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For a two-dimensional exponential corrugated potential the scattering equation is
solved to any desired accuracy. A distorted wave formalism is used in which the distort-
ed (exponential) potential can be translated with respect to the corrugated potential. The
integral-equation set is solved by the Neumann iterative process. It is shown that a suit-
able potential translation allows the extension of the convergence domain to high corruga-
tion amplitudes. Thus the different particle-crystal systems encountered in experimental
studies can now be analyzed with this soft potential. Compared to the hard corrugated
wall potential the finite potential slope yields the following: (1) For small corrugation
amplitude an enhancement of the specular intensity and a reduction of diffracted beam
intensities. This reduction varies like the wave penetration. (2) For higher corrugation
amplitude a shift of the rainbow maxima towards higher corrugation amplitude. The in-
tensity maximum is enhanced or lowered according to whether the wave penetration of
the diffracted beam is smaller or greater than that of the specular beam. In the case of
the He-LiF system the emergence of the 01 beam is studied. With a potential sufficiently
soft the singularities which appear around emerging conditions are smoothed. The meas-
urement of their shape and amplitude could give an approximate value of the potential

slope.

INTRODUCTION

The hard corrugated wall potential (HCWP) is
widely used for the interpretation of thermal atom-
ic beam diffraction experiments. In this model the
repulsive potential part has an inifinite slope and
therefore must be considered as an approximate
representation of physical reality. Thus we have
proposed recently’? the so-called exponential cor-
rugated potential (ECP), which is written as

V(R,z)=Cexp{ —X[z—@(R)]} . (1)

As usual, z and R are, respectively, the normal and
parallel components of a position vector, and tp(ﬁ)
is the corrugation function giving the surface
periodicity.

The equipotential curves are obviously given by

z =tp(l_i)+const s
and the potential slope

av _ —XV(R,2) @)
dz

has a finite value proportional to the range param-
eter X. Note that the HCWP is recovered in the
limit X— 0. These two potentials have the same
equipotential curves, but having a finite slope the
ECP can give an improved representation of the
real potential.

Effectively the repulsive part of the potential is
produced by the overlapping of the electronic wave
functions of the incident atom with those of the
crystal surface. Recently it has been demonstrated
that the repulsive potential is, to a first approxima-
tion, proportional to the electron density near the
surface.> Our choice of an exponential form is
motivated by the fact that the density is expected
to be exponential, and this has been confirmed by
recent calculations* as well as by earlier determina-
tions of the potential from first principles.>® The
attractive adsorption well near the surface can be
explored by looking at the selective adsorption
resonance phenomena. Knowing the positions of
these resonances gives information on the zero-
order Fourier component of the potential. Howev-
er, the form of the well cannot be determined in a

6195 ©1982 The American Physical Society



6196 G. ARMAND AND J. R. MANSON 25

unique way, and a large variety of potential shapes
have been proposed; among them the 9-3, Morse,
or shifted Morse hybrid potential are the most
commonly used.’

With a purely repulsive potential such as (1)
there is no possibility of studying the resonances;
furthermore, if there is a well, the diffraction
peaks are somewhat enhanced due to the fact that
the particle strikes the corrugated wall with a
higher effective energy. Nevertheless, apart from
the regions of resonance one would expect Eq. (1)
to represent well the effects of softness in the po-
tential; in particular, at incident energies that are
large compared to the well depth where very few
resonances are observed experimentally. The au-
thors have recently considered similar theoretical:
approaches for general forms of the potential that
include a well and have substantiated the above-
mentioned comments with calculations for a Morse
potential.® ;

The potential of Eq. (1) does not contain any ef-
fects of the thermal vibration of the substrate
atoms. In spite of the fact that these effects
should be important at elevated temperatures one
can compare the results of a purely elastic calcula-
tion with the elastic scattering data corrected for
the Debye-Waller thermal attenuation. This has
been done in a number of HCW calculations and,
with the exception of certain resonance conditions,
the agreement is quite favorable.” This situation
should also hold when the repulsive part of the po-
tential is replaced by a more natural soft wall such
as that treated here.

The above considerations point out the useful-
ness of making diffraction amplitude calculations
with more realistic potentials than the HCWP.
Toward this objective we have solved the scattering
equation with the ECP taking first a one-dimen-
sional corrugation function.! Afterward the solu-
tion was extended to a two-dimensional surface.?
With the numerical procedure adopted, reliable
solutions were obtained for only small or medium
corrugation amplitudes. We intend to present in
this paper a procedure which extends the solution
domain to high corrugation amplitude. Thus all
cases of practical interest in atom surface scatter-
ing can be now calculated. In addition, new physi-
cal results are presented, which, when compared to
HCWP results, illustrate the effect of wave pene-
tration into the potential.

