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We examine the problem of threshold resonances in the diffraction of atomic and molecular
beams by solid surfaces. We show that the divergence in the slope of the intensity as a function of
incident polar angle appears generally in all diffraction peaks. However, for interactions with
realistically soft repulsive parts we find that the resonances are weakened to the point where they
will be difficult to observe experimentally.

In the elastic scattering of atomic or molecular beams by periodic surfaces
the diffraction intensities should exhibit resonance behavior whenever the
initial conditions are such that a new diffraction beam just becomes visible.
These threshold resonances, or emerging beam resonances, are a general
feature of diffractive systems and in fact have been discussed for many years in
connection with low energy electron diffraction [1-3]. In atomic and molecular
surface scattering, threshold resonances have been a subject to continued
theoretical interest because of the information they would provide on the
nature of the interaction potential [4-6]. However, unambiguous identification
of these resonances with present day experiments appears difficult [7].

The typical experimental configuration is to measure the diffracted beam
intensities as a function of incident polar angle with the incident energy held
constant. When a newly allowed diffracted beam emerges from the surface its
intensity increases rapidly from zero with a very steep slope. Conservation of
flux would require that this rapid change would appear in the other diffracted
beams as a rearrangement of intensities. Several calculations based on the hard
corrugated wall model for the atom-surface interaction have indicated that
threshold resonances should be readily observable for systems in which dif-

0039-6028 /86 /$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)



G. Armand, J.R. Manson / Threshold resonances in diffraction at surfaces 217

fracted beam intensities are not too small [4,6]. In this paper we reexamine the
problem in the context of a more realistic soft potential for the scattering
interaction. We find that the resonance is manifest in every diffracted peak,
but that the inclusion of softness in the interaction drastically weakens the
effect so that it is noticeable only over an extremely small angular range. Thus,
only for the most strongly corrugated and most rigidly interacting systems will
threshold resonances be experimentally observable in diffraction intensities.
The name threshold resonance is somewhat misleading since it is not a true
resonance in the sense of a coupling with a degenerate bound state, but since
this appears to be the standard terminology in diffraction physics we will
continue to use it. It usually is described as a divergence in the slope of the
diffracted beam intensity as a function of incident polar angle under condi-
tions of constant energy. The explanation of the resonance is relatively
straightforward. We denote by I; the intensity of a diffracted beam with G the
associated two-dimensional reciprocal lattice vector parallel to the surface.
This intensity I; can be regarded as a function of incident particle wavevector
ki = (K, k;.) and final diffracted beam wave vector k; = (K; + G, k.), with
ki. and k. being the respective components perpendicular to the surface. The
kinematical constraints of conservation of energy and parallel momentum give

L=kI- (K. +G), (1)

and for convenience we write K| = ék;sin 8,. If we denote by IV the reciprocal
lattice vector associated with an emerging beam, the slope of its corresponding
intensity is i

31, [ 8Ly \( ks
39, “(akN:)( 39, )+ (2)

1

where other partial derivatives appearing in (2) are ignored because they are of
no serious consequence to the discussion. We obtain immediately from (1)

akz\/:/aai= —é'(Ki+N)ki:/kN:’ (3)

the important point being that at emergence when k,.— 0 the derivative
diverges as 1/k ., and consequently so does the slope in eq. (2) unless I, goes
to zero at least as fast as k3. for small k.. We show below that in general I W
varies no faster than the first power of k,. and thus the origin of the
divergence of the slope is in the Jacobian derivative in eq. (2). We mention in
passing that the arguments above also show that the threshold resonance
should appear in a variety of possible experimental configurations, including
regarding I as a function of parallel momentum exchange at constant energy,
or as a function of incident total energy with fixed incident angle.

To examine the question more closely we note that the intensity of a
diffracted beam is given by [8]

IG=|86.0—imt(;i/hzvki:kG:lz’ (4)
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where the transition matrix ¢, obeys the integral equation
a1
tGi=UGi+ZUG/(Ei_EI+1) L. (5)
/

We have assumed here a distorted wave formalism in which the total interac-
tion potential V(R, z) between particle and surface is divided according to

V(R, z)=U(z)+v(R. z), (6)

with U(z) the average of V over the surface. The matrix element v, are then
matrix elements of the potential v taken with respect to eigenstates of U(z).
Regarding now the intensity of an emerging beam

