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THE ATTRACTIVE INTERACTION BETWEEN AN ATOM AND A SURFACE
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Using a general self-energy formalism, we examine the interaction between an atom and a surface. Considered in detail are
deviations from the Van der Waals force due to recoil and finite velocity of the particle. Calculations for positronium near a metal
surface show that for such systems, recoil and velocity effects are significant even at very low energies. We also examine the
mechanisms for energy exchange with the surface and calculations show that single quantum events do not always dominate the
exchange rates.

The dispersion force or Van der Waals attraction between an atom or molecule and a surface is the
dominant interaction at large separation. In this work we consider this interaction using a general
self-energy formalism. As a result, we are able to obtain the velocity dependent corrections to the force on a
particle moving parailel or perpendicular to the surface; we investigate saturation effects on the interaction
potential due to recoil upon exchange of virtual surface quanta, and we calculate the probability of energy
loss of the particle due to creation of surface optical phonons or surface plasmons.

The energy shift due to an atom interacting with a surface is given to lowest non-vanishing order in
perturbation theory by

AE =Y (O[VIy){yIVI0))/(Ey— E, + i8). (1)

A state |y) of the noninteracting system is written as the product |n)|/)|¢,|) of a surface state vector of
energy E,, an atomic state vector with energy ¢, + ¢, and the translational state vector with energy e,,
respectively. The total energy shift can also be written as the integral of the spatially dependent self-energy
2, (r) weighted by the probability density of the atom in its original state

AE, = [dr{eo|ryZ(r){ri,). i (2)
A comparison of this form with the perturbation expansion leads directly to a systematic generalization of
the space dependent self energy to all orders of perturbation theory [1], and from eq. (1) the lowest
non-vanishing term is
o,.lr 00,00V |n, 1,0, 5, n|V)0,0
T % (%o otegte,—E, —(eg+¢€)—e, +1i8

The interaction operator V is developed by starting from the Hamiltonian @ for an element of charge ¢
interacting with the surface modes

tD(r)=ZI’Q exp(~Q|z| +iQR)(ag +ay). (4)
Q
This model neglects interactions of the charge with the bulk, but such effects have been demonstrated to

have non-negligible effects only very near (~ 1 A) to the surface [2]. Capital letters (Q,R) are used for
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vectors parallel to the surface and lower case is used for perpendicular components (¢,z). The coupling
constant I Qz = Ze* mhwy/L*Q where L is the surface area. For surface optical phonons it is multiplied by
the factor

B=[(eo=1)/(eo+1)] =[(e=1)/(e,, +1)],

where ¢, is the static dielectric constant and e, is the dielectric constant at high frequencies.
An atom can be considered as a charge density p(r) consisting of a nuclear charge Ze and an electron
cloud. The atomic interaction Hamiltonian ¥ becomes

V(r)=[drp(r)®(r+r'). (5)
The multipole expansion of eq. (5) begins with the dipole term
V=Ll r(Q)] exp(-Qlz|+iQ-R)(ag+a_y), (6)
Qo

where p is the atomic displacement operator.
For a plane wave basis set, and assuming a metal surface with a dispersionless surface plasmon
frequency w, = w,/ V2, the self-energy of eq. (3) becomes

Ze?QZ e kot % © 20 Q% exp(—Q|z| +ikz)
b)) = 0S| dk[ d d
o(2) oo ZKUAO S fo A SRR
X {Q?+20Kcos o+ k2~ k2 + Q2+ ¢*—i8}) ', (7)

where Q2 = 2mw_/h, g} = 2me,/h* and we have made the assumption that the atomic excitation energies ¢,
are independent of the azimuthal quantum number. Eq. (7) is the self-energy of an atom at distance z from
the surface, originally moving with a velocity v= A(K,,k,)/m. The factors Q2 and ¢ in the denominator
are the manifestation of full three-dimensional recoil.

