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A method is presented to account for thermal effects in soft potential atom-surface scattering
by taking the thermal average of decoupled t-matrix elements. This approach is applied under
conditions of resonance. Comparison is made between the calculated and experimental resonance
line shapes for 21 meV He atoms incident upon the Cu(113) surface. The calculations show that
the specular intensity under resonance conditions has a temperature dependent structure which is
different from that away from a resonance. This presently unobserved behavior is discussed.

1. Introduction

Since the 1930’s [1], certain He diffraction experiments have shown reso-
nance structures in measurements of diffraction peak intensity as a function of
either incident polar or azimuthal angle. The correct interpretation of these
results was given by Lennard-Jones and Devonshire [2], who noted that a
process they called selective adsorption would take place under certain incident
conditions in atom—surface scattering. Selective adsorption continues to be an
extremely important method of gaining information about the atom-surface
potential [3]. In particular, the bound state energy levels may be deduced from
experimental analysis.

The selective adsorption process occurs when a bound state of the potential
becomes accessible to an incident particle. This state is actually quasi-bound
since it has a finite lifetime. The opening up of this intermediate state gives rise
to a resonance behavior in which the relative intensities of backscattered
diffracted particles can be strongly affected. Elastic calculations using a hard
wall potential have been able to explain the appearance of minima and
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maxima in atom-surface scattering under resonant conditions [4]. Non-hard-
wall potentials have also been used to explain such structures [5]. However,
neglecting thermal effects in elastic calculations can lead to contradictions with
experiment in the line shape of a resonance. Several methods have been
introduced to account for inelastic effects. Better agreement with experiment
has been achieved using a complex optical potential [6]. More recently,
Hutchison [7] proposed a simple method of applying Debye-Waller factors to
the scattering amplitudes to account for thermal effects. This approach is an
improvement on the purely elastic calculation, but is limited to a hard wall
potential [8].
While the corrugated hard wall potential can still be useful in calculations
applied to some surfaces such as the alkali-halides, a soft potential is more
~appropriate for metals. In this paper, a method is proposed for handling
thermal effects in resonant atom-surface scattering in the t~matrix formalism.
This formalism is particularly well suited to handle the more realistic soft
potentials. Application of the method will be made to the case of helium
scattering from the surface Cu(113), for which the corrugated Morse potential
represents to a good approximation the atom-surface interaction.

2. Theory

The elastic intensities of the diffracted beams may be calculated in the
transition matrix formalism using a potential which is divided into two parts:
V = U + v, where U may be the surface average of V' [9]. Then the intensities
are calculated from:

_ 1/2]|?

IG=|SG,0_ lmtci/[hz(koszz) ’ ” ’ @
where

tGi=UGi+ZUGI(Ei_EI+i€)-1 Liis @)

and v, are the matrix elements of v taken with respect to the eigenstates of U.
E. is the energy of the incident particle of mass m, and E, is the particle energy
in the /th state. The diffracted particle wavevector component normal to the
surface, k,, is defined in the standard way k2, =k? — (K + G)* where K is
the parallel component of the incident wavevector, and G is a reciprocal lattice
vector lying in a plane parallel to the surface. The kinematic condition for
resonance occurs when k2, = —2mle,|/h%, where ¢, is a bound state energy
level of the surface-averaged potential, and N is the reciprocal lattice vector
corresponding to the closed resonant channel. Near conditions for resonance,
singularities appear in the calculation of t;,. These are avoided using projec-
tion methods in which eq. (2) is written as a pair of coupled integral equations,
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only one of which involves the resonant bound states. We consider the case of
a single isolated resonance so that

tGi=hGli+h‘thbi/(Ei_Eb—hbh)’ (32)

and ,

Byy=tpq+ 2 0 (Ei= E+ i) Ay, (3b)
!

where ¥, means the summation does not include the resonant bound state.
The h p'q are calculated by iteration and the diffracted beam intensities can now
be evaluated using eq. (3a) even under resonant conditions. These intensities
may be written in the form:

Io=1Pn —ib/(X =D, (4)

where
X= [Ei —E,— Re(h,,)] /1m( ),
and

b= NGhthbi/[(86.0 - iNGhGi) Im(hbb)] >

with N =m/[h*(k,kg.)'/?] being the density of states for perpendicular
motion. I is the intensity calculated from eq. (3b) corresponding to a
pseudopotential in which the bound state is suppressed. In a plot of I as a
function of incident angle, the structure of the line shape about a resonance
will depend on the value of b. As an example, if Re(b) is much larger in
magnitude than Im(b), then it is readily seen that the line shape is a minimum
for —2 < Re(b) <0, and a maximum otherwise. Asymmetry in the form of a
mixed maximum-minimum structur¢ may appear in the shape of the reso-
nance when Im(b) is non-negligible. It is known that ' = —2 Im(h,,) is the
energy width of the resonance at half the extremum intensity.