T-MATRIX INTEGRAL EQUATIONS—
INTENSITIES

In the two-potential or distorted-wave formalism
the integral form of the Schrodinger equation ap-
pears as

|9 )=| ;) +(E;—Hy+ie)!
X[VR2-W]|g}) @)

with the Hamiltonian H, given by

H0=__ﬁ_z—V2+W ’

where V(R R,z) is the interaction potential and W
the distorted potential.

The direction O is normal to the surface. A
wave or a position vector (k, ) is decomposed into
components parallel (K,R) and normal (k,,z) to
the surface. .

The shape of the potential V'(R,z) is imposed by
the nature of the interaction between the incident
particle and the surface. We suppose here that V'
is a continuous decreasing function of z: There is
no potential well. With only elastic scattering, V'
has the periodicity of the surface unit cell. There-

fore it can be decomposed into the Fourier expan-
sion

V(R,z)= 2 vz (2)exp[i (GR)],

where G is a surface reciprocal-lattice vector and

-

ug(z)=%fucdﬁV(§,z)exp[——z G-RMR], @

with S the area of the unit cell (UC).

As for W, the choice is quite arbitrary. Thus it
is most interesting to chose a form which is con-
venient for solving Eq. (3). With this in mind W
is taken as a function of z only, as close as possible
to ¥, and in such a way that the continuous set of
elg%m@lues #K?/2m + e, and eigenfunctions

K ¢p(z) of H, are known. Letting

J77 630y =B%(p —q) ,

a lengthy but straightforward calculation detailed
in Ref. 2 gives the set of integral equations obeyed
by a set of functions denoted by L;(s) which are,
apart from a normalization factor, equal to the re-
duced z-matrix element

t7()=(expli (K; + T)R1g,(2) | VR, 2)— W (2) | ¥])
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One gets
1 w [Ny_gl(sq9)—87 gM(s,q)]L g (q)
Ly (s)=— [Ny _g(s,pi) =83 gM(s,p;)+ d = (5)
Y T %fO TR /2m) K+ GP—ey 1 ic
l
with If B=1 the potential W (z) coincides with the
N zero-order Fourier component of the corrugated
Ny_g )= [ #iwy _g @2z , potential.

The eigenvalues of H, are given by’

M= [ W2, (2)dz

* #E? 5, f_
The subscript i denotes, as usual, the incident state. &= 8m p » P= X
With the Fourier components of the exponential

corrugated potential (1) being given by

and the eigenfunctions are

vg (2)=Cv g exp(—Xz) e = [ psinh(o) .
with 1 . o e Pp(z)=e E-_‘j“ﬂ K, (),
18 =7 Juc exp(—iG-R)exp[X@(R)]dR
and S the area of the unit cell, one takes for W (z) y= (8mDuo)' "> —Xz ,
an equivalent form, namely X# 2

W (z)=Dv gexp(—Xz) .
where K, is the modified Bessel function of the

In the previous work"? the undefined constant D second kind of imaginary order ip.
was taken in such a way that Dvg =C. Here dif- Now the different quantities which enter into
ferent values of D and C allow us to translate the Eq. (5) have already been calculated. The detailed
potential W (z) with respect to ¥ as we can write presentation being given in Ref. 2, we give only the
W (z)=Cvgexp[ —X(z —D] . final result. Setting
For further simplification we write F(s)= 16m L~(s)
D a2’
v =B=exp(X]) . one gets
|
©  f(s,q9)F g (q)
F7()=A7gfsp)+5 SAy_3g [ dg—5——77—, (6a)
7 7 5/ (5. 2%1 Gfo qp%—q2+ie
or in matrix form,
E76)=f(sphy5+7r7 _5 [, dafis,9M)7'E5 (@, (6b)
where M =(p2§ —q%+ie). In Eq. (6) the different quantities are given by
Uy _
Ay_g= Ll -8y g, (7
vy
h(s) h( 172 s 2 —q 2
[s sinh(ms)q sinh(mq)] cosh(mrs)—cosh(mgq) ’ 74
fle9=1], (8)
£ 2 —
q , §=4

L E%[[k[ —(&, +G)2]=-—(k 2.
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It has been shown? that the partial wave func-
tion corresponding to each diffracted beam is a
sum of one plane wave and many exponentially
damped waves for an open channel. For a closed
channel the wave function contains only exponen-
tially damped waves. Taking the limit z— o0 one
finds the wave amplitude, which is given by

= F7(p7)

9)
2 py

Ay =i87,—
The reflection coefficient for each open channel is
then easily calculated:

Ry =k, (k)47 |2.

The solution of the set of equations (6) allows one
to determine directly the reflection coefficients.

NUMERICAL METHODS OF SOLUTION

The solution of equations (6) is easily found in
the following particular cases:

(i) @(R)=0; that is, for a potential without a
corrugation. This implies Ay _ g =0 (8=1) and
F+(s)=0, whatever J may be.

(ii) The incident angle is equal to 90°. In this
case p; =0 and f (s,p;)=0 which gives
F(s)=0v7.

