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5 ) SCATTERING OF ATOMS BY SOLID SURFACES. 1
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A quantum mechanical theory of the scattering of atoms by solid surfaces is presented.
~The theory is applied to a detailed discussion of elastic scattering (diffraction) processes,
and the extension to inelastic scattering (phonon exchange) processes is discussed briefly.
A great advantage of the theory is that scattering intensities of any size are easily handled;
"~ the moduli of the scattering matrix elements are not restricted to be small. If the results
are expanded to lowest order in these moduli, then the “first order distorted wave Born
-+ approximation” is recovered. An example of the results obtained is that the intensity of
.- the specularly scattered beam is by no means always larger than other diffracted intensities;
this result is in agreement with experiments, and is a decided improvement over the usual

~ first order treatments.

1. Introduction

The scattering of atoms by solid surfaces is by no means well understood,
; either experimentally or theoretically. If a sufficiently high level of under-
B standing of this scattering could be reached. there is no doubt that atom-
' ~ surface scattering could form a very useful tool indeed for studies of the
" properties of the single surface atomic layer of a solid. This is because, under
- normal conditions, incident atoms do not penetrate substantially beyond the
-- - first surface layer of a solid. These remarks are particularly true in view of

B the advent of controllable nearly-monoenergetic atomic beams!-+). As an
~example, such studies could be used to investigate surface phonon spectra
--of solids3). Low energy electron diffraction, while an exceedingly useful tool
“in its own right, does not yield much information concerning the single
surface layer, because even electrons of quite low energy penetrate many
- solid surface layers.
.. For experiments of this nature to be useful, it is essential that a sufficiently
0od theory be available to interpret the results. It is clear that the basis of
a")’ complete theory of atom-surface scattering must be a quantum me-
hanical theory of inelastic scattering. However, the classical mechanical
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theory8-9) is in a considerably better state than is the quantum theory10.11)
This situation is understandable because the classical theory can dea
relatively easily, and perhaps correctly, with those large atom-surface energy
and momentum transfers which are relevant to much recent research; ex-
amples are the drag forces on artificial earth-satellites and the efficiency of
cryopumps. In quantum language, these transfers are results of “many-
phonon” processes, which are not at all well understood. However, even
one-phonon processes have not been adequately dealt with, although some
theoretical progress has been made10.11)  Perhaps the most remarkable
statement which can be made in this context is that even zero-phonon pro-
cesses (that is completely elastic diffraction processes) do not yet have an
adequate theoretical interpretation.

Conventional quantum atom-surface elastic scattering theory, as used,
for example, by Lennard-Jones and his coworkers 12} is based on a first
order distorted wave Born approximation. That this approach is inadequate
for a useful description of experimental elastic scattering data is shown by
the following remarks. This first order approximation is not valid if the total
non-specular flux is large; that is, it is valid only if the specular beam con-
tains considerably more flux than do all the other beams together. However.
recent experimental data, for example those of Fisher and his coworkers®).
show that the specular beam does not always contain the largest flux. Indeed,
at least for not too glancing an incidence, the specular flux is usually less
than the flux of even a single diffracted beam; in fact, the specular beam
occasionally seems to vanish completely, even though first-order diffracted
beams are at the same time readily visible.

The authors’ view is that, before an adequate quantum theory of inelastic
atom-surface scattering can be developed, an adequate elastic theory must
be developed. Then, hopefully, many-phonon processes may be incorporated
into the theory in a natural manner, starting perhaps with one-phonon
processes. Eventualiy, it is hoped that the results of the classical theory may
be obtained, by means of a limiting procedure, from the many-phonon
quantum theory. The object of this paper is to present a new theory of
elastic scattering which, it is hoped, will form the basis for the future work
described above. The extension to inelastic scattering is discussed briefly.

2. Development of notation

The instantaneous potential energy of. interaction of an atom (called the
““gas atom™) with a solid is denoted by ¥ (r, u) where r is the position of the
gas atom and u represents the displacements of all the solid atoms. The
value of V'(r, u) averaged over the thermal motions of the solid atoms is
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- than is the quantum theory10.11)_ . enoted by v(r), which is called the “thermally-averaged potential energy
;e the classical theory can deal “function’”; this is written as follows:
‘h those large atom-surface energy . o(r) = (V(r, W) Q.1
ant to much recent research; ex- : -
rth-satellites and the efficiency of . t is the function v(r) rather than ¥(r, u) which is important in our elastic
: transfers are results of “many- ‘g ’ttermg theory; V(r,u) becomes important in the inelastic scattering
well understood. However, even bt ’theory (see, for example, section 7).
-{uately dealt with, although some . .. Where k is the incident wave-vector, M is the mass, and ¥ (r) is the wave-
). Perhaps the most remarkable function of the gas atom, the Schrodinger equation is
Xt is that even zero-phonon pro- ». (V2 + k2 = 2Mo()jA?) ¥ (r) = 0. 2.2)
.on processes) do not yet have an O
* The z-direction is chosen as the outward normal to the surface, and R is
Hiastic scattering theory, as used, . defined as the two-dimensional position-vector (x, y) of the gas atom parallel
-oworkers!2), is based on a first B to the surface; that is,
- That this approach is inadequate : r=(x,y:)=(Rz (2.3)

-lastic scattering data is shown b : . . . .
) .. N L Y _ The solid surface is assumed perfect in the usuat sense; that is, the surface
‘roximation is not valid if the total o . ) o odi
. e g¢7 0 -atoms are assumed to form a perfect, two-dimensional, infinite. periodic
id only if the specular beam con- & - :
X array. Incident atoms are assumed unable to penetrate beyond this surface
:e other beams together. However, -
A . : ’layer under normal conditions. These assumptions result in a two-dimen-
s¢ of Fisher and his coworkers4), h
. “sional reciprocal lattice, each vector of which is parallel to the surface; the
.vs contain the largest flux. Indeed, . . ,
- feciprocal lattice vectors are denoted by G. G'.