The discussion thus far has involved a summary of how elastic intensities
can be calculated at resonance. We now need to introduce thermal effects into
the calculations. In an exact approach, the thermal average of t;; would be
used to calculate the diffracted intensities [10]. We shall make the simplifying
assumption that we can decouple the amplitudes in eq. (3a) and thermally
average them separately. The thermal averaging method used here follows
Hutchison’s method of scaling scattering amplitudes with Debye—Waller fac-
tors, the major difference being the treatment of the denominator of eq. (3a) as
discussed below. This decoupling is clearly an approximation the nature of
which cannot be properly analyzed in the absence of an exact calculation of
the thermal average. However, we note that it reduces to the correct result in
the limit of small surface vibrations (the elastic limit), and it gives rise to an
overall multiplicative Debye—Waller factor exactly like that observed experi-
mentally on either side of the resonance. The amplitudes hg;, hgp and h,, In
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eq. (3a) are thermally attenuated by multiplying them by the factors exp(— W,),
exp(— W, ) and exp(— Wy,), respectively. The exponent W is given by:

W, = 1(8k,) (ul), (5)

where Ak, =k, +k is the change in perpendicular momentum of the
particle from state g to state p calculated in the “Beeby approximation”, i.e.
(k). )=k}, +2mD/h* with D being the depth of the potential well. The
quantity (u?) is the effective, thermally averaged, square displacement of a
surface atom in the direction normal to the surface, which involves averaging
the motions of several surface atoms.

The scaling method is modified when applied to the amplitude 4,,. From
the optical theorem, ¢t — t7 =7(G* — G™)¢, the imaginary part of #,, may be
related to the probability P, of a transition from a bound state to the
continuum. Thus we have:

Im(1,,) = —(h/2)w,,

where w, can be viewed as a transition rate from an unperturbed bound state
to the continuum. Dividing w,, by the flux of particles in the bound state, 1 /7,
gives the corresponding probability P,. The term 7, is a semi-classical quantity
which can be estimated in a variety of ways. For example, an approach useful
in nuclear resonance theory is to set 7, equal to the inverse of the energy level
spacing of the bound states in the well [11], and this is the method adopted
here. An alternative method is to let 7, be the period of a classical particle
moving in the well with energy ¢,, and for the potential used below in section
3, these two approaches give values which agree fairly well.

The probability that a bound particle will remain bound is 1 — P, and
thermal attenuation is expected to decrease this value. Thus the thermal
average of Im(z,,) is taken to be: ‘

(Im(t,,)y = —h[1=(1 = P,) e™ 2] /(27,),

where the thermal attenuation factor is exp(—2W,,) instead of exp(— W,,)
since 1 — P, is a probability and not a probability amplitude. Since the
operator h obeys the same optical theorem as-t, we treat (Im(4,,)) in a similar
fashion arriving at the final expression

<Im(hbb)> = _h{l - [1 +(27,/h) Im(hbb)] e—zw,,,,}/(z,‘_b)_ (6)

The quantity Re(4,,) appears only in the equation for X, which is close to zero
near a resonance. Any thermal effects upon Re(h,,) will simply shift the
angular position of the resonance. Since the magnitude of Re(4,,) is usually
small, the temperature dependence of Re(4,,) will be ignored.

The method of treating thermal attenuation as presented here can now be
contrasted with the approach of Hutchison [7]. The energy width of the
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resonance I is given by Hutchison as:
F=2(1-|S(N, N))/(IS(N, N)d8y/dE), (7)

where S(N, N) is essentially a scattering amplitude and is scaled by a single
Debye-Waller factor exp(— Wyn), and 8y is the phase gained after one period
“of oscillation in the potential well. In the present paper, I' is given by
—2({Im(h,,)) calculated from eq. (6). Clearly both methods show that I" will
increase with temperature. However, the two methods differ in the manner in
which thermal effects are introduced into the calculation of T'.

