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ABSTRACT

We consider several aspects of the theory of resonant scattering in low
energy atom-surface systems using soft potentials. A method is present-
ed to account for thermal effects in selective adsorption resonances by
taking the thermal average of the t-matrix in a decoupling approximation,
and comparison is made with experiment. Further calculations indicate
that the specular intensity under resonant conditions has a temperature
dependent structure which is quite different from that away from
resonance. A consideration of the resonant diffraction of 63 meV He
atoms by graphite shows that the effects of a' soft potential can be as
important as thermal attenuation in the manner in which it is commonly
introduced into the corrugated hard wall model. A treatment of thresh-
0ld resonances shows that an emerging beam causes a resonance in all
diffracted beams, but for potentials with-a soft repulsive part these
are too weak to be readily seen in an experiment.

1. INTRODUCTION

In this paper we would like to present the results of several theore-
tical investigations of atom-surface scattering at low energies using
soft potentials. In particular we wish to discuss three different
aspects of resonant scattering. By the adjective soft we mean an
interaction potential in which the repulsive wall has a finite slope,
as opposed to the corrugated hard wall model (CHW). The CHW is an
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attractive model particularly because of its ease of calculation, but
it is clear that even though the real repulsive potential is very
strong there is some penetration of the wavefunction into the surface
and this has a pronounced effect on the relative diffraction intensi-
ties (1). A soft potential is particularly important for scattering by
metals where the incoming atoms are reflected several atomic units in
front of the surface by the exponential tail of the electron cloud.
The need for a soft potential to explain the relative intensities of
diffraction peaks from metals has been rather thoroughly discussed
elsewhere (2,3). Here, we would like to confine our discussion to
resonant processes and how they are affected by the softness of the
potential. In Section 2 we consider the effects of thermal attenuation
in bound state resonances (selective adsorption) and compare the
results with He scattered by a stepped copper surface. Section 3 is a
discussion of the selective adsorption resonances of He incident on
graphite and we show that a soft repulsive wall can modify the reson-
ance signatures as much or more than thermal effects as commonly
introduced into the CHW. 1In Section 4 we consider the threshold
resonance which occurs with the emergence of a previouslv evanescent
diffraction beam. Using the example of H, scattered by a Cu(100)
surface we show that such resonances will"be difficult to observe in
realistic situations.

2. THERMAL ATTENUATION AND RESONANT SCATTERING

The selective adsorption resonance occurs when a bound state (or
adsorption level) becomes accessible to the incident particle. The
opening up of this additional degenerate intermediate state gives rise
to a characteristic resonance behavior inm which the relative intensi-
ties of the backscattered diffracted particles can be strongly affected.
Elastic calculations have been able to explain the appearance of minima
and maxima in the scattered intensities (4,5). However, the neglect of
thermal effects can lead to contradictions with experiment in the line
shape of a resonance. Better agreement with experiment has been
achieved using complex optical potentials (6), and more recently
Hutchison (7) has proposed, using the CHW, a method of applying Debye-
Waller factors to the scattering amplitudes to account for thermal
effects. We discuss here a method for introducing thermal attenuation
by use of Debye-Waller factors in the transition matrix formalism.

This differs from the approach of Hutchison in that it is particularly
well suited to handle the more realistic soft potentials.

We choose to calculate the diffraction intensities using a transi-
tion matrix formalism in which the potential V is divided into a dis-
tortion term U and a perturbation v, V = U + v, Then the intensity of
a beam labelled by the surface reciprocal lattice vector G is given by

I,= 16

i 2 2
c im t,. /(B /kiszz) | 2.1

G,0

where kG is the perpendicular wavevector and
z



ed.