A el S
beam; . p vg(z) = L2 f e(r)e” i€ R42R, 2.4)
surface

even though first-order diffracted

N
..

zquate quantum theory of inelastic ~
1. an adequate e/asric theory must

where IZ = surface area; the inverse of (2.4) is

- () =S p (-) G R 2.5
. .3 v(r)=) vg(z)e' . (2.5)
non processes may be incorporated 5 (r) % o(2)
-larting perhaps with one-phonon & — .. ) . .
. 1; pf th P lassical tl P £ The convention is introduced that sums over reciprocal lattice vectors G are
2 results of the classical theory may % , . . P :
. ¢ k ¥ & over all G, including G=0, unless otherwise indicated. The wave-function
rocedure, from the many-phonon i =

¥(r) may be expanded as follows:

V()= 3 o(2) TR, (2.6)

.per is to present a new theory of
. form the basis for the future work
stic scattering is discussed briefly,

“here K is the component (kx, k,) of k parallel to the surface:
= (ko ky, k ) (K k). @7

;For future reference, we note that

: of notation

f interaction of an atom (called the =

(r, u) where r is the position of the
2ments of all the solid atoms. The
rmal motions of the solid atoms is

ki=k*= K2, _ 2.8)

?"h Is observed from the above definitions that a three-dimensional vector




70 N.CABRERA, V.CELLI, F.0.GOODMAN AND R. MANSON ’,&

g

is denoted by a lower case letter, for example k. The corresponding two."’_?:
dimensional vector, parallel to the surface, is denoted by the correspondin“g;;
capital letter, for example K ; the z-component, perpendicular to the surface,”
is denoted by a subscript z, for example k.. This notation is made explici{"
in (2.7). The only exception to this notation is the vector r, the z-component*
of which is denoted simply by z; see (2.3). A reciprocal lattice vector, fof
example G, has no three-dimensional counterpart in this theory. :
Substitution of (2.5) and (2.6) into (2.2) gives

d*y 2M . '
2( dzza'*‘kéz lPG“"'h_z }:UG—G' WG') e =0, (2.9
6 .

I
where kg, is defined by analogy with (2.8):
ki =k* — (K + G). (2.10)

Thus we note from (2.8) and (2.10) that k. and k. are identical.
Each term of the outer summation in (2.9) vanishes separately:

&, M 2M .
<a:—2+k :——,%—2—00> 'IJG‘—:F Vg-¢’ ‘Par. (_11)
: G #G

The interpretation of ro(=) follows from (2.4) with G=0; that is, ve(z) is the
thermally-averaged potential energy function, v(r), averaged over the di-
rections x and y parallel to the surface .The potential vy(z) is associated with
a complete set, ¢,(z), of eigenstates. Greek subscripts «, B stand for both
states of negative energy and states of positive energy; negative-energy states
are denoted by subscripts m, n and positive-energy states by subscript g. The
Schrédinger equation defining the ¢,(z) is

S d2 2M
(d—:_z + ot = —3 T (Z)) $a(2) =0, (2.12)
where
?=q> if x=gq, (2.13a)
and
=—ki if a=n. (2.13b)

With these definitions, the eigenvalue, E,, of the energy of the state « is
E, = K*o*[2M, (2.14)

for both negative-energy states (E,<0) and positive-energy states (E,>0).
Normalization of any state is by means of “box normalization”, the cubic



'DMAN AND R.MANSON SCATTERING OF ATOMS BY SOLID SURFACES. I n
<ample k. The corresponding twg: ”h ving side L, where L—0:
:e, is denoted by the corresponding & 1L
onent, p.erpendi‘cula‘r to the surface? lim ¢ (2)>dz =1. (2.15)
: k.. This notation is made expli L-w
.on is the vector r, the z-compone 5 T o .
.3). A reciprocal lattice vector, for e, the positive-energy states may be called *“continuum states”, an.d the
unterpart in this theory. : A Risrad energy states “bound states”’. The number of bound states is de-
2) gives : ‘
is convenient to choose the ¢, to be real. For g sufficiently small, the
Vg-¢ ‘4”@) e“R=0, . % mﬁial vo(z) gives rise to total reflection and the asymptotic forms of the
y bulld=0) =0, 4y(z=m) =0, @162
+ G)2. ¢,(z > ) =2L"*cos(qz + &), (2.16b)

~. and ky. are identical.

here ¢, is a (non-arbitrary) phase.
12.9) vanishes separately:

. The energy of a bound state is E,, but the total energy of an atom in the
“state is larger than E, by an amount equal to the kinetic energy associated
_with its motion parallel to the surface. This total energy is denoted by E,g
vhere

M
s Vg-¢ Yo (2.11)

6#G ; En=E, + i (K + G)*2M . 2.17)
1.4) with G=0; that s, v,(z) is the

ction, v(r), averaged over the di- ~
e potential vg(z) is associated with *
ek subscripts «, # stand for both’
-itive energy ; negative-energy states *
ve-energy states by subscript ¢. The

1S

Thls energy need not be equal to the incident energy, denoted by E:

E = Kk2)2M (2.18)

f the atom because the atom is in the bound state only temporarily. On
the other hand, the total energy of the atom in a final diffracted state is
~equal to E. The term “diffracted state’ is understood to include the specular
“state.
The following addition to the notation is made: reciprocal lattice vecto.rs
- associated with final diffracted states may be denoted by F, F’; that is,
G. G’ stand for any reciprocal lattice vectors, whereas F. F' stand only for
those linking the initial state to final diffracted states. The zero reciprocal
lattice vector. which links the initial state to the specular state, is included
-85 one of the F. As with G, sums over F are over all F, including F=0,
"""Tl_l_nless otherwise indicated explicitly. We note that F. F' may be associated
"f"hh bound states as well as with diffracted states, although energy cannot
then be conserved in the bound states.
‘ .-The final energy of an atom in a diffracted state, F, is equal to its incident
erergy, £, The component of the final wave-vector of this atom parallel to
the surface is (K+F), and it follows from (2.10) and (2.18) that k,, may be
‘Wnterprazed g the magnitude of the component normal to the surface.

:)> ¢,(z)=0, (2.12)

x=gq, (2.132) &

x=n. (2.13b)
&,. of the energy of the state « is
M, (2.14)

and positive-energy states (£,>0).
of “box normalization”, the cubic
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Therefore, if, for a particular G, we obtain k%,>0 from (2.10), this G is E
associated with a diffracted state and F=G; if, on the other hand, k,;z<0 y
this G is not associated with a diffracted state and there is no F equal to G.
Combining this result with (2.8) and (2.10), we obtain the condition for a
diffracted state: , ;"
ki, =k}—F*-2K-F>0. (2.19) ;

To simplify the notation slightly, we note that ¢ in (2.16b) may stand ford
kg, and that the following definitions may be made without ambiguity:

br=0, =&, etc. if g=Kke. (2.20) |

For example, &, stands for £, where g=k.=k,..

