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BAND STRUCTURE OF AN ATOM ADSORBED ON A SURFACE;
APPLICATION TO THE He /Cu (113) SYSTEM
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We present a method of exactly calculating the band energies of an atom adsorbed on a surface
based on Neumann iteration of the projected transition matrix equations. The band structure
calculated for a model of He on a Cu(113) surface shows large shifts and band gaps and differs
substantially from the nearly free particle model. Comparison with an approximate calculation
shows that the contributions to the energy shifts due to continuum state transitions are nearly
negligible except for the higher band levels.

1. Introduction

The technique of atomic beam scattering has evolved recently as a very
effective probe of the atom-surface interaction. In particular the region of the
attractive adsorption well can be rather precisely determined through observa-
tion of resonant scattering with the bound states, historically called selective
adsorption [1). A precise knowledge of this attractive potential is of importance
to workers in the field of physical adsorption. For light atoms in the submono-
layer regime, the energy band structure of the bound states plays an important
role in the calculation of the thermodynamic properties of the film. These
effects recently have been very clearly demonstrated by Carlos and Cole for
the case of He adsorbed on graphite [2]. They have considered the correct
interaction potential given by atom-surface scattering and have calculated
several thermodynamics effects in the low coverage regime in which the band
structure effects are clearly apparent.

One of the advantages of the He/graphite system is its very weak surface
corrugation which allows the band structure to be interpreted to a good
approximation in the nearly free particle model. In this article we wish to
consdier adsorbed He atoms on rough metal surfaces, in particular the stepped
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surfaces of Cu for which many data have recently become available [3-5]. It
has been shown that the surface average of the He/Cu interaction is essentially
independent of the crystal face and is well represented by a Lennard-Jones
type 9-3 potential having bound states at energies of 4.5, 2.2. 0.95 and 0.35
meV. We carry out detailed calculations for a model of the Cu(113) surface
given by a Morse corrugated potential where the corrugation is sufficiently
strong that the band structure is not at all represented by a nearly free particle
picture.

The calculation is based on a method previously developed for scattering
calculations in which the transition matrix is determined exactly by Neumann
iteration together with an appropriate projection of the band structure states.
In this way the effects of the continuum states are correctly included as
opposed to previous calculations in which continuum state contributions are
completely neglected [2.6.7]. By comparing the two types of calculations we are
able to determine the contribution of continuum states to the negative energy

“band structure and we find that it is rather small for the lower bands, but
increasingly important for bands closer to the top of the potential well.

When the total energy is positive it is the complex band structure associated
with the outgoing solution to the Schrodinger equation which is important ina
calculation of scattering intensities. There the effect of continuum states
becomes increasingly important. particularly for the imaginary part of the
band structure which gives the width or lifetime of a selective adsorption

resonance.

2. Theory

We begin this section by briefly discussing the standard approach to band
structure calculations as applied to the surface problem. The wave function
Y(r) of the total interaction potential V(r) is expanded in terms of the

eigenstates x,(r) of some conveniently chosen one-dimensional potential
U(z). That is, we have

[ Ho + U(2)] x,(r) = Epxplr),

where x,(r) is the product of a plane wave in directions parallel to the surface
and a bound or continuum eigenstate x(z) of U(z) in the perpendicular
direction. Then the expansion of the wavefunction can be written as

W(r) =L X 9 x.(2) Co (1)
G a

where z and R are position VecCtors perpendicular and parallel to the surface
respectively. Since y(r) must have the same periodicity as the surface potential
V(r), the sum over directions parallel to the surface is a discrete sum over the
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surface reciprocal lattice vectors G. The Schrodinger equation for Y(r) is then
[Ho+ U+ o] d(r)=E(r). (2)

where v = V(r)— U(z). Since the potential can be expanded as a Fourier series
in the reciprocal lattice vectors,

V(r)=uvy(z)+Y e CFug(2), (3)
G

an obvious choice for U(z) is the surface averaged potential vy( ). although for
particular calculations other choices may be more convenient. Inserting the
expansion for ¥(r) of eq. (1) into eq. (2) and using the orthogonality relations
for the eigenstates of U(z) leads to the usual homogeneous equation for the
expansion coefficients Cg

ZCq[(Eq_E)8p4+UqP] =0, (4)
q

where in the condensed notation ¢ = (G. a), and the £, are
E,=Eg,=(n/2m)(K+G) +e¢,. (5)

The €, are discrete and negative for the bound states and continuous and
positive for the continuum states. The existence of solutions for eq. (4) implies
that the secular determinant must vanish

det( E,~ E)8,,+v,,|=0, (6)

P

and this gives the allowed band energies as a function of parallel wave vector
E = E(K) in terms of the matrix elements v,,.