In these two cases the particles are completely re-
flected into the specular beam.

Except for particular cases it is necessary, in all
situations of practical interest, to solve the set of
equations by a numerical procedure. Whatever the
chosen procedure may be, one can keep only a fi-
nite number of reciprocal vectors n g , this set in-
cluding at least all the vectors corresponding to the
open channels. In addition, the integration over
the ¢ variable must be carried out on an interval
[0,gap], ga being substantially greater than the
largest value of the real p g number set. However,
it is not necessary to ascribe to g, a very large
value because the integrand is proportional to
exp(—mq) for large ¢q. In effect, for large s, f(s,q)
is proportional to exp[—(7/2)s] and F (s) is con-
sequently proportional to this same factor. There-
fore the product f(s,q)Fg(q) is of the order of
exp(—mg).

Two classes of numerical processes can be con-
sidered. In the first, the set of equations (6) is
transformed into a discrete set of linear equations.

This can be achieved in different ways:

(a) Each principal-part integral is transformed
into a sum of values taken by integrands at the
special points of the interval [0,q3;]. This pro-
cedure has been used in order to solve the integral
equation of the HCWP with a two-dimensional
surface.!'® Compared to a partition of the interval
by a set of equally spaced points,' the number of
points necessary to achieve a given precision is re-
duced by this special choice. However, if # is the
number of points, the dimension of the matrix to
be inverted is equal to n g Xn and generally will
exceed the computer capacity available to date.

(b) The F (s) functions are expanded in an in-
finite set of Laguerre polynomials. Retaining n;
Laguerre coefficients, this leads again to a large
matrix equation.

(c) The kernel f(s,q) in Eq. (6) is transformed
into a degenerate kernel,!! for instance, by a double
Fourier cosine expansion. In this case we have
again the problem of solving a very large system of
linear equations.

In the second class of solutions one uses the
Neumann iterative process. To this class belongs
the solutions by means of the reaction matrix (R or
K) the iteration being used to obtain these matrix
elements. After that a matrix inversion gives the
t-matrix element values. In this way the result is
always unitary, a condition which is not sufficient
to warrant that the solution obtained is the correct
one. Note that the so called Cabrera-Celli-
Goodman-Manson (CCGM) approximation, '?
which consists of neglecting the principal-part in-
tegral, corresponds to the first iteration step of the
R matrix' for the potential used in this paper. At
first sight an iteration of the #-matrix equations
themselves seems to be less expensive in computer
time and permits easy control on the validity of
the result obtained. As we intend to use this
method, it is necessary to study the convergence of
the iterative process.

CONVERGENCE STUDY OF THE ITERATIVE
PROCESS ON t-MATRIX EQUATIONS

In the case of a system of integral equations in
which the Ay _ g coefficients are all equal, the
convergence radius can be analytically deter-
mined."" In our case the Ay _ g are all different
and given by Eq. (7) in which B is a parameter tak-
ing values in the range 0— + . Therefore
Ay_g and Ay _ g can vary, respectively, from o
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to —1 and oo to O over the range of B.

For given initial conditions there is probably an
interval in which the iterative solution is conver-
gent, and it is interesting to write its analytical

F(—g)(s) hs(s,p;) ,

F3()=A3of(sp)+5 S A7_3
Gy

f dgih g

with

K'Y 9= —a’+ie " f(s.q),

form in order to determine at least qualitatively
the range of good B values. Starting the iteration
with any integrable function 4 (s,p;) we obtain

'
q,p,) e ‘(s,q) )

FP)=Ayofsp)+5 SA7_5 Mg o f, daKE)(s.0)f @p)
G

1

1 (-
+72 Zh7_sha,-q, [, WKY 5

=

G, G,

with

2)

Kazal( ,Q)=(pG —q +l€ If dq,

and so on. For the nth step one gets

F‘-;l’<s>=xv oS00+ [y dafiap)

(10)
(kg (gpi),
f(s )f( Q) e dgaf(s,qs)
Lt = quf 22 kigra) (11)
PG, —q3+ie 0 pg,—qrtie !
g Ag oK% g (s
P GP-'] Glo Gp...GIS,q
® (
n—1 .)\'az“alfo qué)nE‘;n_l -‘G',(S’q)h‘g’l(q,p,-),

with KV and K given, respectively, by (10) and (11), and

) o flsqp) (-1
KG,.. g (s9)= J, K%

One sees immediately that the convergence or
divergence of F (—;’»)(s) as n increases depends upon
the convergence or divergence of the expansion
contained in the square brackets. The F(—;l)(s)
behavior is not dependent upon the form of the
starting function k5 (s,p;), as it enters only in the
last term. For the given kernels f(s,q)(p& —q?
+ie)~! the K'P) functions are determined, and the
convergence depends only the Ay _ @ values, that
is to say on B for a given physical system. At first
sight and in the case of real Ay _ g coefficients it
seems interesting to reduce the Ay _ g values by
taking 8 greater than 1. Doing so the A5 _ 3

p’s, —gp+ie o

g ‘(qp,q)dq,J .

