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Abstract. A number of experimental results for the diffraction of low energy helium
by closely packed and stepped copper surfaces is presented. Observation of selective
adsorption resonances shows that the surface average of the interaction potential is the
same for all crystal faces. The thermal attenuation of the scattered intensities is given
by a modified Debye-Waller factor. These results are interpreted in terms of
interaction potentials with a soft exponential repulsion and an attractive well using an
exact method based on Neumann iteration of the transition matrix equation. Good
agreement with experiment is obtained in several systems over a large range of

scattering energies.

: : 1. INTRODUCTION

The scattering of light, low energy atoms and molecules
has long been recognized as having an excellent potential
for giving a great deal of information about surfaces and
the interactions that can occur at surfaces.’ In this paper
we.would like to present a number of experimental
results for the scattering of helium by a variety of closely
packed and stepped Cu surfaces and also to develop the
theoretical methods that have been used to interpret
these data.

Light atoms and molecules are particularly suitable as
surface probes since at low energies they neither penet-
rate nor distort appreciably the crystal structure and
hence only the outer layer is sampled. At thermal
energies the de Broglie wavelength is comparable to the
lattice spacing, thus by observing surface diffraction one
can determine the surface structure.?* For similar reasons
low energy atoms should be good projectiles for inves-
tigating inelastic processes,* particularly those involving
Rayleigh or surface phonons.

Figure 1 gives a typical example of the diffraction
pattern observed for a monoenergetic helium beam
scattered by the Cu (115) stepped surface.*” The beam is
incident at an angle of 28° with respect to the surface
normal and at an energy of 63 meV (k=11 A", A, = 0.57
A). The beam is perpendicular to the stepped rows and
incident in the “upstairs” direction as indicated by the
arrows in Fig. 2. Figure 1 shows the peaks diffracted in
the plane of incidence. Peaks scattered out of the plane
of incidence were not measurable with the experimental
apparatus, but they are believed to be small. In fact,
experiments on the (110) surface with the incident beam
parallel to the widely spaced rows failed to reveal any
diffracted peaks, consistent with the fact that the surface
is close packed in this direction and shows a negligible
corrugation. Considerably more than ten peaks are
clearly observed in Fig. 1 with many of the diffracted
peaks,even larger than the specular beam, demonstrating
that this type of experiment can be explained only by a
strong scattering theory.

The interaction potential between the incoming parti-
cle and a surface basically may be separated into three
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Fig. 1. The in-plane diffraction intensities as a function of
azimuthal scattering angle 6, for a2 63 meV He beam incident
with 6, = 28° on a Cu (115) surface. The step rows are perpen-
dicular to the plane of incidence.

regions: the long range attractive van der Waals force,
the repulsive force at the surface and, in between, an
attractive well containing the bound physisorption states.
Since the two-body van der Waals force follows a 1/r®
power law, by simple argument, for the atom——sqrface
system, it may be represented as C,/z? where z is the
perpendicular distance from the surface. )

The repulsive force is primarily a result of the Pauli
exclusion between electrons of the incoming particle and
those of the surface. Recent calculations indicate that the
repulsive force is approximately proportional to the
electron density at the surface® and is thus expected to be
very closely exponential in form. Further calculations
seem to show that observations of the surface corruga-
tions by diffraction experiments may provide a great deal
of information on the surface electron density.’

* Permanent address: Department of Physics and
Astronomy, Clemson University, Clemson, SC 29631 USA.
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The effect of the bound states can be very important in
a scattering experiment since they give rise to resonant
behavior. Such resonance occurs whenever the incident
beam can diffract into a bound state while still conserving
total encrgy, i.c. the total energy is alwavs positive
corresponding to the atom constrained to move parallel
to the surface with a speed higher than the incident
speed. Since the total energy is positive the particle must
eventually leave the surface by a similar mechanism but
these resonances can sharply alter the distribution of
intensities in the diffracted peaks. Figure 3 shows a plot
of the specular intensity as a function of incident angle
for the He/Cu (115) system at an incident energy of 21
meV.. The resonances are manifest as sharp maxima or
minima with relatively narrow linewidths. Since the
positions of the resonances give with high accuracy the
bound state levels, the form of the attractive region of
the potential as well as the van der Waals constant C; can
be determined quite readily.