.ma
of
1e

on
ly
si~

of
by

THE SOFT POTENTIAL IN RESONANT ATOM-SURFACE SCATTERING 25

teg = Voi * QVGQ(Ei—E2+i€) ltzi 2.2
and vpq are the matrix elements of v taken with respect to eigenstates
of U. Near conditions for a resonance, singularities appear in the
Green function of eq. (2.2), but these can be avoided by using projec-
tion methods in which eq. (2.2) is written as a pair of coupled inte-
gral equations, only one of which involves the resonant bound states.
For the case of a single isolated bound state we have

t =h,, +h
1

ci G hbi/(Ei-E ~h. ) 2.3

Gb b bb

-1
h = + 3! E.-E +1i h 2.4
pa = Vpa T E Vpa FrEpttE) hyq

where §' means the summation does not include the resonant bound state.
The hpq are calculated by iteration and the diffracted beam intensities
of (2.1) can be evaluated using (2.3) even under resonant conditionms.
These intensities may be written in the form

I, = Io|1-ib/(x-1) |2 2.5
where

x = [E,-E,~Re(h, . )]1/Im(h ) 2.6
and 175y bb bb

b =Ny hy b/ [(8g o~iNg hg ) Im(hy, )] 2.7

where NG = m/GhsziszZ) is the density of states for perpendicular
motion. 1In a plot of I.versus incident angle or energy the half width
of the resonance structure is I' = -Im(hyy), but the resonance shape is
mainly controlled by the value of b. For example if |Re(b)| >> |Im(b)|
the line shape is a single minimum for -2 < Re(b) < 0 and a maximum
otherwise. Asymmetry in the form of a mixed maximum-minimum structure
appears when Im(b) is non-negligible.

In an exact approach, the thermal average of tg; would be used to
calculate the diffracted intensities of eq. (2.1). The major approxi-
mation in our approach is to decouple all of the scattering amplitudes
in eq. (2.3) and thermally average each one separately. Thus we follow
Hutchison's method of approximating the thermal average by scaling each
amplitude by a Debye-Waller factor. The amplitudes hgj, hgp and hpi in
(2.3) are thermally attenuated by multiplying them by the factors

exp(-Wgi) » exp(-WGb), and exp(—Wb.) respectively. The exponent W is
given by :

W =1 2,42
pq ﬁ(Akz) <u2> 2.8
where Akz = k'y, + k'qz is the total change in perpendicular momentum
calculatéd in the "Beeby approximation", i.e.

(k' )2 =k 2 + 2mD/R2 2.9
p2z pz

The quantity <u§> is the effective average square displacement of a

surface atom in“the normal direction, and may involve averaging the

motions of several atoms.
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The scaling method must be modified when applied to the amplitude
h,,. From the optical theorem, t-t =t (G -G )t (which applies
equally well to the h operator) the imaginary part of hyp may be
related to the probability of a transition from the bound state to the
continuum. Thus we have

Im(hbb) = -('ﬁ/z)wb 2,10

where w, is the total transition rate. Dividing w, by the flux of
particles in the bound state, 1/1._, gives the corresponding probability
P.. The time Ty is a semiclassical quantity which can be estimated in
several ways. For the potential described below we find that the
approach useful in nuclear resonance theory, i.e. to relate 1, to the
inverse of the level spacing of the bound states, gives values which
agree fairly well with the period of a classical particle moving in the
well.

The probability that a bound particle will remain bound is 1-Pp,
and thermal attenuation is expected to decrease this value. Thus the
expression that we use is

<Im(h )> = -ff1- (l—P Yexp (-2W )]/(ZT ) 2.11

with P, = 21, Im(hpp) /h. The thermal attenuation factor is exp(-2Wpp)
1nsteaB of exp(-Wpp) since (1-Pp) is a probability and not a probabili-
ty amplitude. Thermal effects on Re(hpp) are ignored since it appears
only in eq. (2.6) as a shift in position of the resonance, and it is
usually small. ‘

The method of treating thermal attenuation as presented here can
now be contrasted with the approach of Hutchison. The energy half-
width T of the resonance is given by Hutchison as

= [1-|sM,™) |1 / [IS(N,N)|d8/dE]

where S(N,N) is essentially a scattering amplitude and is scaled by a
single Debye-Waller factor exp(-W_.), and §, is the phase gained after
one period of oscillation in the potential well. In the present paper,
I' is given by <Im(hpp)> calculated from eq. (2.11). Clearly both
methods show that I' will increase with temperature. However, the two
methods differ in the manner in which thermal effects are introduced
into the calculation of T.