The value of (u?) used in eq. (5) may be obtained for a particular surface
and incident particle from experimental data if it exists, and from calculated
elastic intensities I which agree with the experimental intensities 15 when
the latter are extrapolated to zero temperature. Attenuation of elastic beams is
found to follow to a good approximation the Debye-Waller form

I$P = ug I exp(=2W,), (8)

where ug is the experimental unitarity [12]. From egs. (5) and (8), (u?) may be
determined for the particular temperature at which the experiment was per-
formed, regardless of any zero-point motion or anharmonic surface effects.
Once 2W,, is calculated from eq. (8), any other 2/¥/, may be determined under
the identical incident conditions using the same {u}):

’ ;)2 ’ ; \2
2%q=2WGi(kp:+qu) /(sz+k0:) . (9)

The various transition amplitudes which are used to determine /I in eq. (4)
can now be scaled using the appropriate Debye—Waller factors calculated in
the manner described above. The diffracted intensities are still given by eq. (4)
with b and X now temperature dependent. We may now see what effects the
introduction of thermal attenuation will have on a resonant line shape. For
example, if an elastic calculation gives a value of Re(b) < —2 and is much
greater in magnitude than Im(b), then the resonance shape is a maximum. If
b(T) then decreases in magnitude with temperature, the resonance changes
into a minimum when b(T) becomes greater than —2. The diffracted beam
intensity at resonance has a temperature dependence given by:

1,(T) = 1;(0) e~ 2% {1 + Re[b(T)] ). (10)

For Re[b(T)] at T =0 less than — 1 and increasing with temperature, €q. (10)
shows that I;(T) will decrease until Re[p(T)]= —1 at some temperature T in
at which I (T) will reach a minimum value. As Re[b(T)] continues to
approach zero magnitude for temperatures larger than T ;,, {1+ Re[b(T)]}
will increase from its lower value at 7. This increasing factor is opposed by
the factor exp(—2W;;,) leading to the possibility of a relative maximum in the
intensity at some temperature T, > T...- Thus for those resonances, which in

an elastic calculation have Re(b)< —1 and |Re(b)| > [Im(b)|, the intensity
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measured at resonance as a function of temperature will show structure
containing both a minimum and a maximum.

3. Calculations

The method of accounting for thermal effects at resonance described above
will now be applied to a particular case, namely the scattering of low energy
(21 meV) He atoms from the surface Cu(113). We shall demonstrate the effects
of temperature upon the specular beam only. The elastic transition amplitudes
are calculated in eq. (3b) by iteration using the corrugated Morse potential:

V=D{exp| —2k(z—¢(R))] —2 exp[ —«z]}, (11)

where x is the range parameter of the interaction potential. The surface
corrugation is taken to be one dimensional along the x-axis, and has the form:

o(x)=da_ cos(2mx/a ), (12)

where d=0.016 and a_=4.227 A is the lattice constant for Cu(113). This
potential yields elastic intensities which have been shown to agree with
experimental intensities extrapolated to zero temperature [3]. Three bound
state resonances are observed experimentally in the specular intensity for
Cu(113) when the evanescent channel [10] is in resonance with one of the
bound states (labeled n =0, 1, or 2) of the surface averaged potential. The
specular intensity is calculated from eq. (4) with b and X now temperature
dependent. In order to compare with experimental results which were taken at
a temperature of 70 K, eq. (8) must be used to determine the Debye-Waller
factor, W, because at this temperature zero-point motion is important. Fig. 1
shows the comparison between theory and experiment. Elastic calculations of
the specular intensity show narrow maxima rising almost to unity for all three
resonances. Thermal effects have changed the signature of each of the three
resonances into a broader minimum. The calculated resonance structures for
n = 1,2 appear at incident angles different from where they appear experimen-
tally because the bound state energies of the Morse potential differ with those
of the true potential. )

An interesting experiment has been reported by Wesner and Frankl [14] in
which a large change in the shape of a resonance as a function of surface
temperature is observed for the system He/LiF(001) at low incident energy. In
this study, a resonance in the specular beam was initially characterized at
T = 163 K by a double structure containing a narrow maximum and a broader
minimum. As the temperature was increased to T =296 K, the maximum
disappeared leaving only the minimum. This is a more complicated situation
than that shown in fig. 1 as evidenced by the double structure of the resonance
which implies that both the real and imaginary parts of its b function are
important.
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Fig. 1. Specular intensity versus incident angle showing the resonance line shape for He(21
meV)-Cu(113). The solid line showing maxima is the elastic calculation, and the solid line with

minima is the present theoretical calculation at a temperature of 70 K. Experimental results taken
at T = 70 K are shown by the dashed line.