It is clear, a priori. that atom scattering experiments in
principle provide virtually all information that one can
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Fig. 2. The crystal structure of the (110), (113) and (115)
surfaces of Cu. The arrow indicates the direction of the incident
He beam for the experiments reported here.
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Fig. 3. The specular intensity as a function of incidence angle
for a 21 meV He beam on a Cu (113) surface. The lines denote
the kinematical position of the resonances and are labeled by
the associated reciprocal lattice vector and bound state. The
arrows indicate the thresholds at which an evanescent state
becomes a diffracted beam.
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gain about the surface interaction. The object of this
brief introduction is to demonstrate a particularly nice
aspect of such experiments. that different tvpes of experi-
ments can give detailed information about specific differ-
ent components of the potential.

In this paper we discuss primarily elastic scattering. bul
there is one aspect of inelastic scattering that must be
taken into account and this is the thermal attenuation of
the diffracted beams caused by the surface vibrations. As
in the case of bulk X-ray or neutron scattering the
thermal attenuation can be accounted for by a
Debye-Waller factor, a decreasing exponential whose
argument is proportional to both the temperature (or.
more precisely, the mean-square surface displacement)
and the square of the momentum transfer. At the
moment, a Debye-Waller type behavior can be justified
on theoretical grounds only for certain very special
models, notably those in which the collision time is very
short, such as for a hard-wall model.'""" However, for the
case of a He-metal collision, a Debye-Waller type of
thermal attenuation is an experimental reality, as is seen
from the typical example given in Fig. 4. The logarithms
of the peak intensities as a function of surface tempera-
ture from 77 to 750 °K for a 63 meV beam incident on Cu
(110) at an angle of 50.5° are shown. These decrease
linearly with temperature, as expected, over a large
range while at high temperatures anharmonic effects
seem to be important. (The high temperature deviation
of the very weak (20) peak is probably an experimental
artifact, due to inelastic background effects.) The experi-
mental intensities to be compared with those obtained
using the elastic theory are the extrapolations of the
intensities to 0 °K.*"> When this extrapolation is com-
bined with a correction in higher orders of temperature
to account for anharmonicity, a very consistent picture of
the surface mean-square displacement emerges.”

Il. THEORY
A model which has been extremely useful in interpret-
ing the scattering data is to represent the repulsive part
of the potential by an inpenetrable wall with corrugations
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Fig. 4. A typical Debye-Waller plot of the logarithm of dif-
fracted beam intensities as a function of crystal temperature. A
63 meV He beam is incident on a Cu (110) surface at an angle of
32.5°. The experimental data are as follows: O — specular or
(00) peak; + — (10) peak; X — (10) peak; and [J — (20) peak.
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refiecting the periodicity of the surface atoms. This
corrugated hard wall mode} (CHW) can be represented
by the potential

x z <¢(R)
Viiry = {1
V(R.z), z>¢(R)

where z. as above, is the direction perpendicular to the
surface. and R 1s a vector lying in the surface. The
function ¢(R) gives the corrugation of the wall and
V(R. z) (which is usually taken to be independent of R)
is chosen to have the correct asymptotic behavior and
bound state energies which agree with observed reso-
nance behavior. An exact solution to (1) is by no means
simple even when V(R. z)is a constant.'*' However, the
problem is amenable to a variety of approximations
which are particularly applicable to surfaces which are
not too strongly corrugated.”” The model in Eq. (1) has
been reasonably successful in explaining the scattering of
He from alkali halide surfaces'® but, as we point out in
Section 11I below, a rigid wall model is inadequate for
explaining the scattering from metal surfaces where a
small penetration of the wavefunction into the surface is
important. '