3. Derivation of the scattering equations i

3.1. GENERAL FORMALISM

¥, is expanded in terms of the ¢, as follows:

lPG = Z CGx ¢z' (31)

Substituting (3.1) into (2.11), we obtain
Z cer (k2. — 2%) b, = (2M[h?) Z Z €2 V-6 Pax- (3.2)

Multiplying both sides of (3.2) by @5 (=¢,) and integrating over z in the
usual manner, we obtain

CGa(kcz:: - “2) = (2M/h2) GZG Z Ca'p(ﬁ lvg-gl a) > (3.3
Z65
where the matrix element is defined by
1L
Bloel ) = lim [ 63(2) v (2) ba(2) d=. (3.4)
:fl-

Eq. (3.3) determines ¢, uniquely except where a= k¢., when the ambiguity
is resolved by demanding that ¥ (r) describe an incoming plane wave of
wave-vector k and outgoing scattered waves. We obtain

Cax XD (= i8q) = 840 06,0 + 2M[I?) (kg; — o +1ie)” ' (G ]| 0 k)., (3.5

where £¢>0 and we ultimately take the limit as e—0, and where (G «|r} 0 k.)
is a t-matrix13), defined by

(Gx1t] 0 k.) exp(i&y) = GZG Y ceplalvg-gl B)- (3.6)
=65




DMAN AND R.MANSON

win k%, >0 from (2.10), this G is
=G} if, on the other hand, kéz<0,
state and there is no F equal to G,
'0), we obtain the condition for a

K-F>0. (2.19)

>te that ¢ in (2.16b) may stand for
1v be made without ambiguity:

s if g = kp. (2.20)"

:=k0:*

:ttering equations

llows:
b, . (3.1)
Zc Z €6z Vg-g Pa. (3.2)

:,) and integrating over z in the

- % ces(Blrg-gl ), 3.3)

) eg(z) d,(2)dz.

where x=kg., when the ambiguity
:scribe an incoming plane wave of -
aves. We obtain

Gt +ie) N (Gt 0 k), (3.5) .

imit as =0, and where (G «|r| 0 k)

) ; cogplelvg-g| B). (3.6)
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Substitution of (3.5) into (3.1) yields the following formula for the ¥g:
2M (Gualt] 0 k,) ¢,
. ¥ exp(—io) = ¢ Jg,0 + S—————— 3.7

(kG_—a: + ig)’

wheré the equation for the f-matrix is obtained by substituting for Cgrp in
3.6) from (3.5):

log_g1B) (GBIl O k)
(Galrl 0 k) = (1lvalk)(l-5“)+ ZZ l06-¢18) (GBIl 0 k)

(k- — B* + ie)

(3.8)
Let us consider the summation over continuum states in (3.7):
s, =) Gali0k)e, (.9)
(kzz —-q° + 18)

q

“Ttis shown in Appendix A that the following results may be considered as
* exact:

Sk <0 S (z—o0)=0, (3.102)

ke > 00 Sy (2> w0) = — (iL}2Kkp.) (F ke 1t] 0 k) exp [i(kp.z + E9)],

(3.10b)

where F is used instead of G to emphasize that k3.>0 implies that G=F
ls associated with a final diffracted state; see (2.19). It follows that ¥ (z— o),
- which is the asymptotic form as z—oo of the diffracted beam F, is given
-ssentially by the r-matrix, defined by (3.6) and (3.8).

-3.2. FURTHER DEVELOPMENT OF NOTATION

- We now introduce dimensionless quantities, in terms of which our results

may be conveniently expressed. These quantities are written in terms of two

Parameters, an inverse-length parameter, denoted by @, and an energy para-

mmeter, denoted by D. For example, these two parameters could be (and will

- be later) Morse interaction potential parameters?¥). Keeping, where con-
"'¥enient, to the notation of Lennard-Jones and his coworkers 12), the follow-
Y.,_m" definitions are made:

He = sz/a’ Ho = k:./a’ etc., (3'11)

d? = 2MDJR*a?, (3.12)

A8 =2M(E ~ E,¢)jh*a>. (3.13)
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Dimensionless matrix elements are defined as follows for G#G":

, alL d?
Agg = Afr 4(# " ).} D (kF.IUF Fl ke ) (3.1
FHF
. . (aL)* d&?
425 = A35 =S S knlon-cl ), 61
F
. (aL)* d*
Aﬁg = Aﬁ'; 2” (m [vG -l ke ) (3.1
F
and
. d?
455 =% (mlvg_cl ), ar

where a G or F subscript on A stands for state k¢, or kg.. Dimensionles
t-matrix elements are defined in a similar manner:

al d?

D¢ =Df = F ke |t]0k. 315
¢ e 4(.“0#;)* D ( el ) (
and
L %
pr = %@El—(c 110 k), (3.1

where a G or F superscript on D stands for state k. or kg.. The asymptoti
form as z—o of the wave-function is now written explicitly in terms of th
dimensionless quantities Dg by use of (3.10):

I} %y(z »o0) = exp (= ik.z) + (1 = 2iD8) exp[i(k,z + 280)], (320

and
(Lugluo) ¥e(z —o0) = — 2i Dfexp[i(kp.z + &0+ &p)].  (3.21

The part, cgnm®m, denoted here by ¥g, of ¥ associated with the bound stat:
m may be written explicitly in terms of Dg:

(aLjno)* ¥E(2) = — 2i DF () exp (ico). (3.22

3.3. APPROXIMATE SCATTERING EQUATIONS

In order to develop an approximate solution of the #-matrix eq. (3.8), wt
consider the summation over continuum states therein:

5. =\ (@lve-cl9) (G gl 0k.)
) (l\c-—q + ig)

(3.23.
q

The work so far has been exact; for example, ¥ is given exactly by (3.1,
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'ed as follows for G#G': 3)"5 solved for cg,, and (3.8) is the exact t-matrix equation. However,

. ‘. the summation S, in (3.9), the summation S, cannot be done exactly,
D (ke 1ve_p ) kg-2), J4)E 1 ' some approx1mat10n is necessary. The approxnmatlon used here is dis-

Kez [0F-gl m),

§ g,z <0: S,=~0, (3.24a)

n{vg-gl k), ke > 01 Sy — (iL[4kg.) (2 |vg | kf.) (F kg [t] 0 k), (3.24b)

. 3 GG' B

or state k¢, or kp,. Dimensionless 145 Dy =— A (1 — 3g,0) +1 ng% Az De, (3.25)

r manner: : ‘

. where 28, as yet undefined, is defined for convenience by

5 (F kg 111 0 k.) (3.18 S =i. (3.26)
Ip practice, the calculation would be restricted to a consideration of, say,

im0k, _non-zero reciprocal lattice vectors and B bound states, resulting in, say,

ihe specular beam plus N other diffracted beams. [R is even because reci-
procal lattice vectors must be chosen in pairs. If G is chosen. then in order
‘tha v(r) be real it follows from (2.5) that —G must be chosen also; the
ty of v(r) is then assured because it follows from (2.4) that vg=0%¢.]
To proceed, it is convenient to reduce the number of equations in (3.25) by
eliminating D} from the set; we have

=Yy Z A% (3.27)

G'#0

Substituting (3. 27) into the right hand side of (3.25) for G#0, we obtain the
followmz (N + BR) simultaneous equations for the remaining D% (G #0):

