wphasis
robable

+157

Thermal
7ifth
367) .
1ermal
25 at
thod,"

)
ice

ct Gases
e Condi-

1 Be"

, (1954).
Ne, and
and a

Lssouri,

3 of
3lished
ics,
vk,

L3 (1982).
3 (1982).

1 to Rare-

’ll
’
Academic

tmiets bk

AN ITERATIVE SOLUTION TO THE SURFACE SCATTERING

PROBLEM:

ABSTRACT

APPLICATION TO He DIFFRACTION BY Cu

G. Armand, J. Lapujoulade, J.R. Manson®*,

and J. Perreau

Centre d'Etudes Nucléaires de Saclay
Service de Physique des Atomes et des Surfaces
91191 Gif-sur-Yvette Cedex

. We present a method for calculating the diffraction intensi-

‘ties in low energy atom-surface scattering which is based on Neuman

iteration of the scattering equations. Comparisons of calculations

using a corrugated Morse potential to new experimental data for He
'scattered by several Cu crystal faces gives good agreement and shows

important in He-metal interactions.

“that the softness of the repulsive part of the potential is very

Since the early days of quantum mechanics it has been recog-
nized that low energy atoms and molecules would be excellent pro-

jectiles for studying surface .structure!l.

The wavelengths of light

thermal energy atoms are approximately of the same dimension as the
interatomic crystal spacing and because of the strong repulsive
no distortion-of the crystal structure,

y o

ba.;.; AT 4

there is little or
hence only the outer surface layer is sampled.

ress in this field was relatively slow due to the experimental

difficulties, particularly with obtaining clean surfaces.

Before 1970, prog-

However,

with the advent of large and efficient vacuum systems together with
molecular jet beams substantial experimental progress was begun

and appropriate theoretical methods were developed
years this type of experiment has become a well established tool
for determining surfaces structure,
face phonon—distributionsl.

In recent

and even more recently, sur-

In the interpretation of experimental data a very useful,
even if somewhat oversimplified theoretical model has been to con-

sider the interaction potential to consist of a hard corrugated
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wall with an attractive potential in front corresponding to the
adsorption well. This corrugated hard wall model can be repre-
sented by:

®;z <¢(R)
V(r) = (1
V(R,2) 5 z > ¢(R)

where z is the direction perpendicular to the surface and R is a
vector lying in the surface. The function ¢(R) gives the corruga-
tion of the hard wall and V(R,z) (which is usually taken to be inde-
pendent of R} is chosen to have the correct asymptotic behavior and
to have bound state energies which agree with observed resonance
behavior.

In this paper we wish to demonstrate an efficient and useful
way of treating realistic potentials (particularly those potentials
with soft repulsive parts) in the surface scattering problem. We
also present new experimental data for the scattering of He by
stepped Cu surfaces and the comparison with the present theory gives
a far better agreement than can be obtained using the simple hard
corrugated wall.

Potentials more realistic than (1) have been treated exactly
by direct integration of the Schrdodinger equation (coupled channel
calculations)! but this method has definite limitations due to the
computer time involved. The theoretical method described here is
an iterative approach which is, in essence, exact and adapted to
virtually all realistic potentials. Good convergence is obtained
even under conditions of resonance with a bound state by using pro-
jection techniques. The calculations presented for the He-Cu sys-
tems are carried out using a corrugated Morse potential and they
reproduce very well the data for scattering of He by a stepped Cu
surface over a large range of incident beam angles™.

The theory is based on the two potential formalism of scatter-
ing theory in which the potential is divided into two parts
V(r) = U + v. Then the scattered intensities are readily obtained
from the distorted wave transition matrix tfi which obeys the
equation -

t

_ . -1
£i - Ve + % Vfl(Ei - El + ig) t (2)

21

where the v,, are matrix elements of v taken with respect to eigen-
states of U. Normally, in obtaining eq. (2) one has to be careful
in defining the difference between outgoing and incoming wave solu-
tions to V(r) and U. However, in the surface scattering problem
such questions are trivial, the difference between an outgoing and
incoming solution of U is simply a phase factor equivalent to the
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S-matrix for specular scattering. If G is a reciprocal lattice
he _ vector of the surface, then the perpendicular component of the wave
e- N vector associated with the Gth giffracted beam is
: T o kgz = [ko2 - (Ko + §)2]1/2 where kg = (K,, Koz) is the incident wave
vector with components K, and ko7 parallel and perpendicular to the
surface, respectively. The diffracted intensities are given by

et

FRNWRTIE] SN

(1 _
. 2 2

Tg = |90 = 3 ™ tox ;1" " *ez Foz (3)
s a :
Tuga- - - where m is the particle mass.
e inde- :
or and We solve for tg; by repeated Neumann iteration of eq. (2), a
nce process that is completely equivalent to distorted wave perturbation

theory carried out to high order. The usual choice for the distorted
potential U in eq. (2} is the surface average of V(r) but there are

‘efgl many other possibilities. For example, substantial improvements in

mtials convergence can be obtained by taking a U which is displaced with
We respect to the surface average or has a different well depths.