In order to have particle penetration the surface must
be made non-rigid or “‘soft” and this can be done in two
distinct ways. The first possibility is to consider a finite
step, for example by replacing V(r)== by V(r)=V,
for 7 < ¢(R) in Eq. (1). This type of potential has a
particle penetration which increases with increasing
incident energy, the penetration depth being essentially
V2m(V,— E))/h where E, is the incident energy. On the
other hand, an exponential repulsive potential, V/(r) x
exp| —2xz] (suggested by considerations of the form of
the electron density near the surface), gives a wave
penetration which is larger for low incident energies than
for high energies. Calculations for a step potential with
corrugations do not give results that are appreciably
different from the CHW?® and, as demonstrated by the
comparison with experiment in Section III, it is the
exponential form which is correct.

A soft wall potential can always be expanded in a
Fourier series

V(r)=vyz)+ 2, Ve(z)es* 2

where G is a surface reciprocal lattice vector and ve(z) is
the surface average of V(r). A variety of approaches
have been put forward for obtaining the scattered inten-
sities by starting from Eq. (2) and directly integrating
Schrodinger’s equation by the method of close coupling.
These methods are, in principle, exact solutions but have
the disadvantage that for all but the weakly corrugated
surfaces they require a large amount of computer time.”

The methods that we would like to discuss here are
based on the transition matrix equation in the two-
potential formalism. The potential is written, as
suggested in Eq. (2), as the sum of two parts, V(r)=
U + v, where U is a strong part which backscatters all
incident particles (we note in passing, however, that
U = vo(z) is not always the most appropriate choice).
Then the scattered intensities are readily obtained from
the distorted wave transition matrix obeying the equa-
tion:

o =vi+ 2 v, (E — E, +ie)'L, 3)
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where the v, are matrix elements of v taken with respect
1o eigenstates of U. Generally, in obtaining Eq. (3) one
has to be carcful in defining the difference between
outgoing and incoming solutions to V(r) and U. How-
ever, in surface scattering such questions are trivial; the
difference between an outgoing and an incoming solution
of U is simply a phase factor equivalent to the S-matrix
for specular scattering.

An example of one of the potentials to which this
formalism has been applied is the corrugated Morse
potential defined by

V(r)= D{exp[2x(¢(R)— 2))/vo—2exp] ~ xz]} (4)

where v, is the surface average of exp[2x¢@(R)]. If this is
expanded as in Eq. (2), ve(z) is given by a Morse
potential and the higher-order Fourier components are

toro(z) = De ™ vg /v, (5)
with
Ve =:-]9-J dRe 6 R grine®) . 6)
where S is the area of the unit cell (uc).
Then the diffracted intensities can be written in terms

of a dimensionless transition matrix Fg(q) as

Ic =86y~ imF5 (D6 )4V popsl? ™)

- where pg is the dimensionless perpendicular wave vector

associated with the Gth diftracted beam

Pe = k. /x = Vki—(Ko+ G/« 8)

and k, is the incident wave vector with components K,
and ko, parallel and perpendicular to the surface, respec-
tively.

Equation (3) becomes the following set of coupled
equations for the Fg(p) functions:

Fo(1)= Maf 00 =3 S [ daf .00 @)

x[q*-phtie]”
+ 35 2 A S m)Fu(n) )
X [ph+d*=2d(n+)+(n +1¥]",
Fn)= Al o)~ S 0 [ dai(q.)Fu(@)
x[g*~ pi-+ie]”

+%2A,.,2M(n,m)F~(m) (10)

X [ph+di=2d(m + 1+ (m +iy]",

where n is an integer denoting the band states, d’ =
2mD/h*k?, and A;n = (1 — 8;5)0s-~/Uo. The matrix ele-
ments of exp]—2«z] with respect to Morse potential
eigenfunctions are written as f(p, q), I(p, n) and M(n, m)
for continuum-continuum, continuum-bound, and
bound-bound transitions, respectively.