P G=F=1.2...N:f=G=F
X DL = A ’ ’ ,
Zo};‘ # Yo = Az {G:1,2,....R;ﬁ=17z=1,2,...,B, (3:28)

or state kg. or kg.. The asymptoti
w written explicitly in terms of th
10):

2iDg) expli(k.z +220)],  (3.20)

zexpli(kp.s + &g + &l G2

"W associated with the bound state ¥
Dg: '
D¢ ¢um(2) exp(iy). (3.22
NS

solution of the r-matrix eq. (3.8), we
m states therein:

XS = AS ASS 41 ASE -leAf,,?A,,,ﬁ (3.29)

o G,f, which are as yet undefined, are defined for convenience as
(G 41t 0 k,)

~-q° + ie)

3.23)
( 4SS = g5 (3.302)

ample, ¥¢ is given exactly by (3.1) (3.30b)
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We may note that, with these definitions, our approximate f-matrix equati

(3.25) may be written
iZZASﬂG' D =Af§(1 - 56,0)-
G B

The X ,,Gf, for example, are given by
XS = AR +1+1Y |Afnl? /A

GG :1G : G0;2;-0
Xmm = [As-g 2 - 11m +1 Z ‘Amnl /Am7
n

XSS = AC A3S +iY ASe Anglin T x#B.
ap a 8 am I

v In fact, it is almost always a good approximation to set 4% =00, when the’
o disappearance of the last terms of X in (3.29) and (3.32) causes considerable;
n. Reasons for this are discussed further in section 4.3. B

simplificatio _
We may emphasize that DY and Dp, which appear, respectively, in the ex;

pression (3.20) for ¥ (z—c0) and in (3.22) for Y7 (z), are obtained in terms
of the D%(G#0) in (3.28) from (3.27); that is,
DY =—i ¥ Y Ao D&

G#0 z

Dy= Y ¥ Ang Dol

#0 a

and

Q

=2

, We note that D vanishes if An=co.
z 3.4. INTENSITIES AND UNITARITY
1 2

: An “intensity”, Ry, is defined for each of the outgoing (specular and dlf:g}

l fracted) beams:
i Rp = (Luglto) 1#5 >0l (3.39)
where ¥} denotes the outgoing

that
Ry = |65, 0 — 2iDF*. (3.36)

[¥¥]

part of ¥ it follows from (3.20) and (3.2

The intensities are defined so that
flux of atoms in the diffracted beam F oA
= B (3.37)

F = . A
incident flux of atoms ’

and it follows that the Rp must satisfy the relation

Y Re=1. (3.38)
F
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(- 36,0)-

(G020 . . . -zer
il [ “gpecializing them to cases in which only a small number, R, of non-zero
Nisrole

fos i small number, B, of bound states are con-
a2 ) chal l'amce Yec'tor's an'd al' ] 1 number, N+1, of outgoing
Nl -DcD) le o ed. This specialization implies also a sma , ,
ms, because N<R.

DAnGIAS if a s B

4R=O, B=0, 1V=0 .
‘oximation to set A%= oo, when the: his is the simplest possible case, that of complete specular reflection; we
3.29) and (3.32) causes considerable btain

issed further in section 4.3.

I} ¥, (z —~w0) = exp(— ik.z) + exp [i(k:: +2¢001, (4.1)
hich appear, respectively, in the e
-2) for ¥¢ (2), are obtained in terms: Ro=1. (4.2)
“hat is,

_ Aos D : 42 R=2, B=0, N=1
- ? G, : ’ . . . . . l. k d
ere we have just two reciprocal lattice vectors. one of which is linke

G o - " diffracted beam, with no bound states
vz DG/ Am. (3.39):

(4.3)

| L~ 145l
I} ¥y (z »oc) = exp(— ik.z) + exp(ik.z [ ]

1+ 4592

(I_y,/po)* Ye(z—x)

24F8 ,
—iexp[i(kp.z + 2o + &) [ ”’—] (4.4)

1 of the outgoing (specular and dif- T+ g

. , ¥ Rp=1—R, = 2del T (4:5)
F(zo0)?, (3.39) % S T

Peiit follows from (3.20) and 3.20 .
F ( ( <.3. R=2 B=1, N=0, /'.,?,=:/:;

The oniy outgoing beam is the specular beam, but passages through a
single bound state are allowed by two reciprocal lattice vectors. The as-
SUmption that /p is large results in considerable simplification, and is gener-

4t valid becaus: it follows from (2.8). (2.17), (2.18) and (3.13) that

- 2iDf7. (3.36)

¥
%
i
i
b
¥

12 diffracted beam F

3

1x of atoms a®id = kI = 2ME,B?. (4.6)

. N :
‘he relation Lo &

2 . B 10
:20 and £,<0, and the only conditions under which Ay could be

. . 2 i
- "mallare either very low incident energy or very glancing incidence (k2 small)
©“oupled with the existence of a bound state very near the top of the potential

L. (3.39) &

>
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well (— E,, small).
I} ¥, (z > 0) = exp(— ik.z) + exp [i(k:z + 2&0)] %
1= AT (1138 + 1/1;")]
U+ 11ASZ (1S + 1) ¥ ¥
G016G
(aLipo)* ¥5(2) = exp(io) Pm(2) [1 T iIAggzlfgf//jg+ 1/1'—"‘6)}’ (4f
Ro=1. 498

We note that we cannot in general assume that 4y, or 2,6 is large as we di:x
in (4.6) for Am. In fact, it follows from (3.13) that 46 is a measure of how f"_'
the incident state is from resonance with a bound state m through the reci-?
procal lattice vector G; for example, +&=0 at exact resonance. The result:;
that 4% can never vanish follows from the fact that the incident state cannot
resonate exactly with a bound state without participation of a non-zeroi
reciprocal lattice vector. i
44. R=R, 2= 3
A general result for B bound states and N (< R) diffracted beams can be'.
written in simple form with the (severe) restriction that the R’ non-zero’
reciprocal lattice vectors are chosen so that none can be written as a differ-
ence of two others. With this restriction, the second term of X in (3.29) is
zero (there is no reciprocal lattice vector G— G'). As in the previous section,
we set A% =co for simplicity, when only the first term of X in (3.29) remains

IF ¥, (z »0) = exp(— ik.z) + exp[i(k.z + 25o)] (2 - 4)/4, (4.10)

(Lugluo)t Pr(z »0) = —1exp [i(kez + &0 + Sp)] 2450/4. (4-1.1)
and

(aLipe)* W (2) = exp(ido) ¢ (2) 24malind . (4.12)

where
d=1+ ;;o |ARS” + 1 G};ﬂ S Aol A (4.13)
R = 4]A5o/41*, (4.14)
Ro=1-=3 Rs. (4.14b)