}y .

'y gives For incident angles and energies near conditions of resonance

hard with a surface bound state the convergence of the iterative process

is limited by singularities arising from the bound state denominators
in the discrete part of the sum in eq. (2). These difficulties can

ictly be circumvented by simple projection techniques. Formally, eq. (2)
1annel is the operator relation t = v + vGt. We can write G = Gj + Gy and
-0 Fhe then it is simple to show that the transition operator is given by
e 1S the pair of equations t = h + hGyt and h = v + vGzh, or in matrix
1 to element form )
1ined ' 1
1g pro- = - -
e ey = hp g hey By - Bp) s (4)
they , 1
ad Cu : = - s
A e = Ve ; Veg (By - By + de) Thyy ()

atter- If we place all resonant terms in G then the singular denominators

. do not appear in the sum in eq. (5) for hg;, thus the h-matrix is
tained still amenable to an iterative solution. The t-matrix is subse-
s quently obtained from eq. (4) by inversion of a small matrix involv-

ing only the resonant bound states.
(2) : As a specific eiample, for a simple resonance involving only
a single bound state b, the transition matrix is of the form

eigen- = - - 6
) teg = Mgy * Ry Pyy/(By - By - Byp) ©)
e solu- : It is clear—from the presence of the term in the denominator,
blem d : that the resonance associated with the kinematical condition
ng an
o the

.ty e
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Ej = Ep no longer gives rise to a divergence, but is shifted in
energy by Re hpp and has a linewidth determined by Im hyp. I (6)
is inserted in the diffracted beam intensity (3), we obtain the
standard form

1o = JAl? 1 - ib/(x - 1)) 7
where the explicit values of A, b and x are obvious. By examination
of this form, the signatures of the resonances can be characterized

as a function of incident energy E; or incident angle eis. In general
if b is complex the resonance as a function of Ej or 8; will have two
extrema, a minimum and a maximum. If b is real, or nearly so, one of
the extrema disappears and the resonance is of Lorentzian form, a
minimum if -2 <b < 0 and a maximum otherwise. An important advan-
tage of this projection method is that generally in eq. (7) A and b
are slowly varying and only the variation in the normalized energy
difference x is important. Then, to a very good approximation, the
whole resonance can be mapped out by calculating A and b at a single
point near the resonance and then considering I to be a function of
x alone. (Even in the case of multiple or simultaneous resonances

the entire resonance region can be mapped out in a very similar
manner. ) ‘

We have carried out a series of numerical calculations using
the corrugated Morse potential defined by

V(x) = D{exp[2x(s(R) - 2)]/v, - 2 exp[-xz]} 7 (8)

where v, is the surface average of exp [2x $(R)]. The surface
average of (8) is then a Morse potential and the perturbing poten-
tial v can be expressed as a Fourier series

i G-R -2Kz
- —e

v(R,z) = Z Ve © (9)
gxo0 £

with

Vo= 5 f ar et ER 2 OM) (10)
u.c.

Since the matrix elements of exp(-2«<z) with respect to Morse poten-
tial eigenstates are well known the matrix elemefits ve; of (9)
which appear on eqs. (2) and (5) can be calculated analytically.

Figure 1 gives the results of a typical calculation and is for
the case of a 63 meV He beam scattered by the (110) surface of Cu.
The Morse potential parameters are « = 1.05 ALl and D = 6.35 meV
and the corrugation function is a one dimensional sinusoid
$(x) = ha cos(2wx/a) with a = 3.6 R and h = 0.012. The experimental
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Fig. 1. Comparison between the experimental data and four theoret-
ical models for the scattering of 63 meV He by a Cu(110)
surface: CHW, corrugated hardwall with corrugation para-

meter h
h = 0.01
tial, h
tial, h

and well depth 6,35 meV; CE

i

0.013; CHWW, corrugated hard wall with well,

, corrugated exponen-

0.012, « = 1.05 R‘l; CM, corrugated Morse poten-
0.012, ¥ = 1.05 81 and D = 6.35 meV. The in-

cident plane contains the 100 direction.

data shown with error bars are obtained by extrapolation to zero
temperaturel+ and renormalizing the sum of the inplane diffraction

intensities to unity. The renormalization is

carried out in order

to eliminate the effects of out-of-plane diffraction in the com-

parison with the one-dimensional calculations.