In fig. 2 a detailed comparison with experiment is made for the (10,/0)
resonance. In this figure, I(0) is the elastic specular intensity which shows a
maximum, and I(T) is the specular intensity calculated from eq. (4) and
includes thermal effects as described in the previous section. I, ,(T) demon-
strates the effect of angular dispersion in the incident beam on I(T) using the
simplest approximation of averaging over the 0.2° experimental angular spread.
The experimental resonance structure is wider and not as deep as the calcu-
lated line shape. Even after the 0.2° angular dispersion in the incident beam is
taken into account, the minimum is still narrower than experiment. An energy
dispersion correction was not taken into account, but angular dispersion seems
to be the more important of the two effects [13]. It should be noted that
additional experimental points may affect the assumed shape of the resonance
structure.

When the specular intensity at the bottom of the resonance in the I(T)
curve is calculated as a function of temperature, a new structure appears as
shown by the curve marked a in fig. 3. A sharp drop in intensity occurs,
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Fig. 2. Detail of the (10/0) resonance of fig. 1: (a) elastic calculation, (b) experiment, (c) present
theory with a simple account of the 0.2° angular dispersion, and (d) present theory without angular
dispersion.

followed by an increase to a relative maximum. As described qualitatively
above, this phenomenon is due to Re[(5(T)] increasing with temperature from
a value less than — 1. Assuming no angular spread in the incident beam and
sufficiently high temperatures, the intensity can be cast in the form:

I=1®e T |1 b,
where aT = 2W,;, and
b(T)=56(0) Pye™T/[1-(1=P,) 77|, (13)
with o = W, + W,, — W;,, YT =2W,,. and P, is the probability defined

above in section 2. For the case at hand, « is about an order of magnitude
greater than y. When |Re[5(0)]| > [Im[6(0)]| the minimum intensity occurs
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Fig. 3. Specular intensity versus temperature under resonance conditions for the (10,/0) resonance
of fig. 1: (a) present theory without angular dispersion, (b) with 0.05° angular dispersion, (c) with
0.1° angular dispersion, and (d) with 0.2° angular dispersion.

essentially when b = —1 at the temperature T ;,, and a very good approximate
value is:

Tin= (1 +Re[6(0)])/(v(1 = 1/P)). (14)
A good approximation for T, 1s:

T = Py{ ~Re[6(0)] =2 +[ = 8Re[6(0)] v(aP,)] *} /(27). (15)

For all the resonances calculated, these approximate values for 7., and T,
are good to within 5% and usually even better. The simple forms of egs. (14)
and (15) indicate that a measurement of the structure in the temperature
dependent intensities at resonance can give direct information about the
assumed behavior of a particle in the bound state.

Fig. 3 also shows the effect of a simple inclusion of incident angular
dispersion on the minimum structure. These calculations indicate that the
angular dispersion in the incident beam must be less than 0.1° in order for the
minimum structure too be clearly observed. However, even if the angular
spread is 0.2° or larger there is still a distinct and characteristic difference
between the temperature dependence of the intensity at resonance and in an
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off-resonance Debye—Waller curve. Fig. 3 shows that for large angular spread,
the intensity, while monotonically decreasing with T, has a positive curvature.
The experimentally measured Debye-Waller curves over the same temperature
range give straight lines or negative curvatures.

Finally, it should be noted from fig. 1 that outside of a resonance, the
calculated and experimental curves agree well with each other. Away from a
resonance, the specular intensity does not exhibit the temperature dependent
structure depicted in fig. 3, but follows the usual Debye-Waller effect form.

4. Conclusions

We have presented a method of introducing thermal effects through
Debye-Waller factors into calculations of diffracted beam intensities under
conditions of resonance. These effects are able to change narrow, elastic
maxima into broader minima. It is found that the resonance line shape has the
same minimum structure as observed in experiment, and possesses asymmetry.
However, the calculated line shape shows a resonance structure which is deeper
and not as wide as that measured by experiment. In addition, a new structure
is observed when the diffracted intensity at or very close to a resonance is
calculated as a function of temperature. If this structure is to be observed
experimentally, it appears to be important for the incident beam to be very
well collimated.
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