I
coefficient becomes negative, and then some can-
cellation between the different terms of the expan-
sion may occur. A more precise argument valid
even for complex coefficients is outlined below.

The numerical calculation confirms this view
and allows one to estimate the convergence
domain. It has been carried out for the same con-
ditions of previous work? corresponding to a hy-
drogen molecule (|k;|=8.6 A~ 1) scattered by a
copper (100) surface (@=2.55 A). The incident
plane contains the [100] direction and the incident
angle 6; with respect to the normal is equal to 31°
or 60.5°, giving, respectively, 37 or 39 open chan-
nels. The corrugation function is taken as
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P(R)=Lha |cos | 27X , (12

CcOs +cos

2my
a

and the Fourier components v; are equal to
vg=Ig (Xha /2)Igy()(ha /2),

— — — 2
G=(6,0,.,6,0,)"",

with I the modified Bessel function of the first
kind.

As in the previous work the convergence (or
divergence) of the iterative process is estimated by
comparing to unity the sum of all diffracted beam
intensities U, hereafter called the unitary sum. For
a convergent process the unitary defect A™
= | U™ —1| should decrease from one iteration
step to another provided a sufficiently large num-
ber of iterations is considered. In addition, all oth-
er parameters remaining the same, the A™ should
be smaller if the number of reciprocal-lattice vec-
tors retained in the calculation is increased. These
criteria lead us to consider as divergent an iteration
in which the unitary defect first approaches a
value close to zero, but after that slowly increases
as the iteration process is continued. This type of
behavior is sometimes referred to as asymptotic
convergence.

It is worthwhile to note that the different nu-
merical calculations should be made with sufficient
precision. This point is valid particularly for the
different principal-value integrations that can be
carried out following a procedure developed in Ref.
2. Given the numerical procedure, the integration
step should be chosen carefully. All the calcula-
tions were done on a CDC 7600 computer that
works with 16 significant figures in single preci-
sion.

All the results with respect to convergence or
divergence are plotted in Fig. 1. To each case
corresponds a point in the coordinate plane
Aoo=B"1—1 vs Ag; =v0;(veoB) ", the most impor-
tant Ay _ g coefficients. For a given value of
¥Y=Xha /2 there is a linear relation between these
two coefficients. The representative point of a
given trial moves along a line corresponding to a
particular value of ¥ when S varies. The straight
line with negative slope is the locus of points for
which —Agy=2Aq;.

A point labeled with a letter D corresponds to a
divergent process; a point without a label
corresponds to a convergent iteration. Thus the
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FIG. 1. Convergence diagram. Agp=1/B—1,
Aor=Vo1/VooB.

shaded area is the region of divergence. In the
convergence region for each y value a cross labels
the point for which the iteration process converges
the fastest, that is, the point for which a given uni-
tary defect is reached with the least number of
iterations. For a unitary defect of the order of
10~ to 10~* this number increases with ¥, going
from 10 to 40 in the explored ¥ range and the rela-
tive translation of the two potentials / increases
from 0 to about 0.7ha. For the same ¥ value the
number of iterations required is a little smaller for
large X, due certainly to the fact that the dimen-
sionless p g numbers are then smaller.

In previous work? with Dv g =C, the conver-
gence holds for ¥ values less than 0.34. Here the
convergence domain is larger and a priori not limit-
ed, although we do not try to go beyond a ¥ value
equal to 0.765. To this case corresponds the pair
h=0.04 and X=15 A, giving, as we will see
below, the HCWP limit and the pair A=0.2 X =3
A~ This last h value is certainly a high corruga-
tion amplitude in comparison with the various cry-
stal surfaces studied to date. Thus the present re-
sults allow the possibility of obtaining a good solu-
tion in virtually all practical cases encountered in
surface scattering. v

As the convergence diagram depends upon the
variables Aoy and A, it should be good for any cor-
rugation shape for which the two first Fourier
components of the corrugation are the most impor-
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tant. This is certainly true in the region of small
Ao values where the higher-order A coefficients are
negligible. In the region of high Ay, values the
convergence diagram shape should be perhaps
slightly different for different types of corrugations
due to the influence of other A coefficients. Of
course the y=const straight line would be different
as well as the points that give the fastest conver-
gence.

Therefore, it is interesting to try to go deeper
into the understanding of the convergence domain.
In order to do so we consider the matrix integral
equation (6b). The square matrix Ay _ g is Her-
mitian and can be written

Ay_g=B*wB

with o its real eigenvalues and B a unitary matrix.
A similarity transformation leads to the new ma-
trix integral equation:

- 1
HP6)=H ")+,

which shows that the pth iteration result is ob-
tained by adding to the (p — 1)th a sum of terms,
each being given by the result of a multiple in-
tegration (of order p) multiplied by the product of
p eigenvalues w,. In order to get a convergent pro-
cess it would certainly be interesting to reduce
their absolute values and also probably to take a B8
value in such a way that the w,, numbers should be
roughly evenly distributed about zero. With this
condition some terms in the sum will be positive,
others will be negative, and cancellation may oc-
cur.