F#0

5, The thermally-averaged potential energy function

5.1. GENERAL CONSIDERATIONS

Let us consider the details of the calculation of the thermally-averaget
potential energy function, v(r), from the instantaneous potential function
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), via (2.1). The function ¥ (r, u) is itself assumed to be obtained by a
,ion over all atoms of the solid, of a pairwise potential energy
,;%}tibn denoted by U(r—r,—u,), where r is the gas atom position, r, is
'equil,ibrium position of the solid atom n and u, its displacement from
uilibrium. Hence,

V(irbuy=3 U(r—r,—u,). 5.1

A‘all the notation (2.3) and similarly define
r.=(R,, z,) (5.2)
the equilibrium positions and

- (P, ) (53)

V(r,u)=(L/27)? g f U,exp[ip-(r — r, — u,)] d°p, (5.4)

here
UPEL‘3f U(r)exp(—ip-r)d’r, (5.5)

mteorals are understood to be between the limits + 2 unless otherwise
indicated. Therefore, the thermally-averaged value, ¢ (r). of ¥ (r, &) is given

v(r) =(Lj27)’}, f U, exp[ip-(r — r,)] <exp(—ip-u,)> d’p.  (5.6)

7‘_"It‘ is a well-known result that13)

exp(ip-u,)> = exp<—t(p-u)> =exp[— W(n p)],  (57)
where 1 is a Debye-Waller exponent:

| Wi P, p.) = C(p-u,)> (5:8)

= 1(paCui> + pi {ujey + pI<ul,d). (3.9

From (2.3, (5, 3). (3.6) and (3.7), we have
-"(’)=(L/2R)SZJ d’P dy x

X Up yexp[iP (R — R)] exp[ig(z — z.)] exp[— W (m, P, q)],
- (5.10)

4 stands for the dummy variable p.. and where both =,
¢rstood to be independent of n, and n,.

and W(n, p, q)
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Using the result that
2. 2. exp(iP-R,) = N,(2z/L)* ¥ 6(P — G), (5.11)

Nx Ny G

where N; is the number of surface atoms, we obtain

v(r) = N,(L27) ; exp(iG-R)

x 3. | dq Ug , exp(igz) exp(— igz,) exp [ — W(n, G, q)]. (5.12)

From (2.5 and (5.12), we obtain

ve(z) = (N,L[27) fexp (igz) Ug,, 2 exp[~ W(n, G, q)] exp(— ig=,) dq.
(5.13)
When W=0, v is to be interpreted as ¥:
Ve(2) = N,(Lj27) f exp(igz) Ug,, Y exp(—igz,) dq. (5.14)
If we define "
Ve =L17" [ Ve(z)exp(—igz)dz, (5.15)

kY

it follows from (5.14) that

Voo =NUg, > exp(—igz,). (5.16)

For simplicity, we make the approximation that W is independent of n.,
replacing W(n, G, q) by W (G, q):

M(G. q) =5(G*Cud> + g uly), (5.17)
where we have set
ul,y = <uf,,) = {ul> forallm, (3.181)
and
uly = <u?> foralln. (5.18b)

With the approximations (3.17) and (5.18), it follows from (5.13) and (3.16)
that

v (2) = exp (= 1G* (u2y) (Lj2n) f exp (i) Va., exp (= Lq* Cu2>) dq .
(5.19)

Substituting for V; ,in (5.19) from (5.1 5) and carrying out the g-integration,
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=/LY? ; (P -G), (.11

_exp(— 3G’ up)) . (Z =2\,
vg(z) = Gr G J‘ Ve(z )exp<— 235 )dA . (5.20)

s, we obtain

2 exp[— W(n, G, q)] (5.12) épq‘nding exponential repulsion if G#0:
Vo(z) = D' {exp[2a(z,, — z)] — 2 expla(z,, — )]}, (5.21)
Ve(z) = kg D" exp[2a(z,, — z)] ifG#0. (5.22)

o[ = W(n, G, q)] exp(—igz,) dq Let us consider the general term

(5.1 . Ve(z) = Aexp(~ b3). (5.23)
Inserting (5.23) into (5.20), we obtain
Yaq2exp(~igz)dg.  (5.14): " b6 (z) = exp(— $G* ) exp(4b* Culd) ¥5(2). (5.24)

Therefore, with the expressions (5.21) and (5.22), our thermally-averaged
¢(z) remains a Morse potential, with the same a but with modified D and

.. Zg; our thermally-averaged vg(z), for G0, remains an exponential re-

e igz) dz, (5.15)
; -"/".;pqlsion, with modified xg, D and z,,:

) vo(z) = D{exp[2a(z,, — =)] = 2 exp[a(z, — 2)]} - 5.25)
xp(—igz,). 0(2) = D{exp[2a(z, - 2)] plalzn — )} (
_ ) ve(z) =xrgDexp[2a(z,—z)] forG=0, (5.26)
wion that W is independent of #,, -
Ke = kg exp(— 1G* (u?y), (5.27)
D FaTCuD), (5.17) & D =D exp(— a* uld). (5.28)
% and
13> tor all n N (518&) - o Im = ::,n + %‘“ \“3> . (529)
H <
for all n (5.18b) { 3.3, LIGENSTATES AND MATRIX ELEMENTS
o ) ' . With 2, () given by the Morse potential (3.25), the eigenstates ¢, defined
:8). it follows from (5.13) and (5.16) B¥ (2.12)-(2.16). are 18, 17)

_ T(h—d+iw) _ .
: ig=) V22 - ) L 4)“(:) = f——‘_I-T_ 5 N M/IJ i/l($)5 (530)
plig2) Vo, exp (= 4q7 <uld) dg. and L TR

) . X ) N ~4l pd=t-n yid—1-2n
*) and carrying out the g-integration, * ¥+ ' Prens) = [(Td'—ﬂl—;T)Tf] =t B, 630




where u is defined to conform to the notation (3.11),

{ is defined by

{=2dexp[a(z, - 2)], (5.33) -

and where W, ,({) and L}, ({) are, respectively, the confluent hypergeometric 3
function8) of ¢ and the generalized Laguerre polynomial function1?) of ., -

The eigenvalues, E,, are given by (2.13) and (2.14) where k, for a bound
state is given by

ky=a(d—%-n), n=0,1,2,... (n<d-1%). (5.34)

With the above representation of the potentials vg(z), the matrix elements
(3.14)~(3.17) may be expressed as follows

Afe. n [sinh(2mug) sinh (2aug)]*

Kp-p 4 [cosh(2muy) — cosh(2nur )]

T —d+ine)
T — -
F(3—d+iug)

<[ -1+ 20

f(%—-d-i—]/.lp)' PR
+ (uf = pp = 2d) ————41 |, (5.35)
(lF HF [)r(%—d-{-l;lp)
1
AFS ASE AT @d-2m—-1) P
Ki-G Kgp 4 m'(2d —m—1)!
1
y sinh (27ug) :
cosh(2mug) + cos(2nd)
X (tr +(d =% —m)’ +2d) [T (3 + d +igg)l, (5.36)

Vo=

A _ (=)Y"""TQd—m—1)!m!
(2d—n-1)"! n!

x[(m—=n)(2d = m —n—1)+ 2d] ifmzn. (5.37)

KNg-¢g 4

(2d —2m — 1){2d — 2n — 1):| P

GG’ o . . . . -
1f 4% for n>m is required. then m and n are interchanged in (3.37).

