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A general method, based on high order distorted wave perturbation theory, is developed to
obtain exact reflection intensities for low energy atoms scattered by solid surfaces. Resonance
shapes are calculated using projection techniques to obtain uniform convergence. Important
differences with the hard corrugated wall model arise when the calculations for a corrugated Morse
potential are compared with experiment for helium scattered by a Cu(110) surface.

In recent years large advances have been made in interpreting the elastic
surface scattering of low energy atoms and molecules using the hard corru-
gated wall model (HCW) [1]. In particular, a great deal of information has
been obtained from studying the bound state resonances or selective adsorp-
tion which occurs when a particle in the incident beam can diffract into one of
the adsorption levels while still conserving energy. The HCW can be expressed
as a potential of the form

V(r)=c0, z<é(R), .
V(z, R), z>¢(R),

where z is the direction perpendicular to the surface and R is a vector lying in
the surface. The function ¢(R) describes the corrugation of the wall, while the
potential V(z, R) (which is usually taken to be independent of R) is chosen to

have the correct asymptotic behavior and to have bound state energies which
agree with the observed resonance behavior.
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The adjustment of the bound state levels appears to be rather insensitive to
the stiffness or slope of the repulsive potential. On the other hand, the
diffracted intensities can be strongly affected by this parameter [2-4]. The
repulsive potential is, to a good approximation, proportional to the surface
electronic density [5] which is known to be very nearly exponential in form [6].

In order to investigate the effects of softness in the potential, the authors
have developed a perturbation method of solving exactly for the diffraction
intensities. This has been applied to the corrugated exponential potential [2,3]
where it has been shown to be convergent for all corrugation amplitudes of
current practical interest [4]. In this paper we show how the iterative method
can be extended in a general manner to include an attractive part near the
surface for studying the effects of the potential well and particularly the bound
states. Detailed numerical calculations have been carried out in an accompany-
ing paper showing excellent theoretical agreement with the diffracted intensi-
ties of He scattered from the (110) face of Cu [7]. In particular, it is shown that
the HCW model is completely inadequate to describe the data. In this letter we
present a short description of the general method and some calculations
indicating the resonance behavior for the He /Cu(110) and similar systems.

As a model of the atom-surface interaction we adopt the corrugated Morse
potential defined by

V(r)=D{exp[2x(#(R) —z)] /v, — 2 exp(—x2)}, (2)

with v, the surface average of exp(2x¢). The leading term of (2) has the
correct behavior for the repulsive potential since it is essentially the corrugated
exponential potential. The second term of (2) is not corrugated since the
attractive part of the potential is expected to be smooth. A Morse potential,
modified so as to have the correct 1/z° asymptotic behavior, has been shown
to agree quite well with the experimentally observed bound states for graphite
and LiF [8]. However, the exact form of the attractive tail will not strongly
affect the diffracted intensities except for very low incoming particle energies.

The basic theoretical approach is to divide the potential into two parts
V(r)= U+ v, then the scattered intensities are readily obtained from the
transition matrix z,; given by

1
tfi—ufi+$D/1Ei+El+i8t/i’ (3)

where the v, are matrix elements of v taken with respect to eigenstates of U.
The usual choice for U is the surface average of V(r), but there are may other
possibilities; for example substantial improvements in convergence can be
obtained by taking a U which is displaced with respected to the surface average
(4.

For the Morse potential it is convenient to define a dimensionless transition
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The system of egs. (4) and (5) is solved to convergence by the Neumann
iterative technique, a process completely equivalent to distorted wave perturba-
tion theory carried out to high order.

Near conditions for resonance convergence is limited by the singularities
arising from the bound state denominators in egs. (4) and (5). These problems
can be avoided by some straightforward manipulations on the transition
matrix equation (3). In operator notation, eq. (3) is t=v + vGt. If G can be
expressed as the sum of two parts, G= G, + G,, then the transition operator
can be written as ¢t =h + hG,t, where h = v + vG,h. This implies that in the
present case, eq. (3) can be replaced by the equivalent pair of coupled integral
equations

® :

t,=h,+ >k, ————t_, 8

‘ /i fi . fin""Eg’*'ls gi ( )

'ct to eigenstates of U. 1

ut there are may other hp=v,+ > 'vy———a—h )
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where the X' implies that the quantum numbers summed in eg. (8) are not
. _ N summed over in (9) and vice-versa.
imensionless transition There are two immediate and convenient choices for this type of separation.
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The first is to let eq. (9) include a sum over only those states which are
participating in the resonance. This prescription is identical to reducing eq. (3)
by direct elimination of a selected set of (resonant) states. It is clear that this
method cannot resolve all the fundamental convergence problems at resonance,
because the small denominators still appear in the renormalized matrix ele-
ments h,, of eq. (8). However, in practice we find that this approach can lead
to substantially quicker convergence of the iterative procedure in the vicinity of
resonances, and when combined with a displacement of the potential U with
respect to the surface average of V(r), can even lead to convergence when the
kinematical denominator p + (d—m—1/2)*~0.

A second and perhaps more logical choice is to include in the sum of eq. (8)
for ¢,; only those terms involving a resonant denominator, leaving eq. (9) well
behaved and appearing exactly like eq. (3), except with a restricted sum. Eq. (9)
is solved by iteration and the transition matrix is subsequently obtained from
(8) by a simple resolution of a finite number of coupled equations. This
prescription is a projection of the resonant terms out of eq. (3) and has been
used by Weare et al. in a lowest order approximation to predict resonance
signatures [10]. They have also used an equivalent approach to apply the
Rayleigh scattering method to the HCW [11]. This procedure has the distinct
advantage that all convergence difficulties associated with resonance have been
lifted out of eq. (9), the price paid is that one must solve an additional iterative
equation for the A,

The accompanying paper [7] gives several examples of calculations based on
egs. (4) and (5). It suffices to repeat here that the comparison with experiment
for He scattered by the (110) face of Cu clearly demonstrates the effects of the
attractive well, the softness (or a finite slope) in the repulsive part of the
potential, and points out the problems associated with the HCW model.
Furthermore, the corrugation depends on incoming energy in precisely the
manner expected [6].