Iy= |thi/h2|2/ki:kN:’ (7)

conservation of total flux (i.e. the unitarity condition) requires that 0 </, <1
and the transition matrix t,; must go to zero at least as fast as k,. for small
k .. However, in general we can argue that

i = kn: as ky.—0. (8)

This is because, from the z-matrix equation (5), t,; will have the same limiting
behavior as the matrix element v, except in highly unusual circumstances,
and for all potentials to date which admit to analytical calculation one finds
linear behavior in vy; as k,, — 0. This includes the corrugated Morse and
exponential repulsive potentials as well as the corrugated hard wall or a simple
step potential. This behavior is clear for the latter two potentials, where the
perpendicular momentum dependence is given by [9]

Uk go,, = 4Nk g1/ 2m, (9)

and the two former potentials reduce to this same form for small k. This
argument would fail if the matrix element varied as k3, with a > 3 /2 for small
k . but this appears highly unlikely. Inclusion of the correct I/z> Van der
Waals attractive part of the potential would not critically affect the situation
since this would tend to enhance rather than reduce the matrix elements for
small k. [10]. An example of an effect which might produce a smaller matrix
element is potential with an activation barrier in front of the repulsive part. It
is very straightforward to show that an activation barrier has the effect of
reducing the particle flux in the region of repulsive potential but the same
linear dependence in k,, is obtained.

The above arguments serve to justify the statement that the emerging beam
appears with an infinite slope for example in the plot of intensity versus 8,. We
now consider what occurs simultaneously in the other beams. Although our
discussion up to this point has been limited to the emerging beam itself (which
we continue to denote by the reciprocal lattice vector V) a quick review will
reveal that any diffracted intensity of eq. (4) will exhibit a similar divergence in
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slope d1;/d8, if I; contains terms proportional to k3. with a <2. Such terms
do appear since the transition matrix couples all channels. We expand the
Green function of eq. (5) into real and imaginary contributions

P
fr~.=Ur;'i7TZUre5(Ei—EJ%a*’Z”rJEi‘E‘%w (10)

where P denotes the principal part integral. Then the transition matrix for a
typical non-emerging diffraction channel G will contain, among others, the
following terms
toi = Vgi — immugntyi/hkn. —imm Y, toolei/Pke.+ .. .. (11)
G'#N

the second term on the right being the coupling to the emerging beam coming
from the energy shell contribution of eq. (10). We have argued above that both
vgy and t,,; will be linear in k. for small k,._, thus the coupling term in (11)
will be linear in k. It is now clear that when ¢; is inserted in the intensity of
eq. (4) there will be cross terms which remain linear in k,. and these linear
terms will all contribute a divergence to d/,/98,, except under highly unusual
circumstances in which all such linear terms cancel each other. Thus we find
that not only does the resonance appear in the emerging beam, but a similar
divergence in general appears simultaneously in each and every diffracted
beam.

It now remains to consider the effect of a soft potential on these resonances.
We illustrate this with a model calculation, choosing as the distorting potential
an exponential repulsion

U(z)=De ", (12)

with the perturbing potential expanded in a Fourier series and each term

having a similar exponential behavior

v=D )Y, Age "0k (13)
G#0

The matrix elements for such a potential are well known

Ak - -
V6o = AG_QW\/p sinh( p7) ¢ sinh(g7)

pl— g
cosh( pm) —cosh(gm)’

(14)

with p=2kg./x and q=2k,_/x. Since the intensity of an emerging beam is
weak we are justified in using the distorted wave Born approximation ¢, = vy,
and the relevant matrix element takes the form

B2 32 (2)5/2 2 \[ki_. sinh(27k,./x)
N cosh(mk,./k) =1

(15)

Ui\'i i AN

k.Vi-O m

For a light atom or molecule scattering from a surface typical parameter values
are k;=5-10 A”! and k=2 A~'. Thus for all except grazing angles of
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incidence we are justified in replacing the hyperbolic functions in (15) by
exponentials. Then the expression for the slope of the emerging beam intensity
s

1 2k, \°
a_;zl)\N'Z”}(—xl;) é- (K +N)e ™/"/k, . (16)

The strength of the resonance is dominated by the factor (k,./k)°X
exp(—2mk;./x) which is small. For comparison, the same slope calculated
from the hard corrugated wall matrix elements of eq. (9) is

0l

W—4k2A (K, +N)d*/ky., (17)

where d is the characteristic height of the corrugation. For all except very
grazing angles of incidence, where the approximations leading to (16) break
down, the hard wall result (17) is substantially larger. This analysis implies that
for a physically realistic soft potential the 1/k,. divergence will be very weak
and will appear over a much smaller angular spread than that predicted by the
hard wall model.