To avoid the difficulties involved with the continuum states in (4) and (6).
the usual approximation is to ignore them, leaving the infinite but discrete set
associated with the bound states. This is further truncated to a finite set
involving only the states of lowest energy. This procedure gives quite accepta-
ble results for the band structure [2], even in situations where the surface is
relatively rough [6,7].

The method we wish to present in this paper is similar to the one given
above, but the wavefunction ¥(r) is expanded in a finite sum of functions
A (r) instead of the infinite set of eq. (1). These functions .1 (r) contain
implicitly all interactions with the continuum states and the band energies are
then given by a determinant similar to eq. (6) but of strictly finite dimension.

The wave function ¢,(r) is written in integral form as

Y =x,+G vy, =x,+ G Py, + G P,vy,, (7)

where in the right-hand side we have introduced the projection operator
P =P + P,, where P, contains the state or states for which we wish to
determine the band structure shifts. If we define the intermediate function
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A,(r) by

(1——G+P,v)7lx,=A,. (8)

a few simple manipulations produce y, as an expansion in the A

¢,=A,+\L;'A,,EI_]Eht,,,=}:A,,C,,,, ()
n

where #,, is the transition matrix

tbl=(Xh~v‘1bl)v(Xh*tXI)? (10)

and the sum over b runs over only the finite number of states projected in P,.
We note in passing that eq. (8) 1s equivalent to the differential equation

[H,+ U+ Pl A=EA, (11)

i.e. the A, obey a Schrodinger type equation with the non-local periodic

potential P\v. Similarly one can write from eq. (8) an integral equation for the

projected transition matrix hy = (xs» vA)

' 1

where the summation runs over all continuum and bound states except those
projected out by P,.

Eq. (9) shows that the total wave function can be expanded in a finite sum
of A(r), and inserting this expansion in eq. (2) for ¢,(r), and using the easily
obtained orthogonality relations between X, and A, leads to a finite matrix
equation

Zéln[(En_E) Snm+hnm]=0’ (13)
‘which gives the band energies corresponding to the projected states through the
determinant

det(E, = E) 8, + hyl =0 (14)

A few simple examples illustrate the usefulness of this formalism. If only
one state is projected, we have

E=E, +h,, (15)

the exact expression for the energy shift of an isolated level. If two states,
denoted by n and m, are projected we arrive at the expression usually
associated with the splitting of two degenerate levels:

Of course, if the h,, are calculated exactly, egs. (15) and (16) give the same
results for a given energy shift. Using the first order expansion from eq. (12),
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h; = v, both egs. (15) and (16) reduce to the familiar expressions from
perturbation theory.

Thus the exact determination of the band energies i1s reduced to a problem
of determining the projected ¢-matrix & This is accomplished by repeated
Neumann iteration of the integral equation (12) until convergence is obtained
and it is the same method used previously for the scattering equations [8.9].
The crossing of two or more levels in the free particle band structure is a
resonance which gives a vanishing denominator in eq. (12). Thus. in order to
obtain convergence of the iterative solution, all band crossings and near
crossings in the region of a particular energy and parallel wave vector must be
projected out by P,. For the calculations reported below for He on Cu(113).
convergence was rapidly obtained in 5 to 10 iterations with the projection of 2
to 5 states.

3. Results and discussion

As a model for the interaction between He and the Cu(113) stepped surface,
we have chosen a Morse corrugated potential

Vir)= D(exp(ZK[ o(x)—z])/vy— 2 exp(~—«z))}, (17)

with k = 1.05 A™!, D = 6.35 meV and v, the surface average of exp(2r¢)]. The
steps are represented by a one-dimensional corrugation function

&(x)=hacos(2wx/a)

where # =0.02 and a=4227 A is the spacing between steps. The surface
average of eq. (17) is a Morse potential and we have chosen this as our
distorted potential U(z). The Fourier components of eq. (3) are

vs(z) = I (xha) e™*% /1 (xha), (18)

where the integer g is defined through G =2m7g/a, and I,(z) is the modified
Bessel function of the first kind.

This form of the potential was chosen because it gives excellent agreement
with experiment for the diffraction intensities in scattering experiments [3], and
all relevant matrix elements v, can be determined analytically. The surface
averaged potential U(:) contains only three bound states at energies 4.58, 1.90
and 0.39 meV which differ somewhat from the experimental results quoted
above, coming from observations of selective adsorption. However, even
though the potential is somewhat approximate in the region of the well
(notably it does not have the — C,/z° long range Van Der Waals behavior), the
results obtained for the band structure are quite general and do not depend
strongly on small variations in potential shape.