This view can be substantiated in the following
way. Let us suppose that the A coefficients are
real and equal to zero except Agg, Aoy =A19=Aq1
=Aj>0. The A3 _ g matrix appears as

Ao Aot Aot O
Aot Ao Aot Aoy O
Aot Aot Ao Aor Ay O . (14)

0 Xo1 Aor Ago A1 Aoy

It is shown in the Appendix that the eigenvalues

11 [(Q__r)d fof dq,f(qm,q,)g(q,)]

H,(s)=f(s,p; )b,
+ 5@ [ 34 (5,9 (@Hon(q) , (13)
with
H,(s)=BF7(s), h,=BA7,,
and
G

=nm

(9)=B(M);'B+,

which has the form of a Green matrix.

The new unknown H,,(s) functions are
equivalent to a linear combination of the Fy (s)
functions. One can think that if by an iterative
process the convergence is reached with one of the
two matrix equations the iteration will be conver-
gent with the other and vice versa.

Here with Eq. (13) the parameters that govern
the iteration behavior are the eigenvalues w,. The
pth iteration step is written as

@) [, 401f(9,01)G(q1)f (@151

.
w, are given by

@n=Ag—2A0,

km ki
1 —2cos? [—— | | »
+COSN+1 cos [N+1”
with N the matrix size, provided N is large.
Therefore the w, values lie in the interval

)"00_.:_}"01 <Oy <Atoo+4)»01 .

Figure 1 indicates that the divergences appears for
Ao1>0.2 when Agy=0. Then we have
—045<w, <0.8.

For conditions in which the convergence in
achieved faster we have Ayqg= —Ag;, and therefore

—3.25A01 <@, <37 -

This result illustrates and confirms our earlier
intuition: The convergence is achieved and is fas-
ter when the eigenvalues w, are distributed roughly
symmetrically about zero and have the smallest
possible absolute values. This criteria always
seems to be good even in the case of complex
A5 _ g coefficients. Then the knowledge of the »
values allows one to predict the behavior of the
iteration process.
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VARIATION OF POTENTIAL RANGE PARAMETER

OR CORRUGATION AMPLITUDE

All the results presented in this section have
been obtained for H)-Cu(100) under the same con-
ditions depicted in the preceding section. Of
course, due to the symmetry of the chosen incident
conditions, one always find RG,,Gy =ng,Gx.

We first consider a variation of X taking 4 con-
stant and equal to 0.04. Tables I and II give the
calculated reflection coefficients for incident angles
6; of 31° and 60.5°. Also given are the intensities
calculated with the HWCP using the NN special
point method, which was treated elsewhere,'® and
the E; values, which are equal to the ratio of the
normal kinetic energy of the beam to that of the
specular beam. One can observe readily the fol-
lowing facts:

(1) When X increases the HCWP intensities are
approached as expected. The 00 beam intensity de-
creases and is always greater than the correspond-
ing HCWP intensity. The converse is true for the
diffracted beams if one excepts the 01,10 at
6; =31°, which reaches its maximum value in the
vicinity of X=5 A~!. However, beyond this value
its variation is not important.

(2) All the beam intensities vary rapidly for low
X values, more precisely for X <3 A=, Above this
value the variation is smoother. However, consid-
ering the diffracted beams the relative difference
between intensities given by the ECP and the
HCWP is smaller for beams which have a greater
normal kinetic energy than the specular beam
(Ez > 1).

A second set of calculations was made at con-

stant X (3 A~!) and for an incident angle of 31
with h varying from O to 0.18. The results are
depicted in Fig. 2; each curve is labeled by two
numbers giving, respectively, the diffracted beam
order and its corresponding E, value. For com-
parison Fig. 3 gives the intensity evolution under
the same conditions in the case of the HCWP.
Figure 4 gives the specular beam variation.

The rainbow effect is clearly apparent in these
figures. Comparison between the two potential re-
sults indicates that the peak maximum are shifted
towards higher corrugation with the soft potential
(X=3 A~"). Table III illustrates quantitatively
this effect. The shift is of the order of Ak
=0.012—0.015 except for the 11 beam, which has
a very small normal kinetic energy and for which
the shift is certainly much more important. One
notices too that the intensity maxima are greater
with the ECP when the diffracted beam has a nor-
mal kinetic energy greater than that of the specular
beam. When this is not the case, the reverse hap-
pens, the 21 beam being an exception to this rule.
As far as the 00 beam is concerned the intensity
given by the soft potential is always greater. The
hard potential yields an intensity minimum at A
about 0.15. Above this value the intensity prob-
ably increases and the rainbow effect will appear
for very high corrugation amplitude.

