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INELASTIC SURFACE SCATTERING OF
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This paper is an extension of the authors’ earlier work to include a treatment of one-
phonon inelastic scattering of particles which do not penetrate appreciably into the
crystal. A full quantum-mechanical treatment of the lattice vibrations is used throughout,
and the results are not restricted to small scattered intensities. Calculations are presented
for the scattering of helium atoms by a simplified model of the crystal surface.

1. Introduction

The scattering of non-penetrating particles has proven to be a very useful
technique for determining the surface properties of a crystal. However, there
is presently a large amount of unexplained experimental data available!-4%)
which, if properly analyzed, would surely lead to a much better understan-
ding of the crystal surface. The theoretical description of surface scattering
has been developing for many years, the fundamental work being contained
in the series of papers by Lennard-Jones, Devonshire, and co-workers3-8).
Recently there has been a great deal of renewed interest in the area mainly in
connection with the interpretation of low energy electron diffraction da-
tad9-13). However, existing theories of the scattering of non-penetrating

particles have been developed either from a classical standpoint14~16), or

within the framework of the Born approximation3-8.17-19)  and none of

_ these treat the many body features of the scattering process in a systematic

manner.
This paper is an extension of the authors’ earlier work29:21) to include
scattering processes in which energy may be exchanged at the surface. The
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496 R.MANSON AND V.CELLI

complete quantum mechanical description of the lattice vibrations is used
throughout and the theory meets the requirement of unitarity; i.e. the total
number of scattered particles always equals the number of incoming par-
ticles.

The kinematics of the scattering process is quite simple. An incoming par-
ticle with wave vector p;, having components P; parallel to the surface and
p.; perpendicular to it, is reflected into the final state of wave vector p;, with
components P, and p.,. If no energy is exchanged between the particle
and the surface then

P,-P,=G, 1.

where G is a reciprocal lattice vector of the surface, and energy conservation
implies
2 2 :
pr—pi =0. (1.2)

In the case of inelastic processes the right-hand side of (1.1) contains the
parallel wave vector of all exchanged phonons, and (1.2) is replaced by the
corresponding equation containing the phonon frequencies. The convention
is that the crystal lies in the region z<O0, hence the perpendicular wave
vector p,; of an incoming particle is negative, while the perpendicular com-
ponent p, ; for a final scattered particle is positive.

The next three sections of this paper are concerned with developing the
theory of inelastic surface scattering with particular applications to the
“distorted wave Born approximation” and the unitary treatment of one-
phonon exchange. In section 5 these results are used to calculate the spec-
trum of particles scattered from a simple crystal model.

2. Development of the theory

The theory of inelastic surface scattering can be developed along several
equivalent lines but perhaps the most convenient for our purposes is the
-twa-potential formalism of Gell-Mann and Goldberger 22), Since we are
interested in the energy region in which none of the incoming particles pene-
trates appreciably into the surface, the total interaction potential ¥} is divided
into a “large” part U exhibiting total reflection and a remainder v=V;— U
which must be treated approximately.

As discussed in 121) we can relate the potential U to the thermal average of
the total interaction potential. If V; is chosen to be a sum over all lattice sites
of two-body atomic potentials, i.e.

V=T o' (r—r =), @.1)

where u, is the small displacement from equilibrium of the crystal ion at
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position r,, then it is shown in I that the thermal average can be written as

F>=NYEYYexp[iG-R +iq(z - zn)] exp[~ Wa(G, g)] 05, (2.2)
G m g

where N is the number of lattice sites on the surface, W,(G, q) is the Debye-
Waller factor for ions in the mth plane parallel to the surface, UG, q is the
Fourier inverse of the atomic two-body potential, and R is the projection of
the position vector on the surface. By making the definition

Us(2) =N Y exp[ig(z —~ z)] exp [~ W(G, @)1 v5,,  (2.3)
m q
the thermal average takes the simple form
Wy = ZG: e’ Ug(2). (2.4

It has proven to be most convenient to take the potential U such that it gives
rise to total specular reflection only. The obvious choice is

U = UG'O(Z)' (2.5)

The eigenfunctions of U for outgoing wave (+) and incoming wave (=)
boundary conditions will be denoted by x{¥); they are products of a vibratio-
nal wave function for the solid, a plane wave for particle motion parallel to
the surface, and a normal wave function x*) (p,, ;z) which obeys the equa-

A* 0 A°p;
— st —— = U | ¢® .3 2)=0. 2.6
<2m 22 2m ) £ (pari 2) (2:6)

Eq. (2.6) can have solutions for pi <0 corresponding to surface bound
states.

