried
out, namely, the eigenstates of an attractive &-
function potential. In fact the bound state of such a
potential has an exponential form similar to the trial
function used in the previous work.

We find that the z-dependent self-energy for the
bound state divides nicely into two contributions, the
first corresponds to virtual transitions in which the z

- semiclassical results

component of motion remains unchanged (the
Evans-Mills approximation) and the second comes
from transitions in which the z-component of motion
changes. We find that the total 3(z) differs substan-
tially from the first term at all distances from the sur-
face. Typically the total energy shift can easily by
50% or more greater than that calculated from the
first contribution involving no perpendicular recoil.?*
We have illustrated our discussion of the self-
energy with the example of a charge moving perpen-
dicular to the surface. The case of parallel motion
leads to similar results but is somewhat more in-
volved. It suffices here to state that all previous
7.10.16 can be readily reproduced.
A more detailed treatment, the extension of this ap-
proach to higher orders in perturbation theory, a dis-
cussion of the interior problem (bulk effects) and the
effects of dispersion will be presented elsewhere.
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