We have carried out calculations for He at 21 meV scattering from
the(113) face of copper, a system for which good experimental data is
available (8). As a potential we use a corrugated Morse function

= D[exp(—ZK(z—¢))/vO - 2exp(—xz)] 2.12
where k = 1, OSA D = 6.35 meV, and v, is the surface average of
exp(2x¢). The functlon ¢ (x) is the one dimensional corrugation func-

tion appropriate to this surface

d(x) = dax cos(2wx/ax) 2.13
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where d = 0.016 and a_ = 4.227A is the lattice constant for the steps.
The distorted potenti§1 U is taken as the Morse function corresponding
to the surface average of (2.12). For evaluating the Debye-Waller
factors the value of <u§> was taken from the data of Lapujoulade et al.
(9).

Figure 1 shows the three bound states which are observed experimen-
tally in the specular beam when there is a resonance with the (10)
evanescent diffraction channel. The purely elastic calculations show
narrow maxima rising almost to unity, and this is easily understood
since for all three resonances Re(b) < =2 and |Im(b)| << |Re(b)].
Introducing the effects of thermal attenuation changes the signature of
each resonance into a broader miniumum. Inclusion of effects of
angular dispersion of the incident beam (not shown in Fig. 1) makes the
calculated curves substantially less deep and slightly broader, although
still not as broad as the experimental curves. The calculated resonan-
ces for n = 1,2 appear at incident angles slightly different from
experiment because the bound states of the Morse potential differ from
those of the true potential.

(10/2) [{[e74)] (1070}

50° 55° 60° 65°

Figure 1. Specular intensity vs. incident angle showing the
resonance line shape for He(2lmeV)-Cu(l113). The solid line
showing maxima is the elastic calculation, and the solid line
with minima is the present theoretical calculation at a
temperature of 70 K. Experimental results taken at T = 70 K
are shown bv the dashed line.
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An interesting prediction comes from this work if we examine the
temperature dependence of a diffracted beam under exact resonance
conditions (i.e. for x=0). In a situation such as that calculated
above where lRe(b)l > ]Im(b)l the intensity is of the form

I.(T) = Igexp[-ZWGi(T)] [1 + Re b(T)]2 2.14
where IO is independent of temperature T. For Re(b) < -1 at T = 0 and
increasing with T, eq. (2.14) shows that I_(T) will decrease and pass
through a minimum at some temperature T ., corresponding to Re(b) = -1.
As Re b(T) continues to increase toward zero for T > T . the sum 1 +
Re (b(T)) will increase from its minimum value, but thTénincreasing
factor is opposed by the term exp(-2 WGi) leading to the possibility of
a relative maximum at a temperature Tp,y > Tpip. Thus for those
resonances, which in a purely elastic calculation have Re(b) < -1 and
|Re (b)| >> |Im(b)|, the intensity measured as a function of temperature
will show structure containing both a minimum and a maximum.

The curve marked "a" in Fig. 2 shows the temperature dependence of
the minimum point of the (10/0) resonance discussed in Fig. 1. A
distinct minimum and a broad maximum are observed. Assuming no angular
spread in the incident beam and sufficiently high temperatures, the
intensity can be cast in the form

I = 1% 3T 14b(t) |2 2.15
where aT = 2W,, and
Gi
b(T) = b(0) Pbexp(—aT)/[1—(1-Pb)exp(—yT)] 2.16
with aT = Wgp + W, . — Wgj and YT = 2W . For the case at hand o is

about an order of éagnitude greater than y. When IRe(b)l >> lIm(b)I
the minimum intensity occurs essentially when b(T) = -1 at the
temperature

-1

Tmin = (1 + Re[b(O)])/[Y( - Pb )] 2.17
A good approximation for Tmax is
Toax = Pb[—Re[b(O)]-2+/-8Re[b(0)]Y/an]/(ZY) 2.18

These simple forms for Tpin and Tpax indicate that a measurement of the
temperature dependent structure of a resonance can give direct informa-
tion about the assumed behavior of a particle in the bound state.