6. Discussion of the elastic scattering theory

6.1. RELATIONSHIP TO THE DISTORTED WAVE BORN APPROXIMATION

[f the results of sections 3 and 4 are expanded to lowest order in the matrix
clements, the first order (distorted wave Born approximation) results are

82 N.CABRERA, V.CELLI, F.0.GOODMAN AND R.MANSON ff

u=gqla, (iuy

Bisnioih-
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otation (3.11), ored. For example, from section 4.2 we obtain

a,

Ry ~1-4X, (6.12)
(\’:m - Z)] 4 :

. R, ~4X, (6.1b)
ctively, the confluent hypergeometr;
-guerre polynomial function1?) of { =4l 2

%) and (2.14) where k, for a bound
L2, (ngd-1).

VS

Ry )]\‘L

certain values of the matrix element AR, the intensity of the specular beam

(2mug )] considerably less than that of the diffracted beam; indeed, if |45g) =1, the
Y d i) specular"beam vanishes and all outgoing atoms pass into the diffracted
;hMF am: (if) for both very small and very large values of |4E9], the specular
d +ipg))| intensity approaches unity and, of course, has a minimum for intermediate
= d 4 i) :l ‘Idel; for the special case (4.5), this minimum is zero, as observed in (i).
c—d +iug) 6.2. RESONANCES WITH BOUND STATES

result of considerable importance concerns the case of “resonance™ of
incident beam with a bound state; for £E= E,,; we obtain exact resonance,
. ith ;S =0 from (3.13). It follows from the above results [for example, (4.13)
MC{G.H) and their generalizations] that, when exact resonance occurs, the
‘ntensity of the specular beam rises sharply. and that of each of the other
beams falls. On the other hand, it has been known for some time that,

’1——1)
m—1)! :'
3;:7)]

toj

F2) |04+ d + i)l (5.36) ;ﬁ d"enmentally the intensity of the specular beam generally falls as resonance
§ is approached 18, +19). This fall in the specular intensity is undoubtedly due to

1 z inelastic scattering of the gas beam, the probability of which is greatly in-

2d=2m = 1)(2d - 2n — l)] k. T2sed if the gas atoms resonate into a bound state, because of the extra
, . “,mf_lhe‘_\' stay (while travelling over the surface in the bound state) in close
)+ 2d] itm>=n. (3.37) = POXimity (o the surface. The theory developed so far considers only elastic

*ering, and all gas atoms are either specularly scattered or diffracted,
"“*npcndently of the time they spend in intermediate bound states. The

o
‘bove points regarding the effects of inelastic scattering are considered
~_ A!‘“mﬂ' In section 7.

'd s are interchanged in (3.37).
.stic secattering theory

“ AVE BORN APPROXIMATION "'"3 SURF'\CE RESONANCES

nanded to lowest order in the matrix g L ..

nde ! - The piienomena which we call “surface resonances’” are most easily dis-
¢ Born approximation) results are

’ C““‘ed With reference to the actual forms. (3.35) and (5.36), of the matrix
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Lk
PRy

elements. These resonances refer to the behavior of the diffraction as 3
diffracted beam just appears above, or just disappears below, the surface
(We note from (2.19) and (3.11) that a diffracted beam is allowed if ué >'0;;
and is not allowed if u% <0.) This behavior depends critically on d, the para:‘
meter defined by (3.12) where, of course, a and D are now the Morse poﬁg
tential parameters; two extreme types of behavior are possible, with'a
gradually-varying spectrum in between. We restrict attention for the momem’
to the example in section 4.4. ;;
The first, and simpler, extreme type of behavior occurs in general when i
is not nearly half an odd mteger, say when d~integer. Then, | 489 /Lf*
varies smoothly in general as uZ passes through zero, and IAF°|2—>constanl
x pig as jtf—0+. It follows from (4.13) and (4.14) that, as a diffracted beam,
say F’, disappears, the intensity R;. falls rapidly, but smoothly, to zero, all?
the other intensities Ry (F+# F') increasing rapidly, but smoothly, to pick up
on new curves, :
As d becomes closer to half an odd integer, the behaviors of the Rg be-
come more complicated. If i

d=n+1i+9,, (6i3).,

where |§,| is small, the relevant matrix elements have the following forms for
small |2 or uz:

|AF0 2 [
o __Fr (6.42)
KF (0n + 1F) :
and
‘AGO 2 25,:
716G 2 7= X
KGhn (5n + 1g)
where ;
T 2414 2n)? . s
= Tg‘coth (muo) (”—o———‘—z—n) ir(n+1+ ing)l?, (6. 40)
. nl ..‘-,;
S
and where we note that the bound state n does not exist unless §,=0. 1-\t
5,=0 exactly, we obtain, again for small |u2] or uZ: w};
|AESI — k3X [ (6.58%
and
|AS®|2/28 (6.5),

For this special extreme case (d half an odd integer), nothing Spectacular
happens as one of the lla say 12, increases through negative values to zero,
but, for u% =k =0, |[AE9}? tends to infinity and R, jumps dlscommuoule
to umty, all the R (F#0) dropping to zero. R, falls and Rg(F#0) rises 35
[470* decreases through moderate values, and in fact R, then displays )
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i enome-
s these results are somewhat modified, althou.gh‘the resonance ph e
rsist provided that |5,] is not too large. Similar resonances as pig—

X=0
m l AR
—a (°)
e T T
- [N}
(K] N
(M1
LIl 5 /u,g,
4R
i (b)
\\\-
- /"“__——' ,—”/
EEEA 2
o) M
AR
4 (e)
"
Ol
17"
i 2
i
: ) re
“Fiz 1. The behavior of the intensities Ro(——). Rf(----=- ) and Rg-(-----) as functxo}r;s
o 436 where some of the resonance phenomena. discussed in section 6, occur. (a) Ro
and Rf when a resonance with the bound state m occurs via the reciprocal lattice vector

for a special case of the type discussed in section 4.4. (b) Rp, Re(F'=G’) and

d >~ integer. (c) The same as (b) when « = half an odd integer.