Fig. 1 shows the band energies as a function of paraliel momentum calcu-
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Fig. 1. Band energies of the He/Cu(113) system. The solid lines are the energies calculated from

eq. (14). The dashed lines are the energies of a particle in the surface averaged potential. The
parallel momentum X is measured in units of 27/a.

lated from eq. (14) using the potential of eq. (17). For comparison, the energy
parabolas of an atom in the distorted potential U(z) are also shown. It is clear
that the band energies resemble very little the energy which would be predicted
by a nearly free particle picture. Both the energy shifts and the band gaps are
quite large. At K = 0 the bands corresponding to the three unperturbed energy
levels are shifted by —0.41, —0.11 and +0.12 meV, respectively.

Table 1 gives a list of the band gaps at the edge and center of the Brillouin
zone compared to the value 2v,,, predicted by the nearly free particle model.

Table |
Energy »
the reciy
column
approxn

(a) Unpe

Zone ¢er
=t
-0
Zone bt

The un
and n .
the tw.
approx
gaps ai
It
Cross 1
Crossin
dimens
split.
The
hehium
effectin

Table 2

Compart
K =001
exact res

(a) Unpe




o o o o0 BESSRARABIR,

)

om
Ihe

J.R. Munson, G. Armand / Band structure of atom on surface

Table 1

Energy splittings of the lowest lying gaps at the zone center and zone boundary: column (a) labels
the reciprocal lattice vectors and bound state levels of the corresponding unperturbed states.
column (b) gives the exact gap energy in meV and column (c) gives the nearly free particle
approximation 2¢,,,

(a) Unperturbed states (b) Gap energy (meV) (¢) 2¢,,, (meV)

e

Zone center, K =0

(O~ 0.243 0.0421
("= 0.064 0.027
Zone boundary, K =n/a

(H-"H 0.965 0.954
(h—=)-("%) 0.150 0.001
(M-"H 0.486 0.616
(H-H 0.264 0.277

The unperturbed free particle band is denoted by (}) where g is defined above
and » is the bound state quantum number. Curiously, the large gap between
the two lowest bands, (3)-(7j), at the zone boundary is reasonably well
approximated by 2u,,, and similarly for the two other (0)-("}). All the other
gaps are substantially larger than the nearly free particle value.

It is also noticed that gaps arise wherever two or more unperturbed bands
cross inside the zone. In one dimension the symmetry is so restricted that line
crossings are virtually always split, unlike the situation in two or three
dimensions where many crossings in high symmetry directions may not be
split.

The flattening of the lowest bands is very apparent, implying that the
helium atoms are not very mobile on the surface. For the lowest band the
effective mass is 1.79m, but such a description is not very appropriate since the

Table 2

Comparison of exact and approximate calculations of band energies near the zone center,
K =0.01(27/a): column (a) labels the corresponding unperturbed states, column (b) gives the
exact results from eq. (14), and column (c) gives the results of the approximation of eq. (6)

(a) Unperturbed states (b) Exact (meV) (¢) Approximate (meV)
(o) ~4.99 ~4.95
(b, (°H ~3.54 -3.53
-3.29 -3.26
() -2.03 -1.99
(). (") -0.90 ~-0.88
-0.85 -0.81
9 -0.31 ~0.29
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band is non-parabolic. For higher bands the deviation from a parabolic form 1s
so strong that an effective mass approach has very little validity.

In order to estimate the effects of continuum states we have carried out a
calculation using the matrix element equation (4) truncated to the 14 lowest
lying bound states. The band structure obtained in this manner is very similar
to that given in fig. 1 with the Jlowest lying bands shifted up by only one or two
percent. Table 2 gives a comparison between the values of the exact and
approximate calculation near the zone center and it is seen that the differences
become noticeable only for the higher bands.

In conclusion we have demonstrated that an exact calculation of the band
structure can be carried out using methods based on Neumann iteration of a
projected transition matrix equation that have been successful in scattering
calculations. For our model corresponding to the He/Cu(113) system, the
band structure is not at all free particle-like. The lowest bands are flattened
with large gaps, implying that the adsorbed atoms are significantly less mobile
than an atom on a smooth surface. Comparison with the standard approximate
calculation based on diagonalization of the matrix form of the Schrodinger
equation shows that the effects of interactions with the continuum states is
nearly negligible for the lowest lying bands but increasingly important for the
higher bands.
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