Fig. 2 also shows the effect of a simple inclusion of incident
angular dispersion on the curve. These calculations indicate that the
angular dispersion must be less than 0.1° in order for the minimum
structure to be clearly observed. However, even if the angular spread
is 0.2° or larger there is still a distinct and characteristic differ-
ence between the temperature dependence of the intensity at resonance
and away from resonance. Fig. 2 shows that for a large angular spread,
the intensity, while monotonically decreasing with T, has a positive
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curvature. The experimental Debye-Waller curves which are measured
away from resonance give straight lines or negative curvatures.,

1.0 | T T T T T
d
c
b
[}
(R od . -
Ioo
0.0l |- -
0.00! 3 Il 1 1 1 1

100 200 300 400 500 600TIK)

Figure 2. Specular intensity vs. temperature under resonance
conditions for the (10/0) resonance of Fig. 1. (a) present
theory without angular dispersion, (b) with 0.05° angular
dispersion, (¢) with 0.1° angular dispersion, and (d) with
0.2° angular dispersion.

3. THE SOFT WALL IN He-GRAPHITE DIFFRACTION

The above section on thermal attenuation in softwall scattering was to
a large extent an extension of the earlier work of Hutchison and Celli.
Their work is based on the CHW model and was quite successful in
explaining the resonance structure for a low energy (21lmeV) He beam
scattered by a graphite surface (7). Howeéver, it was later shown that
this theory compared rather poorly for the same system when the experi-
ments were done at high energy, 63.8 meV (10). In this section we
reconsider the He-Graphite system at the higher energy and show that
the effects of using a soft potential, even in a purely elastic calcu-
lation, can be of equal or greater importance as the thermal attenua-
tion in the form introduced by Hutchison and Celli.

Again, as in Section 1 we use a transition matrix formalism in
which the t-matrix equation of (2.2) is solved by iteration until
convergence is obtained. As the potential we again usglthe corrugated
Morse function of eq. (2.12) with parameters K = 1,318 °, D = 15.47 meV
and a two dimensional corrugation function. In the rectangular coordi-
nates x and y it appears as
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- 2mx Ix 2Ty
d(x,y) = aBlO [cos el 2 cos S cos ]

4Ty 3mx 2my
+ a812 [cos - ¢ 2 cos 5 Cos % 1
4mx 2Tx 4Ty
+ a320 [cos -t 2 cos S Cos ¢ ] (3.1)
with b = 2,465 A, a = b cos30°, B = -0.013, B = 0.01 and B = 0.0.

The curve marked "A" in Figure 3 shows the é€xperimental dgga of

Cantini et al. for the specular beam in the case in which the (10)
evanescent beam is in resonance with the lowest four bound states of
the potential. The incident He wavevector is 11.05 A = corresponding
to 63.8 meV. Curve "B" of Fig. 3 is the present elastic calculation
using the Morse potential and the corrugation function of (3.1). Curve

"C" is the elastic calculation corrected for the angular spread of the
incident beam.

¥ ¥
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Figure 3. Specular intensity for 63.8 meV He scattered by
graphite. (A) experimental data from ref. (10); (B) present
elastic calculation; (C) present calculation accounting for
angular dispersion of the beam.
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Figure 4 gives for comparison the results for the same system
reported by Cantini et al. using the CHW, and also the CHW with the
Hutchison correction. Clearly, neither the elastic calculation of Fig.
3 nor the Hutchison theory with thermal attenuation agree very well
with the very shallow observed resonances. In fact, the best agreement
is for the case of the purely elastic softwall calculation corrected
for the angular dispersion of the beam. The interesting point is,
however, that in comparison with the CHW calculation the present
elastic calculation and the Hutchison theory give surprisingly similar
results. The Hutchison correction seems to give slightly broader
resonance structures, but this is in part an illusion due to the fact
that the vertical scale is compressed by the overall Debye-Waller
factor which multiplies the curve. This points out that as compared to
a CHW calculation, a soft potential can cause changes in resonance
intensities which are just as important as the thermal attenuation
introduced by the Hutchison method.
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Figure 4. Same system as Fig. 3 (A) CHW calculation, and
(B) CHW calculation with thermal attenuation, both from
ref. (10).
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4. THRESHOLD RESONANCES

In this section we wish to briefly discuss the effects of a soft
potential on a completely different type of resonance, that which
occurs when an evanescent diffraction beam is just emerging from the
surface., These surface threshold resonances, which have been discussed
for some time in the context of electron scattering (11,12), have also
been suggested as a possible tool for surface investigation with atom
scattering (13,14).