30me of these resonance phenomena occur. Fig. 1a shows R, and Ry when

d'resonance with the bound state occurs via the reciprocal lattice vc%‘tor
Giora spectul case of the type discussed in section 4.4, Fig. 1b describes
R,. &, {(F'=G")and Rp(F#G’) as the diffracted beam F’ appears above the

~ N . . e o o~ . 77 -
urface (ay Vg =ui-=0) for a case in which the “surface resonance” de
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scribed above does not occur (that is, d~integer, say). Fig. Ic illustrates the -
same case as does fig. 1b, except that now d=half and odd integer exactly.

We note that these surface resonances, discussed here for pe—0, occur §

also when p2—0 that is, they occur as tangential incidence is approached. *

However, resonances of this type are not as important because the incidence
must be too close to tangential to be feasible experimentally.

7. Extension to inelastic scattering

We consider in this section the effects of excitation and de-excitation of

thermal vibrations in the solid by an impinging gas atom; the need to

consider the thermal vibrations is already foreshadowed by our use of the
thermally-averaged potential, v, in section 2. The formal theory is a direct
generalization of that developed in sections 2 and 3, and many intermediate
steps are omitted.

The wave-function, ¥ (r, u) may be expanded as follows:

Yru)= 3 cxoay@.(2) e TP, (u). (1.1)

K,z v

where @, (u) is a vibrational wave-function of the solid, v runs over vibra- .

tional quantum numbers, and the sum over K’ replaces that over G in (2.6).
Of course. K’ assumes all values and not just those K+G. We introduce a
shorthand index, f or g, for all the quantum numbers K’ 2. v:weuse gin
general, and f when we wish tostressthat weare dealing with a final outgoing
state (this notation parallels the F, G notation of section 3). The label O is
reserved for the quantum numbers of the initial (or specular) state.

The analogue of (3.5) is

Cq e” = 59.0 + (EO - Ey + ib‘)—l 140 5 (7.2)
where E, and E, include the vibrational energies; the analogue of (3.6) is
foc® = T ¢, Vi (73)
9'Fg
Our +-matrix equation, the analogue of (3.8), is obtained by substituting for
¢gin (7.3) from (7.2):

14

; : “o9y0

tio = Voo (1 =8, )+ T =270 (74)
! J s M g:g (Eo - Eg' -+ IC)

The notation is further refined so that g=» stands for a quantum number

set associated with a bound state and g =c with a continuum state; we note

that f is always associated with a continuum state. Then, dimensionless

quantities may be defined by direct analogy with (3.11)-(3.19) and (3.26).

vy T

A

Toais
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Cafe must be taken over interpreting the definitions, some of which are

de=kafa, pp=kpla, et (7.5)
. )y = 2M (Eq — Ej)/i%a’ (7.6)
Ao =1 7.7

2
A A= LLW i V. forc#c, (7.8)

/ « 4(“c“c’)* D
GO (7.9)

cb 2;1* D <

2
Ap =—Vyp lorb#0b', (7.10)
D

2
p= L 4, (7.11)

© d(pon)* D

;. and o

- i(aLl)t d* .12)
= —1 A2

D, 2iut D "

' "The final intensities have the same form as those (3.36):

r=ER(Kp kv =18, o =21 D,%. (7.13)

SRR

jj,-wa\-‘,v-g..s.:t.'ﬁwr‘:‘.,_s SR AN g b

The final quantum numbers are not arbitrary, but must satisfy the condition

- of energy conservation:

B(KF + k2 + 2ME ,(v,) = 17 (K5 = k§.) + 2ME, (vo) . (7.14)

In the elastic treatment, the vibrational energy is unchanged and therefore
disappears from (7.14). K;— K, is equal to a reciprocal lattice vector, F, and
(7.14) reduces to (2.10). The initial and final vibrational states of the solid
¢ not observed in experiments to date: we must, therefore, average (7.13)
Over initial phonon states and sum over final phonon states. .

As in section 3. an approximate, but unitary, f-matrix may be obtained
by keeping only the imaginary partof (E, — E,. +ig) ™ '. thatis —ind (Eo— E),

i the integral over continuum states in (7.4); in this way, the followmg

- 2nalogue of (3.23) is obtained for all g:

i4,D,=— Ago(1 =8, ) +1 Y Ay Dy (7.15)

g #Fyg

- where we recall the definition (7.7).
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In the case of elastic scattering, where the parallel momentum of the ga%
atom may change only by discrete amounts, the solution of (7.15) is straight: %
forward, and some solutions are discussed in section 4. The case of inelastic'®
scattering is more difficult since both the energy and momentum of the g ;
atom may change continuously over wide ranges of values. However, if wg', ,
are willing to make the restriction that the gas atom exchanges only a smg]c
phonon with the solid, the solution of (7.15) is again straightforward. For.
example, if we consider a system with no diffraction and only “one-phon
beams”, p, scattered around the specular beam, 0, the (unitary) dimension?
less t-matrix, D,, is given by the following set of equations:

=-—1ZA0FDP, (7.16a)‘__‘

and o
D,=A,(l - iDo), (7. 16b)'74~

where ) , implies summations over both K, and v, and where v, differs from i
v, only by the emission or absorption of a single phonon. From (7.13) and
(7.16) it follows that the intensities are given by ;
Ro=1-YR,, (7.178)’;
P -
and
414! 1
s (7.179)

As a less trivial example, let us con51der a system in which, in addmon
to undergoing inelastic processes, a gas atom may be diffracted into a bound

state, b. With the one-phonon approximation, we obtain from (7.15) ~*
iDg = Ao,Dy + Y. Ao,D, - (7.183)
4 7f
2D, = Ay (1 —iDg) =i Ay,D,. (7.18b)
r
and
D,= A, (l —iDg) — id,Dy. (7.18¢)

The intensities, R,, are found as usual by solving (7.18) for the D, and
substituting into (7 13).

These intensities, as well as those (7.17), must still be averaged over initial
phonon states and summed over final phonon states; this has not yet been”
done. A reasonable approximation, which preserves unitarity, is to average
separately each term in the numerators and denominators of the resulting
expressions for the D,. Then, diffraction matrix elements such as Ao be-
come matrix elements of the thermally-averaged potential defined by (2. 1),
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re the parallel momentum of the gas ]
:mts, the solution of (7.15) is straight.4
sed in section 4. The case of inelastjc™
¢ energy and momentum of the ga
'de ranges of values. However, if w
he gas atom exchanges only a singl~
(7.15) is again straightforward. Fo
0 diffraction and only “one-phonop
ir beam, 0, the (unitary) dimensio
ing set of equations:

Je averages of summations such as ) , {4,,|* may be found using methods
:Jclopcd by Van Hove?2!). These averaging problems are not discussed
irther in this paper.

n order to obtain a simple qualitative picture of the effects of a bound
e resonance on inelastic scattering, and in particular on the specular
iniensity, let us simplify (7.18) by assuming that, near the resonance, phonon
exchange is important only when the gas atom is already in the bound state.
‘With this simplification in mind, we set Ay,=4,,=0 in (7.18) and derive
from (7.13) that

n

RO=I—ZRP, (7.19a)
) 4
. ’_10PDP’ (7.16a)
R, = 4l A sl (7.19b)
= iDy), (7.16b) . Pl (140!% + ; lAp’bll)z

A, and v,, and where v, differs fron{
I a single phonon. From (7.13) and
1ven by !