EMERGING BEAM
For a given system a diffracted beam can em-

erge, for instance, when the incident angle 6; is
made to vary. This means that the beam passes

TABLE I. Reflection coefficients of the most significant beams for the H,-Cu(001) system as a function of X.
HCWP corresponds to infinite X. E is the normal kinetic energy ratio of the beam to that of the specular beam.

|ki|=6.8 A~1, a=2.55 A, h=0.04, 6,=31°, p=45".

X
A-Y 1 3 5 6

8 9 11 15 HCWP E;

Ry 0.903 75

R;iX10 0.4326
R{1X10 0.0276
Ri3Xx10° 0.1921 0.7680
R;zx10° 0.0027 0.1904

U 1.00000

0.69581 0.62940 0.61453 0.60494
Ry X102 0.16x10~% 0.03816 0.18781 0.25371 0.30519
RypX10 0.37x10~2 0.36717 0.61883 0.67857 0.71735
R;7X10 041X10~3 0.0492 0.0883 0.09798 0.10438
0.96767 0.98799 0.98731 0.986 14
0.16302 0.18589 0.18976 0.19209
0.84989 0.86375 0.87224
0.31289 0.34190 0.36084

0.99999 0.99999 0.99999 0.999 99

0.59847 0.59393 0.58817 0.58345 0.57800 1
0.34462 0.37430 0.41400 0.44976 0.47285 0.208
0.74370 0.76203 0.78542 0.80950 0.82437 0.604
0.10873 0.11182 0.11575 0.11884 0.12272 0.776
0.98499 0.98409 0.98299 0.93668 0.98033 1.172
0.19357 0.19463 0.19589 0.19692 0.19813 1.344
0.87754 0.88098 0.88538 0.85433 0.89614 1.29
0.37351 0.38240 0.39388 0.39027 0.4143 0.725

1.00001 0.99997 1.00003 .100184 0.99949
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TABLE II. Same as Table I but 6; =60.5.

X
A-Y 1 3 5 6 8 9 11 15 ‘HCWP  E,

Ry 0.999 88 095957 091696 0.90511 0.89134 0.88731 0.88215 0.87780 0.87466 1
0.583x10~% 0.19046 0.38209 0.43404 0.49370 0.51107 0.55320 0.53388 0.55583 2.11
Ry X 10 0.63x107° 0.11036 0.35704 0.44282 055069 0.58375 0.62756 0.66530 0.68772 3.23
R;X10° 031x107* 0.08894 0.36495 048644 0.65315 0.70594 0.77134 0.81710 128686 0.322
RzX10* 0.65x10~* 0.04771 0.10030 0.11479 0.13160 0.13650 0.14276 0.14717 0.14781 2.55
Ry3X 107 0.14Xx107°  0.04027 0.12981 0.16047 0.19705 0.20820 0.22329 0.22970 0.25843 3.67

U 1.00000 1.00000 0.99999 0.99999 099999 0.99999 0.99998 1.00032 0.99907

from the state of an evanescent wave to an observ-
able diffracted peak. Let us suppose that the beam
corresponding to a reciprocal-lattice vector M
emerges for an incident angle ;. If 6; decreases
in the vicinity of 65, the value of p%;, which is
negative, will pass through zero at 6 3 and become
positive. In Eq. (6a) this yields a 8 function

8(p 2;; —g?) in the sum over the reciprocal-lattice
vector as soon as p%; becomes positive. One can
then expect to observe in each diffracted beam in-
tensity a disturbance in the vicinity of 6; =0 .

02t x=3A"

FIG. 2. Evolution of beam intensities as a function
of corrugation amplitude given by the exponential corru-
gated potential. Each curve is labeled with the beam
order and Ez number, which is equal to the ratio of the
normal Kinetic energy of the beam to that of the specu-
lar beam. The system is H,-Cu(001) with |k;|=6.8 A=,
a=2.55 A, 6,=31°, p=45°.

This effect should certainly be the greatest for a
beam J having the largest potential Fourier com-
ponent vy _ 5; , that is, for those which are strong-
ly coupled with the emerging beam. Therefore the
disturbance will be important for the emerging
beam itself and for those having a J vector close
to M. As the Fourier component of the potential
increases with X the disturbance will become more
and more important and will be maximum in the
HCWP case.