There are a number of methods that have been used to
resolve Eqs. (9) and (10). One can discretize the integrals
and then invert the resulting matrix equation. This has
been done for the case of a purely repulsive corrugated
exponential potential (i.e., the repulsive term of Eq. (4))
but for all except very weakly corrugated surfaces the




procedure requires oo much computer memory space.”
The integral can also be reduced to discrete matrix form
by expanding F,(r) in a complete set of states, such as
Laguerre polynomials. Again, even for the simpler corru-
gated exponential potential this leads to inordinate de-
mands on the computer memory.

A method which has proven to be very successful is to
solve these coupled integral equations by Neumann
iteration until they converge, a process completely equi-
valent to distorted wave pertubration theory carried out
1o high order.” This has been applied to the exponential
corrugated potential, the corrugated Morse of Eq. (4)
and a modified Morse-type potential described in Section
IT1 below. This iteration method converges over a large
domain of variously corrugated surfaces. The exponen-
tial corrugated potential, for which the convergence
properties have been most closely checked, gives good
solutions for virtually all surfaces of current interest,
including the alkali halides such as LiF.* However, to
obtain convergence for high corrugation amplitudes one
must choose U not as the surface average of V(r). but
displaced with respect to the surface average, or even
with a different well depth D as in the case of the Morse
potential.

When combined with the appropriate projection
techniques, as discussed in Section IV below, the itera-
tion method converges equally well with or without
conditions for resonances with bound states.

1II. COMPARISON WITH EXPERIMENTAL RESULTS

Detailed measurements of the He diffraction inten-
sities from a variety of closely packed and stepped Cu
surfaces have been carried out.®’ In this section we will
narrow the discussion to a consideration of the (110) and
(113) surfaces, for which we have the most detailed
comparisons with theory. These comparisons clearly
show that a hard-wall model of the repulsive potential
fails to explain the data but an exponential repulsion
gives quite good agreement. Figure 5 shows the diffrac-
tion intensities for a 63 meV He beam incident on Cu
(110) as a function of incidence angle 6,, together with
results of four different theoretical models.

The experimental data shown with error bars are
obtained by extrapolation to zero temperature and re-
normalizing the sum of in-plane diffraction intensities to
unity. The renormalization is carried out in order to
eliminate the effects of possible out-of-plane diffraction
in comparison with the one-dimensional calculations.
The four theoretical models correspond to the corru-
gated Morse potential of Eq. (4), the corrugated expo-
nential potential, the corrugated hard wall, and the
corrugated hard wall with an attractive well, all with the
same one-dimensional sinusoidal corrugation:

¢(x)= ha cos(2mx/a), (1

with a =3.6 A.

The well depth for the Morse and hard wall models
was taken as 6.35 meV, the value given by examination
of the resonance behavior as_discussed in Section IV
below. The value of k = 1.05 A" for the range parame-
ters in the Morse potential gives the best fit for all
surfaces and all energies considered. It is clear from
Fig. 5 that the corrugated Morse potential gives a good fit
to the experiment, far better than either of the hard wall
models. In fact, the only way a hard wall model can be
made to fit the data is to choose a different corrugation
for each incident angle.
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Fig. 5. Comparison between the experimental data and four
theoretical models for the scattering of 63 meV He by a Cu (110)
surface: CHW, corrugated hard wall with corrugation parame-
ter h =0.013; CHWW, corrugated hard wall with well, h =
0.013 and well depth 6.35 meV; CE, corrugated exponential,
h =0.012, k =1.05 A-'; CM, corrugated Morse potential, h =
0.012, x =1.05 A~ and D =6.35 meV. The incident plane is
perpendicular to the closely packed rows.

Equally good agreement is found for the same experi-
ment as in Fig. 5 but with an incident energy of 21 meV.