We would like to present several examples of bound state resonances
calculated using the projection operation on eqs. (8) and (9). As a model of the
system He/Cu(110), we take in eq. (2) D=6.5 meV corresponding to three
bound states, x =1.05 A~ and a one-dimensional sinusoidal corrugation of
the form

¢(X)=hacos(2nX/a), (10)
with a=3.6 A. The incoming energy is the lower experimental value E; =21
meV corresponding to k; =6.4 A~ F1g la shows a plot of the specular beam
versus incident angle for the case ( 0 ) (the (10) state is in resonance with the
n=0 or ground state) for the observed corrugation amplitude k= 0.008.
Convergence to a unitarity of 0.9999 is obtained after four iterations. The
resonance is a strong peak but extremely narrow and this is interpreted as

being in agreement with observation; i.e. the experimental search revealed no
resonance features at all, but these calculations indicate that the resonances are
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Fig. 1. (a) Specular intensity as a function of incidence angle near the (10) resonance for the
system He/Cu(110); k; =6.4 A~ x=1.05A~! D=6.4 meV and h =0.008. The arrow marks the

position given by the kinematical resonance condition E, — E,, =0. (b) Same as (a) except for a
stronger corrugation, k1 =0.04.

so sharp that they would not be detected in most of the experimental situation.
Fig. 1b shows the same resonance but with a corrugation amplitude five times
as large (£ = 0.04), a unitarity of 0.9999 being achieved after 15 iterations. It is
seen that an increase in corrugation amplitude broadens considerably the
resonance peaks, futhermore it is noted that for all corrugation amplitudes the
shift of the peak towards the normal can be comparable to the peak width.
This shift is a manifestation of the band structure effects introduced by the
corrugation.

Fig.2 shows the (2(()) ) resonance for a corrugation amplitude £ = 0.02 with
the standard unitarity obtained after 8 iterations. All of the specular reso-
nances shown in figs. 1 and 2 are local maxima and no minima occur among
all the important ( 1’?) and (2’?) resonance peaks. This behavior is in agreement
with the rules developed by Wolfe and Weare [12] and with the further
discussions of Celli et al. [13]. For example, with the (2(()) ) resonance the rules
of Celli et al. hold as the resonance yields 2 maximum on the 00 and 10 beams
and a minimum on the 10 beam. But for the (18 ) resonance the prediction of
the Celli rules is in contradiction with our results.

Near an isolated resonance, the ¢t matrix element is given by:

t/i=hﬁ+thhR,-/(Ei—ER—hRR)’

where R labels the resonant state. The intensity can be put into the standard
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Fig. 2. The specular, (10) and (10) diffraction intensities for the (23 ) resonance of the same system
as fig. 1, except with A =0.02.

form [13}:
I=|CP*|1—ib/(x—1)|?

where x =[E,— Ex — Re(hgr/4)2/T, with T =Im(hzz/4) the line width,
and where |C|? is the diffracted intensity if the resonance is suppressed. The
cancellation of x gives the band structure point which is shifted with respect to
the resonance kinematic condition. Putting b and b, respectively the real and
imaginary part of b it is easy to show that the line displays a maximum and a
minimum for x, and x, values with the relation x,x, = — 1. These extrema are
therefore located on each side of the band structure point. The corresponding
intensities are given by

1,2

I =|C|2><§[1+X2+Y2:((X2+Y2—1)2+4Y2) ]

extrema
with
X=1+bg, Y=b,

Now the difference |C|? — I,,;, will be larger than I, —|C|?, ie. the line
shape will have the structure of a minimum if

(1+bg)<1—0b2 ~ (11)
In the case discussed by Celli et al. [13] with repulsive hard corrugated wall,
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Kirchhoff approximation and corrugation (10), b, is always equal to zero. Then
one of the x values, x, for instance, is equal to zero and the other is rejected to
minus infinity. The resonance line has a symmetric lorentzian shape and is a
minimum if

- 2 < bR < 0.

For the results presented in figs. 1 and 2, the b, values are in each case very
small; x, is then proportional to b; and the other solution has a great absolute
value giving a non-realistic angle for the appearance of the corresponding
extremum. But this produces the asymmetric shape which is apparent on each
resonance line. However, condition (11) gives the resonance signature.

To second order in the iteration process, the line width is given by
T 2m

4 2 MR—GMG—R"‘_’

r= ,
hxké

G open
where M,_ is the matrix element of the R— G potential Fourier component
taken between resonant and G states. With corrugation (10) and small ha

values, M, _ ; is respectively proportional to xha and (xha)?* for the ( 13 ) and

(28 ) resonance. The line width is then respectively proportional to (xha)* and
(xha)*, in agreement with results of Celli et al. [13].

We have demonstrated in this letter a general method of treating elastic
atom-surface scattering using high order perturbation theory. It was conveni-
ent to apply the method to the corrugated Morse potential because the matrix
elements can be obtained analytically. However, we emphasize that the method
is quite general as it depends only on a knowledge of the matrix elements v,,
Once these matrix elements have been numerically calculated for any general
potential the diffraction intensities for all incident beam conditions can be
readily obtained.

We would like to thank J. Lapujoulade, Y. Lejay, J. Perreau and B. Salanon
for many enlightening discussions and C. Manus for his continued interest and

encouragement.
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