A general solution to eq. (7) in terms of tabulated functions is not a simple matter, but there are a
number of special cases which illustrate quite nicely the behavior of the self-energy. As an example we
consider an atom moving perpendicularly toward the surface, i.e. K, =0, and k, = mv | /h. The integral
over azimuthal angles is trivial and the integral over k can be carried out as a contour integral in the
complex plane. The final result is

Zo(z) = (- 2e*Q2/3)(d*/dz?) 21 pI0Y1{ £ (121[ @2 + q?] /ko)

—isgn(z)g(12I[ Q2 + ¢ /ko)} + 2'(2), (8)

where
f(x)=f°°dt e /(12 +1); g(x)=f°odtte‘*‘/(t2+ 1), (9)
1] 0

are the auxiliary functions to the sine and cosine integrals [3]. The additional term ZX’(z) decays
exponentially away from the surface as Z~* exp[ — y Q2 + ¢/ — k¢|z]]. In the asymptotic region we have

ReZ,(2) —» —(Ze202/12)2°) LK1 51012/ ( Q2 + ¢F)
2 00 /

x{1 ~[12k2/22(02 + g2)7] + ) (10)
ImZ,(z) — sgn(z)(Ze?Q,/4z%)

x TN AI0Y/(0F + 42 )'{1— 20k /23 (02 + g7)] + -+ ). (11)
!
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The first term of eq. (10) is the well known Lifshitz expression for the Van der Waals potential [4] and the
correction term varies as the sqaure of the velocity. These expressions are good for either low or high
energy, with a high energy particle being defined as one with sufficient speed to create a surface excitation.
At low energies the imaginary part of 2,(z) is conservative, and even at high energies the asymptotic
expression is conservative since the inelastic contributions decay exponentially away from the surface [5].

For the case of an atom moving parallel to the surface, we obtain similar expressions to egs. (10) and
(11) which contain the velocity dependent corrections obtained earlier by Ferrell and Ritchie [6].

A final special case of interest is that of an atom moving very slowly near the surface. In the limit
ko= K,— 0 the self-energy can be expressed exactly in terms of incomplete I" functions and exponential
integrals. For simplicity we exhibit here only the limiting cases.

The separation between the Lifshitz term and the exponentially decaying recoil effects is clearly seen in
the asymptotic form

So(z) = —(2Ze?Q2/1212P) X [K1 012/ (QF + ¢})]
Z— o0 [

x{l -4 exp(—!zl\/Qs2 +qf )/[‘/asz + q22|z|]>. "

A result of further interest is the limit near the surface
Zo(z) = = ~(2e?Q2/8) LU0 {1/121= 16/Q% + 47/9 }. (13)
= !

The classical 1/z> surface singularity saturates to the weaker 1/z behavior as a result of the recoil motion
due to the exchange of virtual quanta with the surface and is independent of velocity.

In order to get an idea of the importance of these finite velocity and recoil effects near the surface, we
plot in fig. 1 the ratio of Re =,(z) from eq. (8) to the asymptotic or Lifshitz term for slowly moving
positronium. The polarization sums over atomic quantum states were carried out using the oscillator
strengths for a hydrogen-like atom given by Sugiura {7]. The remaining parameter is the surface plasmon
frequency and two curves are shown for the widely varying cases of Al and Cs where Aw, is 11.2 and 2.5 eV,
respectively. It is seen that deviations from the semiclassical behavior start several angstroms from the
surface at distances where the positronium electron cloud is not substantially overlapping the surface
region, in fact for 2 eV positronium near a Cs surface the ratio is still 0.99 at a separation of 10 A.

The effects due to recoil are dominated mainly by the decaying exponential with separation, with a
range given by \/QS2 +q} = y2m(hw,+¢,) /h. which in this case has a value of approximately 2 A. The
range parameter is decreased somewhat by the finite velocity as seen in fig. 1, but clearly recoil saturation
to a 1/z dependence for o,(z) occurs very near to the surface. However, very near the surface the present
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Fig. 1. Ratio of the total atom-surface self-energy Sy(z) to the semi-classical Lifshitz term X, as a function of distance = from the
surface. Two cases of slow positronium moving perpendicularly to a metal surface are shown: (a) 4 eV Ps and Al with hw,=11.2 eV
and (b) 2 eV Ps and Cs with he, = 2.5 eV.
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calculation is not valid for a variety of reasons, notably bulk electron interactions become non-negligible,
higher order multipoles become important, and eventually the multipole expansion itself breaks down.
Nevertheless, regardless of where the present approximations break down, the particle-surface interaction
is the ultimate result of the exchange of virtual quanta, and with each exchange the atom must recoil. The
effect of this recoil is to weaken the potential interaction. The calculations presented have demonstrated the
range of such recoil saturation effects and fig. 1 shows that they can begin to become apparent when the
approximations used here are still reasonably valid.

It is perhaps surprising that the corrections for finite velocity are clearly important even for very low
energy positronium. Since these corrections remain in the same form for all incident energies, high velocity
positronium will exhibit considerable deviation from the Van der Waals 1/2° attraction.