‘The only adjustment that must be made is to decrease

the corrugation parameter h from 0.012 to a value of
0.008 in the Morse potential calculation. This decrease in
corrugation with incident energy is in agreement with
recent theoretical predictions indicating that the corruga-
tion is given directly by the electron density.®®

Figure 6 shows the comparison of the experiment with
the corrugated Morse potential for a 21 meV He beam
scattered by the Cu (113) surface. The non-renormalized
data are shown and the calculation is for the two-
dimensional unit cell in the form of a parallelogram
having the corrugation function

eo(x,y)=a {h,ocoszalx + hy cos (Z;f) cos (Z—ZX)

+ h,; cos (2—@) cos (2—‘”!)
a a

— Co1 SiN (1:15) cos (2—;{1)}

with b =255 A, the nearest neighbor distance, and
a = 4.227 A, the distance between steps. The corrugation
parameters are h,, = 0.017, ho, =0.01, and h,, = Co —-Q
The agreement between theory and experiment Is
reasonably good over a large range of incident angles. In
contrast, similar calculations for a hard wall model give
very poor agreement, as was found for the 110 surface of
Fig. 5.

(12)
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Fig. 6. Comparison between experiment and the results of the
corrugated Morse potential with the two-dimensional corruga-
tion of Eq. (12) for a 21 meV He beam incident on Cu (113).

For the same system_as illustrated in Fig. 6, equally
good agreement is obtained at the higher energy of 63
meV. The only change that must be made is to augment
the principal corrugation parameter h,, by approximately
25% . Although the increase in corrugation strength with
incident energy is in agreement with theoretical predic-
tions, it points out the inadequacy of the corrugated
Morse potential model in representing correctly the
corrugation at all energies without changing parameters.
In fact an examination of the corrugated Morse potential
shows that the effective corrugation at fixed energy
actually decreases with energy, a trend opposite to the
desired behavior.

In order to improve this situation we have considered a
modification of the corrugated Morse potential which
shows a natural increase in effective corrugation with
energy. Simply stated, in the Fourier components of Eq.
(5) we change the strength D to yD and adjust the range
parameters from « to «’, while leaving the zero order
term (the surface average of V(r)) the same Morse
potential. This potential can be written in closed form as

V(z,R) = D{y(exp[2x¢(R))/vo— 1)Z**"* + Z> - 2Z},
(13)
with

Z = exp|— xz]. (14)

In order to obtain an increase of the effective corruga-
tion amplitude with energy, x' must be taken greater
than «. For the He/Cu (110) system discussed below a
value of 2k'/x =3 was the appropriate choice, which is
also favorable for the analytical calculation of the matrix
elements.

Measurements of the diffraction intensities for the
He/Cu (110) system have been made over a range of
energies from 21 to 240 meV. Good agreement can be
obtained with the corrugated Morse potential by adjust-
ing the corrugation parameter h for each energy. How-
ever, using the Modified Corrugated Morse Potential
from Eq. (13) with h = 0.169 and y = 0.0235 gives excel-
lent agreement for all energies without further changes in
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the paramcters. Ap example for an incident encrgy of
125 meV is given in Fig. 7. Thus. with the modified
Corrugated Morse Potential of Eq. (13), we have a model
of the He-Cu interaction that is capable of reproducing
the experimental intensities over an encrgy range of an
order of magnitude and at all incident angles measured.

1V. RESONANCES
Clear resonance behavior was observed on the stepped
Cu surfaces, as shown in Fig. 3. but not on the more
closely packed (110) surface. By comparing the positions
of the resonance peaks to the kinematical conditions for
a resonance, i.e. conservation of energy and parallel
momentum,

X ht )
Eo=2—m-(k5.+K5)=§;(Ka+G)‘—£.- (15)

The bound state energies £, were determined. These
energies are 4.45=0.15, 2.120.1, 0.90=0.1 and 0.35=
0.15 meV, which are reproduced by a Lennard-Jones 9-3
potential

V(z)=(3"/2)D{(s/2)’ ~ (o/2)} (16)

with ¢ =2.7+0.1 A and D =6.35=0.05 meV.