A result which illustrates this effect has been
given in a previous paper’ with the same beam-
crystal system used in the previous sections.
Under these conditions at 8 ;3 =50.96° the 01 and
10 beams are simultaneously emerging. Calcula-

0.2~ HCW

[ex]od

ke 1 i

010 h

FIG. 3. Evolution of beam intensities as a function
of corrugation amplitude given by the hard corrugated
wall for the same system as Fig. 2. Each curve is la-
beled with the beam order.
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010 h
FIG. 4. Evolution of the specular intensity as a func-
tion of corrugation amplitude for the hard corrugated
wall (HCWP) and the exponential corrugated potential
(3 A-") for the same system as Fig. 2.

tion indicates that the disturbance is very impor-
tant with regard to the 00 and 11 beams and is less
apparent with the others. Its magnitude is the
greatest in the HCWP case but completely disap-
pears with the ECP for Y=3 A~!. However, the
derivative of the emerging beam intensity versus
incident angle is very large at §; =07y; in any case.
Here we present another example of this effect.
We consider a helium beam scattered by the (001)
face of lithium fluoride. The incident plane con-
tains the [110] direction. For the 01 and 03 beams

TABLE III. Position 4, of the intensity maximum
I, for the most significant beams for H, incident on a
Cu(100) surface. Ez is the normal kinetic energy ratio
of the beam to that of the specular beam. |k;|=6.8
A-1,a=2554, 6,=31°, p=45".

X— w0 (HCWP) x=3 A-!

Beam EZ /. I, A I,
1T 1.344  0.09 0.128 0.107 0.150
22 124  0.152 0.077 0.167 0.125
10 1.172  0.056 0.123 0.07  0.150
11 0.776 0.113 0.153 0.128 0.095
21 0.725 0.148 0.087 0.17  0.108
o1 0.604 0.07 0.139 0.085 0.088
11 0.208 0.15 0.137 >0.18

the 6 ; angles are, respectively, 53.02° and 52.89°.
The Ewald diagram is drawn in Fig. 5. We take
for this calculation a X value of 3 A~! and corru-
gation which gives, in the framework of HCWP,
the best fit between calculated and measured inten-
sity of the 10, namely,'*

@(x,p)=ha |cos | <= | +cos 277'0’”
+hq1a cos |—— |cos 2? R

with a=2.84 A, h=0.1081, h;;=0.006. The in-
tegration giving the Fourier component of the po-
tential has been carried out by means of the special
point method.!°.

The evolution of different beams versus incident
angle in the vicinity of 53° is presented in Figs. 6
and 7. There is a strong disturbance in the HCWP
case, the slope of the curve having a discontinuity
at 6;=073;. This slope is very steep with the most
strongly coupled beams (00 and 10). For the ECP
with X=3 A~! the variation is smooth, and no
singularity can be detected within an interval of
0.2° centered around O y; .

DISCUSSION

The effect of multiple scattering is clearly ap-
parent in Egs. (6). In the -matrix equation each
diffracted amplitude is coupled to all the others by
means of a sum over reciprocal-lattice vector G.
Each term of the sum is proportional to an in-
tegral, the integrand of which contains the ¢-matrix
element relative to the G vector.

FIG. 5. Ewald diagram for He scattered by the (001)
face of LiFo. The incident beam is in the [110] direction,
| k;] =11 A~!, and 6,=53".
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FIG. 6. Evolution of the 00 and 02 beam intensitites
in the vicinity of 6;=53° for He with |k;| =11 A~ in-
cident on the (001) face of LiF. The arrows indicate the
angles for which the (10) and (03) beams are emerging,
— oo corresponding to the HCWP, and 3 corresponds to
ECP with =3 A~

For the purpose of numerical calculation the in-
finte set of G vectors is truncated to a given num-
ber Ng. Thus one retains in the calculation a fi-
nite number of Fourier components of the poten-

010+
I
loo
008 = Torra
3
10 01
0.06|- 03
10
03t
l 3
004} /\_/
(o]
70 (x20)
0.02
0.00 ] L L 1 I ! 1 ]
52.8° 530° 532° 53.4° 535° 538 540° 54.2°

Bi
FIG. 7. Same as Fig. 6 except for the 01 and 10
beam intensitities.

tial. However, when the iterative process is con-
vergent one verifies that the unitary defect de-
creases as the number N g increases. Therefore
the generated result is close to the solution given
by the full potential that would be obtained in the
limit N @ — . The effects of the neglected G
vectors can be characterized by the unitary defect,
which gives, roughly speaking, the precision with
which intensities are calculated. In particular, the
intensities that are less than the unitary defect are
not significant. Fortunately, with the computers
available at the present time, one can keep a suffi-
cient number of G vectors in such a way that the
unitary defect should be less than the experimental
sensitivity. Thus we obtain a solution of the
scattering by the full potential with a sufficient
precision.

In order to discuss and understand on a physical
basis the different results presented here it is neces-
sary to recall that each diffracted wave is given by
the product of two wave functions, namely

¥y (2)expli (K;+ T )R] .
The wave penetration into the potential affects
only the normal component - (z) and therefore

depends on the potential slope at an energy equal
to the normal kinetic energy e, of the Jth beam.

For this energy the potential slope is given by

%ZK =—XE 7%

Therefore each wave 3 (z) “feels” a potential re-
gion of different slope, and wave penetration will
be higher for beams having lower normal kinteic
energies.