The threshold resonance is quite different in character from the
selective adsorption resonances discussed above. As explained in more
detail below, when a diffraction beam emerges (or disappears) its
intensity as a function of incident beam angle grows from zero with an
infinite slope. This '"sudden'" appearance of a new beam causes a
rearrangement of the intensities of the other diffracted beams and they
too will in general have a singularity in slope at the angle of emer-
gence. A typical example of a calculation is shown in Figure 5 for a

model of H2 scattered at a Cu(l00) surface. On the basis of CHW

] I
1.0 -1 014
[oo 00 l{o
ligx 25
10* o 10
0.5 0.13
10 )
0 { { 0.12
50.95 50.96 9,

Figure 5. Calculations for H,_ scattered by a Cu(100) surface
showing the emergence of the %10) diffracted beam.
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calculations it has been suggested that these resonances could be
useful in obtaining information on surface structure and particularly
on the surface corrugation (13,14). Our calculations using more
realistic soft potentials, although confirming this point of view,
indicate that the threshold resonance is very sensitive to the slope of
the repulsive potential and for all but the very stiffest surfaces will
be too weak to be seen in an experiment. Indeed, this conclusion is
strengthened by the fact that very few threshold resonances have been
clearly identified in the experimental atom-surface scattering litera-
ture.

The origin of the threshold resonance is most easily demonstrated
as follows. If N is the surface reciprocal lattice vector of the
emergent beam and IN its intensity, the slope of interest is

3L, /30, = (BT /0Ky ) Ok /30.) + ... 4ol

where the other terms in (4.1) are ignored because they are of no
consequence to the discussion. Now since k{, = ki - (X + N)” with

A . ~ . . . 1,. =0
Eo = 8 ki sino and & a unit vector, we obtain immediately

3ky /36, = -8+ (& k; sinb + G) k, cos® [k , , 4.2
the important point being that at emergence when 2 > 0 this deriva-
tive blows up as l/sz. Thus eq. (4.1) shows that oIn/964 will
diverge unless I goes to zero at least as fast as for small sz‘

That this is not the case can be seen be looking at fie intensity as a
function of the transition matrix (2.1) and examining the form of the
matrix elements. From eq. (2.1) we have that the intensity of the
emerging beam is

I, = |m tNi/hzlz/kiz Ky, 4.3
and since 0 £ I, = 1 we see that the transition matrix must go to zero
at least as fast as k. for small . However, in general we can
argue that t ; = p for Zmall p. This’is because, from eq. (2.2), thi
will have the same limiting behavior as the matrix element vpq except
in highly unusual circumstances, and for all potentials to date which
admit to an analytical calculation we find vpq > p as p *> 0. (This
includes the corrugated Morse and exponential repulsive potentials as
well as the CHW and the simple step potential.) Thus I * for
small k_, and eqs. (3.2) and (3.1) show that the slope of the’intensity
Nz .. : . . .
curve is“divergent. This argument would fail for a case in which the
matrix element Vpq behaved as p?’/2 for small p but this appears highly
unlikely. In fact, even if one considers a potential with an activa-
tion barrier in front of the repulsive potential it is rather straight-
forward to show that the same linear dependence on p is obtained.