We have carried out a series of detailed calculations to investigate threshold
resonances for a variety of experimentally interesting systems. Shown in fig. 1
is an example for the case of H, scattered at a Cu(100) face. This is an exact
calculation by iteration of the transition matrix equation (5) using the corru-
gated Morse potential [11]:

V(R. z)=D{e 2BlmoR) 1 _ =B} ' (18)

The beam 15 incident in the (110) direction (¢, = 45°) with a wave vector
k,=8.6 A~'. The potential parameters are D = 21.6 meV, 28 =1.94 A~'and
the lattice spacing is a 2.55 A. The corrugation function is

¢(x,y) = (ba/2)[cos(27x/a) + cos(2my/a)], (19)

with 5 =0.036, and v, is the surface average of exp[2B¢(R)]. The (10)
diffracted beam is emergent at an incident polar angle of slightly less than
50.96°. The step slope of its intensity and the singularities it causes in the slope
of the (10) and (00) beam intensities are evident. However, what is most
important is the scale. The range of angles over which the resonance occurs is
so small that it could not be observed within current experimental precision.

In order to make a direct comparison with the hard corrugated wall model
the same resonance is examined in figs. 2 and 3 using the corrugated exponen-
tial potential [12], i.e. the repulsive part of eq. (18). Calculations are carried out
for three values of the range parameters, 28 =3 A~'. 28 =6 A™' and 8 — =
which corresponds to the hard wall limit; all other parameters are the same as
for fig. 1. Fig. 2 shows the (00) and (11) peak intensities and the (01) and (11)
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Fig. 1. Calculations using the corrugated Morse potential for H, scattered by a Cu(100) surface.
Shown are the intensities of the (0.0) or specular beam, the (1,0) and the (1.0) in the vicinity of the
emergence of the (1.0) peak.

intensities are in fig. 3. For 28 =3 A~!, which would be a typical value for the
surface of an insulator, the resonance occurs over such a narrow angular range
as to be invisible on the scale plotted. Only when the surface is made
unrealistically hard does the resonance become evident. Numerous other
calculations tend to confirm the observation that if the repulsive part of the
interaction potential is soft the threshold resonances will be too weak for easy
observation [5,12].

In this paper we have reconsidered the problem of threshold resonances in
atom-surface diffraction in the light of realistic potential models with soft
repulsive parts. This type of resonance is characterized by a divergence in the
slope of the intensity of an emerging beam as a function of incident polar
angle or other convenient parameters. We show that in general a similar
divergence in the slope appears simultaneously in all diffracted beams. Calcu-
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Fig. 2. Calculations using the corrugated exponential potential for the same system as fig. 1,
showing the approach to the hardwall limit. The curve marked 3 is for 28 = 3 A~ !, that marked 6
is for 28 = 6 A~ ! and the curved marked o is the hardwall limit B — co. Shown are the intensities
for the (0,0) and (1,1) peaks as marked.

lations based on hard corrugated wall models indicate that these resonances
would be detectable experimentally. However, we find here that once the
repulsive part of the potential is made realistically soft such resonances
becomes very weak and occur over an angular range so small as to make them
unobservable within the constraints of current experiments, the only possible
exception being large surface corrugations coupled with grazing incident angles
or very low incident energy. These conclusions are supported by both ana-
lytical and numerical calculations.

As a final note we should emphasize that the calculations presented in this
paper are for the elastic diffraction of atoms and molecules, and we have
demonstrated why the associated threshold resonances are difficult to observe
experimentally. Basically, the explanation is due to the fact that new diffrac-
tion beams, -although they emerge with a very steep slope, tend to have
intensities relatively small compared to the other diffracted beams while they
remain in the region of large or grazing angles. In the case of molecule
scattering there will be additional discrete scattered beams due to the excita-
tion of molecular rotational modes. These inelastic rotational sidebands can
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Fig. 3. Same as fig. 2 except showing the intensities of the (0.1) and (1.1) peaks.

also exhibit threshold resonances whenever kinematical conditions allow a new
beam to appear. Experiments, for example with hydrogen molecules of various
isotopic composition, show that the inelastic rotational peaks can be very
intense near grazing angles [13,14]. Consequently, for such systems a threshold
resonance structure may be readily observable.
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conversations. This work was supported by a NATO research grant.
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