Assuming that the matrix elements are sufficiently slowly-varying around
v resonance, we obtain the important qualitative result that R, has a
ininuin and each R, a maximum at exact resonance, when /,=0. This
result should be contrasted with the corresponding results for elastic scatter-
ing in sections 3 and 4, in which R, has a maximum (R,=1) at exact reso-
bahc:. That the experimentally-observed minimum in R, at resonance 19 18),
dis_cussed in section 6.2, is a result of inelastic, rather than of elastic, scattering
wa"s"suggested by Lennard-Jones and Devonshire22).

LR, (7.17a)

02
]

4m (7.17

der a system in which, in addition
tom may be diffracted into a bound .
Jation, we obtain from (7.15)
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_ '4(){)D[I’ (7183)

) =13 A4,,D,. (7.18b)
P

W) = id,,D,. (7.15¢) Appendix A. Evaluation of S, in (3.9)

1 by solving (7.18) for the D, and : < In the limit of Lo . (3.9) may be written as an integral:

%)

o

7). must still be averaged over jnitial - L
*honon states; this has not yet been R
wh preserves unitarity, is to average & -
- and denominators of the resulting ;

L\} _(G q |I| QA:l, [ei(q:"'s“,) + e—i(q:+§q)] d(] , (Al)
2n ) (k& — g% +ie)
0

Sl(: ->OC>) =

. 'fh_eft‘ We have taken the limit as z— co and substituted for ¢, from (2.16b).

N omatrix elements such as Ay be- & ,rh? Contg
tveraged potential defined by (2.1), Coatour

2urs chosen for evaluation of these integrals are shown in fig. Al.
o 1s chosen for the first integral, and contour B for the second.
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on the real axis vanish in the limit of z—oco. For this to be rigorously tryg
it is sufficient that the ¢~-matrix has no singularities on the positive real axi

=

Fig. Al. Contours chosen for the integrals in (Al). The limits are R —co and
r>¢e/2kg:—0. (@ poles for k26:< 0; X poles for kgz> 0).

this will be so for a physically realistic v(r). The only contribution to the
integrals, then, comes from the pole at g= (k2. +ie)* when kg.>0, and the
result (3.10) is obtained. ‘

Appendix B. Evaluation of S, (3.23)
In the limit of L—co, (3.23) may be written as an integral:

_ L (xlvg-glq) (G qlt] O ki)

T 2n (k&.—q° +ig)
0

dq (B1) !

Sz

and the contour chosen for its evaluation is shown in fig. BL. It is assume
that the integral is equal to one-half of this contour integral. and that the
only significant contribution to this contour integral is from the pole at
q=(k&.+ie)* when kg..>0. The resuit (3.24) follows.

That this is only an approximation is clear, for example, from the fact that
the contribution when k2.. <0 is ignored: this is equivalent to ignoring the
beams which are “diffracted into the surtace™”. The approximation is moré &
serious, however, as singularities of both (x|vg_g-| ¢) and (G gl7] 0 k)in B
the upper half of the g-plane are ignored also.
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B sy
B . . 2 . . .
for a very general v(r)], the contr; «.The contributions when kg., <0 could easily be m'cluded in the ‘aboh\ie
+ of the contours which do not lie % ormalism; for simplicity, however, they are not considered further in this
~%. For this to be rigorously true, SR8 Daper.
‘gularities on the positive real axis;
- ./—_\lq-plqne
:lone’ JHR VTR W Ny
i L)
; é’fm.’v“
A :
I x
S ; -
-Ao: LR R——_—-
B
L]
Fig. BI. Contour chosen for the integral in (Bl). The limit is R — o2.
(@ poles for k26°; << 0; x poles for k26> 0).
in (A1). The limits are R — oo and
0: X poles for kg.> 0),
Appendix C. Proof of unitarity (3.38)

). The only contribution to the - SO ' In this appendix we use: (i) the convention of summation over repeated

= (kg:+ig)* when ké.>0, and the /indices « and f and (ii) the convention that summations over F. G and G’
- do not include the zero reciprocal lattice vector. .
~* Then, from (3.33), (3.36) and (3.38), we observe that we are required to

n of S, (3.23) - prove that

=11 _ G pr2 1445 DF2 =0, (ChH
ritten as an integral: 2z =1 2§A°’ o —1 ;l ¢

We have

G gl 0k.)

—=dgq, (B1) == (DE A5 + A DL) + 2 Y DE ASY A DE + 2 ; [DEIZ. (C2)
G G, G

i
£

1%+ ie)
G
. It follows from (3.28) and (3.29) that we may define an X¢ such that
»1s shown in fig. BI. It is assumed i . :  1GG B
: e 6= ¥ 460 406" pB AY DL +i4SF D
this contour integral, and that the ? A= & Ao Aog Do + l(;_ GZ=G e W oe
itour fntegrnl 1s from the pole at L LT A8 A,?,g' DLJAE — 450 = 0. (C3)
3.24) follows. : m. G’

F

H
%
Py
5o
B
¥
&
8

v
3

car, for example, from the fact that
-2 this is equivalent to ignoring the
Vace™. The approximation is more

(#leg-g | q) and (G’ ¢fr] 0 k.) in

also,

Therefore,
0= Y (X€ DF + XC" D})
G .

= Y (D¥ A% A DL + DY 4S® A2€ Dx)

G, G’

2 s
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T

second and fourth summands cancel; on account of (3.26) and (3.30), the

only terms remaining in the third summan
and G=F, when the two terms in the summand are equal. We are left with:

which completes the proof.

N.CABRERA, V.CELLL F.O. GOODMAN AND R. MANSON

+i T (Df ASS DY - DG AT DG)
G,G #G
+i3. (0% ASF DY — D& Ag DG)
+iX (D% AS2 4% DA — Dy Afw Ane &)/ A

a* (GO 0G na
_Z(DGAGOTAOa G/
G

he two terms in the first summand are equal; the two pairs of terms in the

d are those for which both a=§

0=2 Y D§ A% As5 Dé + 22;‘”’”
G. G

50 A+ A DD = 2,
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