A very interesting point is that although the resonance
strength and linewidths depend on the surface corruga-
tion, the energy levels are the same for the (113) and
(115) surface and are consistent with previous measure-
ments of the (117) face. (The fact that resonances were
not observed on the (110) face is consistent with calcula-
tions discussed below, which show that the linewidths are
too narrow to be observed.) The fact that the energy
levels are the same for all faces demonstrates that the
division of the potential into a surface average plus
higher-order Fourier components as in Eq. (2) is a
reasonable and valid assumption, and it implies that the
attractive part of the surface potential is a collective
effect not strongly influenced by the corrugation of the
outermost layer.

The theoretical problem posed by the resonances is
that they represent divergences in the transition matrix
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Fig. 7. The diffracted intensities as a function of incident angle
for 125 meV He scattered by Cu (110) compared with the
calculations for the modified Corrugated Morse potential of Eq.
(13).



cquation. This can be seen in Egs. (9) and (10). where the
resonance condition (15)1s identical with the vanishing of
one of the denominators in the bound state sums. thus a
mcthod based on iteration will not converge. These
divergences can be circumvented by simple projection
technigues  similar 10 those developed in  nuclear
physics."™* Formally, the transition opcrator obeys the
relation t = v + vGt. We can write G = G, + G, and then
it is readily shown that the transition operator is given by
the pair of equations

—

= h + hGII
and

h=v+vG;h

or in matrix element form

b= hy+ D ho(E, — Ey) "1, (17)
b

by =t + 2 v (E, = E +ig) 'hy. (18)
i
If we place all resonant terms in G, then the singular
denominators do not appear in the sum in Eq. (18) for
the hy, thus the h-matrix is still amenable to an iteration
solution. The ¢-matrix is subsequently obtained from Eq.
(17) by inversion of a small matrix involving only the
resonant bound states.
As a specific example, for a simple resonance involving
only a single bound state b the transition matrix is of the
form :

S t = hy + hohy [(E, — E, — hy,). (19)

It is clear from the presence of the term h,, in the
denominator, that the resonance associated with the
kinematical condition E, = E, no longer gives rise to a
divergence, but is shifted in energy by Re h,, and has a
linewidth determined by Im h,,. If the appropriate di-
mensionless form of Eq. (18) is inserted for the diffracted
beam intensity in Eq. (7) we obtain the standard form

I = A*|1—ib/(x — )P, (20)

where the explicit values of A, b and x are obvious. By
examination of this form the signatures of the resonances
can be characterized as a function of incident energy E,
or incident angle ;. In general, if b is complex the
resonance as a function of E; or 6, will have two extrema,
a minimum and a maximum. If b is real, or nearly so, one
of the extrema disappears and the resonance is of
Lorentzian form, a minimum if —2<b <0 and a max-
imum otherwise. An important advantage of this projec-
tion method is that generally in Eq. (20) A and b are
slowly varying and only the variation in the normalized
energy difference x is important. Then, to a very good
approximation, the whole resonance can be mapped out
by calculating A and b at a single point near the
resonance and then considering I to be a function of x
alone. In the case of multiple or simultaneous resonances
the entire resonance region can be mapped out in a very
similar manner.

The resonance calculations carried out with the corru-
gated Morse potential for the Cu (110) surface corres-
ponding to the experimental observation conditions give,
in the specular beam, for instance, maxima with a very
narrow angular width of approximately 0.02°. Even with
substantial broadening due to inelastic effects, such
resonances are not observable within the experimental
angular resolution of 0.2-0.5° which, as mentioned

above. explains why they were not observed on the Cu
(110} face.

Calculations for the resonances observed on the (113)
surface using the one-dimensional corrugation function
of Eq. (14) give rather narrow maxima in the specular
beam rather than the minima observed in the experi-
ment. This is because the resonant state only couples
strongly with the specular beam. This corresponds to Eq.
(19) with —b>27*" The magnitude of Reb can be
reduced by adding additional diffraction channels out-of-
plane that couple with the resonance. The fact that the
sum of the zero-temperature extrapolated diffraction
intensities is slightly less than unity indicates that there
may be some small out-of-plane peaks. which is why the
calculations in Fig. 6 were done with the two-dimensional
corrugation of Eq. (12).