The data are com-

pared with four different models, the corrugated hard wall, the

corrugated hard wall with an attractive well,

a repulsive corrugated
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exponential potential, and the corrugated Morse potential of eq. (8).
It is seen from this and numerous other calculations that the corru-
gated Morse potential agrees with the data over a large range of
incident beam energies, while the other potentials (and in particular
the hard wall models) cannot give adequate agreement for the dif-
fracted peak intensities even if they are reasonably good for the
specular peak.

Equally good agreement is found for the same experiment as in
Fig. 1 but with an incident energy of 21 meV. The only adjustment
that must be made is to decrease the corrugation parameter h to a
value of 0.008 for the Morse potential calculation. This decrease
in corrugation is in agreement with recent theoretical predictions
indicating that the corrugation is given directly by the electron
density7. More recent calculations using a modification of the
corrugated Morse potential which incorporates the increase in cor-
rugation amplitude with energy are in excellent agreement with
experiment at energies from 21 meV to 240 meVS.

No resonances were observed experimentally for the He/Cu(110)
system and this is consistent with the calculations which showed
that the resonances would have widths of only a few hundredths of
a degree in 63, i.e., they are far too narrow to be seen with the
current experimental precision. Clear resonance behavior was seen
on the (113), (115) and (117) faces? and all three are consistent
with bound states of energies -4.5 meV, -2.2 meV, -0.95 meV, and
-0.35 meV. Since the same bound states were aobserved for all three
of the different strongly stepped surfaces, it appears evident that
~the adsorption well is essentially the same for all faces of Cu. .

Figure 2B shows for He/Cu(113) the behavior of the specular
beam in the neighborhood of the resonance of the (10) reciprocal
lattice vector with the lowest (n = 0) bound state at an energy of
21 meV. Calculations with a one dimensional corrugation give a
narrow maximum instead of the broad experimentally observed minimum.
Because the resonance couples strongly only with the specular this
corresponds to eq. (7) with -b 5 2. The value of Re b can be re-
duced by adding more diffraction channels out of plane that couple
with the resonance. Hence Fig. 2A is calculated with the following
corrugation function corresponding to the two dimensional unit cell
in the form of a parallogram:

o (x,y) = a{hlo cos(gnx/a) + h01 cos (vx/a) cos(2ny/a)

+ h11 cos(3wmx/a) cos(2wy/a) - CO
with x and y rectangular coordinates, a = 4.227 R is the distance
between steps, and b =-2.55 R is the nearest neighbor distance.
The corrugation coefficients are th = 0.017, hgy = -hyp = 0.006,
and Cp; = -0.002. The presence of diffracted peaks out of the

1 sin(mx/a) cos(2wy/b)} (11)
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Fig. 2. Behavior of the specular peak as a function of incidence
angle in the region of the resonance of the (10) reciprocal
lattice vector with the n = O bound state for He/Cu(113) at
an energy of 21 meV. B. experimental curve; A. calcula-
tion using the Morse potential with k = 1.05 A%, D= 6.35
meV, and the corrugation function of eq. (11).

plane of incidence could not be measured in the experiment, hence
their effect is not known. To test the importance of out-of-plane
diffraction extensive calculations have been carried out with the
corrugation of eq. (11) particularly at the low incidence energy of
21 meV. When compared with the non-renormalized experimental data,
the agreement is quite good and not appreciably different from that
such as shown in Fig. 1. The effect of the out-of-plane channels

is to reduce Re b and enhance Im b producing the double structure
of Fig. 2A with a slightly predominent minimum. If inelastic events
were included in the calculation, more channels would be coupled to
the resonance and it is virtually certain that the structure would
become a pronounced minimum in better agreement with experiment as
has been demonstrated with hard wall models for the scattering of
He by graphitelo. Thus it is clear that the behavior of the dif-
fracted peaks can be quite well described by a one dimensional
corrugation except near a resonance where a small amount of out-of-
plane diffraction can have a large effect on the form of a resonance

curve.
3

In conclusion, we have demonstrated how a theory can be devel-
oped for the elastic surface scattering of atoms by a soft potential
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model. The theory is based on an iteration of the t-matrix equation
for scattering with appropriate projection techniques for handling
the bound state resonances. Calculations have been performed with
the corrugated Morse potential and compared with new experimental
results for the diffraction of He by several Cu surfaces. The de-
tailed comparison with experiment seems to indicate that inelastic
effects are important near resonance conditions, since inclusion of
extra elastic diffraction channels caused by a weak corrugation in
close packed directions on the stepped surface does not completely
adequately describe the resonance signature. However, the overall
trend of the calculations for the diffracted intensities as a func-
tion of incidence angle is very well described by the corrugated
Morse potential. 1In fact, a comparison with hard wall calculations
demonstrates clearly that the softness of the repulsive part of the

atom-surface potential is very important in the scattering of He at
metal surfaces,
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