To obtain the total inelastic transition rates one can start from the generalized golden rule formula

R, = (2m/R) Y|T,|*8(E,~ E,). (14)
,

However, this can also be related to the spatially dependent self-energy as above in eq. (2)
R, = [Cilr)R,(r){rli)dr, (15)

where R, (r)=2 Im 2, (r)/h and Im 2, (r) is the non-conservative imaginary part of the spatial
self-energy.

We have carried out extensive calculations for the exchange of surface optical phonons or surface
plasmons using the same atom-surface interaction model as in egs. (5) and (6). Since the atom is assumed
to have a kinetic energy below the atomic excitation level, the lowest order contribution coming from the
dipole potential of eq. (6) is a two phonon process. this corresponds to the T matrix of eq. (14) calculated to
second order in the Born series, or equivalently to the Im Z,(r) coming from the fourth order term. If we
again make the simplifying assumption that the surface optical phonon w,, is independent of Q we obtain a
general expression for the total energy transfer, and the leading term in its asymptotic expansion is

2
R2(z) — B*(3Z%*wmQ*/128K°K3)| L |2,012/( Q2 + q7)| exp(—4iz]8)/]z], (16)
{

I

where § = Q2/2K,,.

It is also possible to have a single phonon exchange process when the atom is very near the surface, so
that its charge density actually begins to overlap. This is the monopole contribution, so called because it
gives a contribution in the first order Born approximation just as in the case of a bare charge. To obtain
this contribution we treat the atom as a point charge Ze surrounded by an electron cloud, p(r) = 8(r) — p,(7)
and each element of charge interacts with the potential of eq. (4) as shown in eq. (5). Using a hydrogen-like
wave function with decay range a/2 = Z,;/a, (with Z_; the effective charge and a, the Bohr radius), we
obtain for the leading term in the monopole contribution

Ry(z) — BZeza"Q;‘\/;/(BZth)(SZ-#az)_7/4|z|3/2 exp( —2|z|V8% + 4a?). (17)

The decay constant for this single quantum process 2V8% + 4a? includes the decay range a of the charge
distribution. This indicates that the monopole process will be most important at small separation where the
atomic charge density actually begins to overlap the surface.

The monopole process also contributes to the two quantum exchange rate through higher order terms in
the perturbation series, but these contributions, as well as higher order single phonon events, are found to
be negligible.

We have carried out a number of calculations for light atoms moving near ionic as well as metallic
surfaces. The summation over atomic states appearing in eq. (16) can be related directly to the atomic
polarizability and was evaluated using Pade approximants [8]. For example, a comparison of the single
phonon transition rate R, to the two phonon rate as a function of distance between atom and surface leads
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to the following observations. Except for the very smallest separations, the two quantum rate is always
dominated by the dipole contribution of eq. (16). At distances in the neighborhood of 1 A the single
phonon exchange dominates the scattering, but at larger separation it is the dipole two-quantum process
which is larger. This interesting result is characteristic of all energies except the smallest. Only when the
atomic energy is comparable to the surface optical phonon energy is the single quantum exchange the
largest term for all separation distances. However, under these conditions the exponential decay range
parameter 8= Q?/2K,=w. /v, is large and all transfer rates become negligibly small as z becomes
appreciable.

The conclusions that we can draw from these inelastic calculations are similar for the exchange of
surface optical phonons at ionic surfaces or surface plasmons at metal surfaces. The major contributors to
the inelastic exchange rates are the single quantum monopole mechanism and the double quantum dipole
process. All other processes examined seem to be reltively unimportant, and in particular, single quantum
transfers arising from higher order terms in the perturbation expansion are totally negligible. The exchange
rates decay exponentially with the separation z between surface and atom. As a function of particle energy
there is a maximum in the exchange rate at approximately 5 or 10 times the surface optical phonon energy,
or in the keV range for the exchange of surface plasmons.

An interesting result pertaining to both ionic and metal surfaces is that the single quantum process is not
always dominant. At metal surfaces, the single plasmon process is the most important only in the low keV
range and below, and the single quantum process is almost negligible at higher energies, where the transfer
rates are at their maximum. For the exchange of surface optical phonons at ionic surfaces the effect is not
so clear cut, but at particle energies which give the maximum inelastic transfer rates the single quantum
process is most important near the surface, but for z > 1.2-1.6 A, it is the two quantum process which
dominates.
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