Shown in Fig. 8 is a typical calculation. in this case for
the resonance of the (10) reciprocal lattice with the
lowest (n = 0) bound state at an energy of 21 meV. The
corrugation is given by Eq. (12), with h,, = 0.017, h,, =
— hy; =0.006 and C,, = —0.002. The effect of the out-of-
plane diffraction is to reduce the magnitude of Re b but
enhance Imb producing the double structure with a
slightly predominant minimum. If inelastic events were
included in the calculation more channels would be
coupled to the resonance, and it is virtually certain that
the structure would have a pronounced minimum in
better agreement with experiment, as has been demon-
strated with hard-wall models for the scattering of He by
graphite.®* In general, we can say that for a calculation
of diffraction intensities a one-dimensional corrugation is
usually sufficient for these stepped surfaces except close
to resonance conditions, where small out-of-plane scat-
tering may have a large effect and inelastic events seem
to be quite imporant.

V. CONCLUSIONS
This paper is a brief review of some of the progress
that has been made at Saclay in the domain of low-
energy atom surface scattering from metal surfaces. A
theory has been developed for obtaining the elastic
scattering intensities for soft wall potential models based
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Fig. 8. Behavior of the specular peak as a function of the
incidence angle in the region of resonance of the (10) reciprocal
lattice vector with n =0 bound state for He/Cu (113) at an
energy of 21 meV. A. Calculation using the Morse potential
with k = 1.05 A-', D = 6.35 meV, and the corrugation function
from Eq. (12). B. Experimental curve.
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on Neumann iteration of the complete transition matrix
equations. The method is exact, and for several poten-
tials to which it has been applied converges over avlarge
range of different surface corrugations. With appropriate
projection techniques the method converges equally
rapidly in and out of resonance conditions.

The experimental results presented here are drawn
from a large number of measurements of diffraction
intensities from a variety of closely packed and stepped
Cu surfaces. Observations of the resonance phenomena
are consistent with all surfaces of copper studied having
the same bound state energy levels. This implies that the
assumption of writing the interaction potential as a sum
of Fourier components in the lattice periodicity is not
only good, but that the zero component (the surface
average) is the same for all faces, and only the higher
components change, i.e. those terms giving the corruga-
tion.

Calculations of the diffraction intensities close to reso-
nance conditions, using the iteration method with the
Morse potential, are not completely successful and .it
appears that a proper inclusion of inelastic effects will be
necessary in order to obtain good agreement with the
forms of the resonances. However, it is clearly demon-
strated that the effects of small out-of-plane diffraction
peaks can be very important under resonance conditions.

An excellent interpretation of the diffraction inten-
sities as a function of the incidence angle was obtained
using the corrugated Morse potential model for all faces
calculated and for energies from 21 to 240 meV. The
cprrugation amplitude was observed to increase mono-
tonically with incident energy. On the other hand, the
currently popular corrugated hard wall model -with an
attractive well is shown to be totally inadequate to
explain the data, implying that soft wall effects are
important in atom surface scattering.

Furthermore, a modified corrugated Morse potential is
presented which naturally includes the increase of sur-
face corruation with energy. This model is shown to be
capable of reproducing the experimental data for the
He/Cu (110) system over the entire range of energies
(21-240 meV) with the same parameters. Both the
experimental behavior of the repulsive part of the poten-
tial and the increase in effective corrugation of the
potential with incoming energy are in accord with recent
observations that the interaction potential should be
proportional to the surface electronic density. The agree-
ment between experiment and theory observed here
represents a clear demonstration that the interaction
potential has essentially the same form as the electron
density, and it also points out the ability of atom and
molecule scattering experiments to obtain such informa-
tion about the surface.
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