The above arguments justify the statement that the emerging beam
appears with an infinite slope in the plot of intensity versus 8i. Now
we need to discuss the other diffracted beams. If we examine 9Ig/38;
where I, is the intensity of any of the diffracted beams an application
of the ¢hain rule for differentiation will produce as one of the terms
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(aIG/asz)(asz/a'ei) b.b

just as in eq. (4.1). If we look closely at I, of eq. (2.1) and
consider it as an infinite summation of terms coming from the expansion
of toi in the perturbation series, some of these terms for small

will be linear in ky, which will again lead to divergence. Such terms
will come from the §-function (or pole) contribution in the t-matrix
equation (2.2), for example we would have

_ 2
toy = Vi T iwvaN vNi/ﬁ sz + ... 4.5

and the second term on the right will have exactly the behavior in
which will lead to a divergence. Thus it is clear that if there is aa
infinite slope in the emerging diffraction beam, this divergence will
also appear in the other diffracted beams except in the unlikely case
of a cancellation of all of the divergent terms generated by the
perturbation expansion.

It now remains to consider the effects of a soft potential on
these resonances. We illustrate this with a model calculation. Since
the intensity of the emerging beam at resonance is small we are justi-
fied in using the distorted wave Born approximation, t_. = v
Choosing the exponential repulsive potential with a cor%ugat§én (i.e.
the repulsive part of eq. (2.12)) the relevant matrix elements in the
limit of small sz are

= 2
Vi ANO/— Py P /pi sinh 7 Py / (cosh(np )-1) 4.6

N
where p, = k /(2«) and A, is essentially the Fourier transform of the
potential in directions parallel to the surface. Eq. (4.1) for the
slope of the emerging intensity becomes

= =322 |21t a. ; - 5
9L /36, u IANOI ky, 8¢ (ek sind +N)k cosb exp(-rk, /x)/ (4 ky ) 4.7

where we have made the further simplifying assumption that the arguments
of the hyperbolic functions are large. For a soft potential (small «).
The behavior of this expression is dominated by the factor

k Sexp(-mk, /) which is small. Thus for soft potentials the 1/
divergencelw1ll be very weak and will appear over a very small angular
spread.

This is precisely the sort of behavior exhibited by the typical
calculation shown in Figure 5 where we consider H, scattered at a
Cu(100) face. This is an exact calculation using the method of
iteration of the transition matrix equation (2.2) until convergence is
obtained. The beam is inildent in the [110] direction (¢, = 45°) with
a wave vectoi = 8.6 A The potential parameters are D = 21.6 meV,
2« = 1.94 A and the lattlce spacing is 2.55 A. The corrugation
function is

b (x,y) = (da/é)[cos(an/a) + cos(2ry/a)] 4.8
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with d = 0.036. The (10) diffraction beam is emergent at an incident
angle of slightly less than 50.96°. The steep slope of this curve and
the singularity it causes in the slope of the (10) and (00) beams is
evident. However, what is important is the scale. The range of angles
over which the resonance occurs is so small that it could not be
observed with currently available experimental precision. Numerous
other calculations tend to confirm the opinion that with a softwall
repulsive potential the threshold resonances will be too weak for easy

observation (15,16).

5. CONCLUSIONS

We have discussed in this paper three features of resonant scattering
using soft potentials and have made the comparison in each case with
the corresponding calculations using a hard corrugated wall. Section 2
considers the addition of thermal attenuation in selective adsorption
resonances in a manner similar to that introduced by Hutchison and
Celli for the CHW. These effects are able to change narrow elastic
intensity maxima into broader minima, but the signatures are still not
broad enough to agree well with the experimental data for He/Cu(113).
An interesting prediction of this work is that the temperature
dependence of the diffraction intensity at resonance can have a
structure which includes both a maximum and a minimum. This structure
is quite different from the behavior away from resonance and if
observed could give information about the thermal attenuation of
particles trapped in the bound state.

Section 3 is an investigation of selective adsorption resonances
for He scattered by graphite and we find that for higher incident
energies the effects of a soft potential can be as great as those of
thermal attenuation as introduced by Hutchison in the CHW. This
implies that the softness of the repulsion cannot be ignored especially
at energies where the penetration of the particle wave function into
the surface becomes appreciable.

The fourth section is a discussion of threshold resonances gener-
ated by soft potentials. We find that the threshold resonance 1is
characterized by a divergence in the slope of the intensity versus 9,
curve, not only for the emerging beam, but for the other diffracted
peaks as well. However, we find that the strength of these resonances
is strongly dependent on the slope of the potential and for realistic
soft potentials they will be difficult to observe.
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