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The attractive interaction between an atom and an electron or positron is described as a complex single-
particle self-energy in which the effects of recoil and finite velocity are treated exactly. In addition to the
well-known expansion for the potential in powers of the inverse separation distance 1/R with nonadiabatic
corrections, we obtain a contribution due to the recoil of the electron as it exchanges virtual quanta with

the atom.

The long-range attractive interaction between an electron
and an atom or molecule has its origin in the polarization of
the collective system by . the approaching electron. For
atoms or molecules without permanent dipole moments the
force is entirely quantum mechanical in nature and is usual-
ly calculated in a development based on perturbation theory.
The potential is determined as a power series in the inverse
distance 1/R between the electron and the atom, the
lowest-order term being 1/R* and the next term is 1/R®
containing, in part, the nonadiabatic correction due to the
inability of the atomic electron cloud to follow faithfully the
motion of the electron.!

When a virtual quantum is exchanged both the atom and
electron must recoil in order to conserve momentum. Even
for the lightest atoms such as hydrogen or helium, the ef-
fect is negligibly small, but for the electron which has a very
small mass, the recoil may cause measurable changes in the
interaction. Motivation for this work comes partly from the
analogous problem of the interaction of an electron with a
solid surface. There, the effect of recoil is to modify
strongly the classical 1/z self-energy and to cause it to satu-
rate to a constant near the surface,”? and this saturation of
the interaction potential has been recently verified experi-
mentally.*

Here we consider the interaction between an electron and
an atom in a self-consistent many-body formalism which in-
cludes full three-dimensional recoil. The interaction poten-
tial is expressed as a complex self-energy and the formalism
can be extended to all orders of perturbation theory. The
formalism separates clearly the effects of electron recoil and
the nonadiabatic contributions originating in atomic excita-
tion, the latter being due to the inability of the atomic elec-
tron cloud to follow the motion of the scattering electron.
To lowest order in our formalism the nonadiabatic effects
appear as the velocity-dependent 1/R® correction to the
leading 1/R* term. The effect of recoil of the scattering
electron is to reduce the strength of the interaction, and for
small separation, it causes the 1/R* interaction to saturate
toa 1/R? form.

As a starting point for the calculations, let us consider the
interaction between an electron and a hydrogenlike atom.
The generalization to more complicated systems will become
apparent shortly when the results are expressed in terms of
polarization operators. We will also, for simplicity, neglect
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exchange. We take the unperturbed system to be an isolat-
ed atom and an electron for which the corresponding eigen-
state is the product of an atomic function and two momen-
tum functions.
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where €, is the unperturbed atomic energy measured from
the ground state and atomic units are used throughout. If
7, and 7, are the vectors from the origin to the atomic nu-
cleus and to the scattering electron, respectively, and if p; is
the vector to the atomic electron, the perturbing potential is
then
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The first nonvanishing contribution to the energy shift
comes from second order in perturbation theory:
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This energy shift is expressed in terms of the spatial integral
over an interaction self-energy

AE = [ aR(OIR)Z(R)(RIO) , ®

where (R|0) is the translational eigenstate of the electron-
atom system in the center-of-mass reference frame. The
self-energy 3(R) can be systematically generalized to all or-
ders in perturbation theory,>> although in the present case
we stop with the second-order term which leads to
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We evaluate the matrix elements by expanding to first order
in the atomic operator r; = p; — 7; and obtain the expression
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Clearly in the denominator, the recoil term involving m,
the mass of the atom, is small with respect to the corre-
sponding term for the electron. If we also neglect the terms
in the velocity and recoil of the electron and approximate
the denominator by the atomic energy exchange ey, we re-
cover the familiar 1/R* potential

s(R)=—-L 3 Wzl ®
R f €f

where z is the polarization operator parallel to the direction
of R. (We have also made the tacit assumption that the

atomic energies are independent of azimuthal quantum -

number.) However, because of the light mass of the elec-
tron, the neglect of its recoil in the denominator is valid
only for asymptotically large values of R. This is most
readily seen for the case in which the relative velocity of the
system is small, i.e., P,— 0. The self-energy can then be
obtained in closed form and is
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This clearly reduces to Eq. (8) as aR — oo. An interesting
case which illustrates that recoil indeed causes a saturation
of the self-energy is the limit aR — 0 where we recover
2(?}71 + 1) _\
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The effect of recoil as the system exchanges virtual quanta
is to weaken or saturate the interaction to a 1/R? form. The
range of the effect is given by the parameter a=+/2e,,
which can be several atomic units, as noted by estimating e,
to be a typical atomic excitation energy. Although the limit
of zero separation distance (R =0) is certainly beyond the
range of validity of the approximations used to develop Eq.
(7) the expression shown in Eq. (11) is more than a mere
academic exercise. It demonstrates that the inclusion of
electronic recoil weakens the leading 1/R* term (and will
also act similarly on the higher-order terms as well) at
separation distances where the effect can become noticeable.
Furthermore, this effect is not expressible in terms of a
power series in 1/R.

If we now allow the system to have a finite relative ve-
locity, Eq. (7) can again be readily evaluated in terms of
complete and incomplete auxiliary functions to the sine in-
tegral.® When there is a finite relative velocity the self-
energy becomes complex and the imaginary part can be fur-
ther divided into conservative and nonconservative parts.
The nonconservative part is finite only if the system has
sufficient initial energy to create a real atomic excitation,
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i'.e., if the energy is above the inelastic threshold. The
asymptotic correction to the real part is velocity dependent
and develops in a power series in 1/R2. Thus the lowest
correction is of the same order in 1/R as the next term
coming from the multipole expansion of the potential of Eq.
(3). Restricting the development to the dipolar terms, the
real part of the asymptotic form of Eq. (7) becomes
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The correction term, proportional to the initial energy, is
recognized as the first velocity-dependent nonadiabatic con-
tribution.! The leading term in the low-energy conservative
imaginary part is proportional to the electron velocity and is
given by
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We should emphasize the importance of keeping full
three-dimensional recoil in these calculations. It is consider-
ably simpler to neglect the longitudinal component and re-
tain only the two-dimensional recoil in the directions
transverse to the axis of relative motion. If this is done,
one obtains erroneous recoil corrections to the 1/R* poten-
tial which can be expanded in 1/R in the asymptotic region.
However, the correct three-dimensional treatment gives the
much faster exponential decay of recoil effects as illustrated
in the case of Eq. (9).

We have shown in this article that the many-body interac-
tion between an electron and an atom can be represented by
a complex effective self-energy. This self-energy distin-
guishes very naturally between the effects due to recoil of
the electron and the nonadiabatic contributions from the
atomic electronic cloud. Although the effect of recoil de-
cays exponentially with separation, we have shown that it
can contribute to a significant weakening of the leading
1/R* term in the potential and it will have a similar effect
on the higher-order terms. Thus, considerations of recoil
saturation of the potential can be important in the finite-
range problem of electron-atom interactions. We note also
that the expressions derived in this paper apply equally well
to the low-energy interaction of a positron with an atom.
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