These considerations allow one to understand the
behavior of the intensities as a function of the dif-
ferent parameters and to predict qualitatively the
effect of an ECP with respect to the HCWP. For
the latter the potential slope is infinite and there is
no wave penetration.

The effect of wave penetration is particularly
evident in the results presented in Tables I and IL
The corrugation amplitude is not too high, and
multiple scattering does not play an important role.
In order to see clearly this last effect we compare
the variation of beams coupled to the specular
beam by reciprocal-lattice vectors containing simi-
lar integers. For instance, we consider the 01 and
10 beams that have E75, values equal to 1.172 and
0.604, respectively (Table I). Taking the HCWP

result as reference one sees that the relative change
of the intensity given by the ECP for the same X
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value is greater for the beam having the smallest

E 7, value, which corresponds to a greater penetra-
tion. The same analysis can be done with the sets
composed of the 11, 11, and 1T (Table I) and of
the 1T and 1T (Table II). If in each set they are
classed by order of increasing wave penetration,
i.e., respectively 11, 11, 11, and 11, 11, we obtain
the order of increasing intensity modifications.

The intensity variation as a function of A, the
corrugation amplitude, indicates that the behavior
depicted by Tables I and II holds for & values
below 0.04 and 0.05 for the 10, 22, 11 beams that
have an Ey value greater than 1. When E5 is
less than 1 this behavior holds until & equal af)-
proximately 0.11 for the 01, 0.15 for the 11 and
21, and a very large value for the 11. The shift
Ah of the rainbow maxima (Table III) is between
0.014 and 0.022 and, except for the 11 beam, does
not seem to be linked to the normal kinetic energy
value. However, the intensity maxima I,, are
directly influenced by this quantity. Comparing
the I,, value for the 11 and 11, one sees that the
ECP intensity maxima for the former is greater
than those given by the HCWP, the contrary being
true for the latter. The same comparison can be
done for the 10 and 01 beams. The only beam
which behaves differently is the 21; this may be
due to the effect of multiple scattering as its max-
imum appears at a high corrugation amplitude.
Thus at least for the lowest G vector beam the ef-
fect of wave penetration is to enhance or reduce
the rainbow intensity according to whether the
penetration is lower or greater than that of the
specular wave.

As far as the emerging beam phenomenon is
concerned it is clear that the soft potential reduces
the importance of the intensity singularities until
they disappear completely. As their magnitude
seems to be linked to the potential slope (X) their
measurements under conditions where the specular
is as close as possible to the emerging beam can al-
low the determination of an approximate value of
X. This outlines their practical importance.

CONCLUSION

We have reported here a way in which the equa-
tion of a neutral particle scattered by an exponen-
tial corrugated potential can be solved without ap-
proximation to any desired accuracy. The solution
is obtained by iteration of the integral-equation set
with, if necessary, a translation of the distorted po-

tential with respect to the corrugated potential.
We have shown numerically that the process con-
verges to a good solution in a sufficiently large
domain of corrugation amplitudes allowing one to
solve all the practical cases encountered in experi-
mental situations.

The results compared to those given by the hard
corrugated wall show the importance of the wave
penetration phenomenon. When the diffracted
beam intensities are plotted versus corrugation the
soft potential yields a shift of the intensity maxima
towards a stronger corrugation. Also it produces
an enhancement or a reduction of beam intensities
at the rainbow maximum according to whether the
normal kinetic energy of the beam is larger or
smaller than that of the specular beam. Also
demonstrated is an attenuation of the singularities
which appear when a beam is emerging. This last
effect can be used to get an approximate value of
the potential slope.

Of course these conclusions have been drawn
considering numerical solutions of the t-matrix
equation. Therefore they have been obtained with
a well-defined particle-crystal system. Neverthe-
less, they certainly are valid for other systems at
least in a qualitative way since they are based on
the physical effect of wave penetration into the po-
tential.
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APPENDIX

Letting Ago=xXy +2Ag1, Aot =a2, x +y=Agy, the
product of the two matrices

x a y a
a x a aya
(A1)
ax a ay a
gives
Aoo—Ro1 Aoy Aoy
Aoi Ao Aor Ao

4= Aot Aot Ao Agr Agr |’ (A2)
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a matrix equal to that of the text [Eq. (14)] except
for the first and last term on the diagonal. In the
limit where the matrix size N is large the two ma-
trices would have the same eigenvalues.

The determinant of 4 is equal to the product of
the two determinants of (A1). These have been cal-
culated'® and one has

Det(4)=AY; sin(N + 1)@ sin(N +1)a ’

sing sina
with

x =2V'Apicosp , y =—2V Ayicos »

or equivalently

nw
N+1

n
y —2v Agic08 Nl ”;,

nw

N+1
T

N +1

N
Det(4)=[]

1

x —2v/ Apicos

X

or
N

14-cos
1

nm
N+1

— 2cos?

Therefore the eigenvalues are

@, =Ago—2A0; | 14cos

nir
—2cos?
-
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