The transition rate w 71 from some intitial state i to some final state fis
given in terms of the transition matrix T, by

2r .
N ’ Wy = ;’ |Tfiiz 5(Ef - Ei)’ 2.7

where E, and E; are the final and initial energies of the entire system. The
subscript for i is a collective label for the wave vector (P, p.) of the scattered
particle and the number of phonons {n} in each vibrational mode of the
crystal. The reflection coefficient R(p,, p;) discussed in 1 is found by dividing
the transition rate by the incident particle flux j;=/#p_,/mL (where L is the

quantization length), and then summing over all final phonon states and
averaging over all initial phonon states

R(py. p) = ;7" Z }: o (n) ITHl? 5(E, — E). 2.8)

{nr} (ng}
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where p({n;}) is the distribution of initial phonon states. For inelastic scat-
tering the experimentally measurable quantity is the differential scattered
intensity or differential reflection coefficient dR/dE,dQ;. This is obtained
upon multiplying the reflection coefficient by the available volume in phase
space for a final scattered particle

dR (P_h p) _ L 2"’"in|
_d_Ef_dEf- = <27r> Z Z p({n}) | Tyl 8(E, — E) (2.9)

{ng} (m}

Thus all information on the scattering process depends upon knowledge of
the matrix element of the transition operator taken between initial and final
states, ¢; and ¢, of the unperturbed system. Gell-Mann and Goldberger 22)
have shown that this matrix element is equivalent to

Ty = (b, Ui™) + 1y, " (2.10)

where the reduced transition matrix t7; obeys an integral equation involving

only v,
1

=7, v ™) + Vol ) —— 1. 2.11

fi (,(f » UXi ) Z(Xf H ,(c EE—EC+IE ci ( )

At this point we note that since U is chosen to give rise only to specular

reflection of low energy incoming particles, the outgoing wave eigenfunction

¥*) (where i denotes the set of quantum numbers describing the incident

beam) can differ from the incoming wave eigenfunction #47) (where s denotes

the quantum numbers of the specular beam) only by a phase factor depen-
ding on the absolute value of the perpendicular momentum, i.e.

1P =6y, 2.12)
where

o= 5i(|pzil) = 5i(P:s)' (2.13)

In fact, e/ is the scattering matrix (S-matrix) for the potential U.
The first term on the right-hand side of (2.10) is simply the transition
matrix for U-scattering and is shown in I to be given by

iA? | p.i

%o, . 2.14
mL fs ( )

(‘pf: UZ%”) =

where the Kronecker d-function implies that it contributes only to specular
scattering. '

It is convenient to define a new reduced ¢-matrix-t according to
7 -1id;
tﬁ=tﬂe ! ’ (2.]5)

r
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so that eq. (2.10) becomes

SO LI P (2.16)
fi mL Ofs fs( :
and (2.11) is cast into the form
t +3 L t (2.17
=y Vpg o lgs» .
Is fs 5 ngl—Eg-’rlE gs )
where
e = (7, v (2.18)

The problem now reduces to one of finding solutions for the t-matrix of
(2.17). In general this is impossible to do exactly; however, if we neglect the

" principal part contribution to the sum over intermediate continuum states in

(2.17) we are left with an approximate integral equation which can be solved,
i.e.

tpg= vy — mZu,cé(E —-E) tc,+2v,,, (2.19)

1

E, - E,,
The sum over ¢ in (2.19) runs over all continuum states while the sum over
runs over all discrete states of the potential U. It is obvious that this approxi-
mation neglects the intermediate interactions with energy non-conserving
continuum states, but the contributions from all bound states are kept re-
gardless of energy conservation. The Jd-function in (2.19) can be used to
carry out the sum over perpendicular momentum leaving

_'vfs—lz Z vchtcs+Zzz Upp o

e, (2.20)
e {ne} oo im  Ei— Eb ’

where N,=mL/2h%p,. is & times the density of states for perpendicular mo-
tion, and the total energy of a particle in a bound state b is given by
B2 (K2 —xd)/2m. )
It is shown in the Appendix that eq. (2.20) leads to results whxch obey the
quantum mechanical condition of unitarity for both elastic and inelastic
scattering. The case of elastic surface scattering has been discussed in I, and

we wish to consider here the extension of those results to the case of one-
phonon inelastic scattering.

¢ 3. Distorted wave Born approximation

The simplest approximation to the 7-matrix is the “distorted wave Born
approximation” and is obtained upon replacing t, by v, in (2.16). Since the
specular scattering is of no interest in the Born approximation, the first term
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on the right of (2.16) will never enter and we can replace vy, by matrix ele-
ments of the true interaction potential V. The reflection coefficient for par-
ticles scattered from the initial state k; to the final state k is then

2
R(kf: k;) = h_:t' Z EP({’%}) I(Z(f-)’ Vil(i-))lz 5(Ef - E). (3.1
{ns} (ni}

The sums over phonon states can be carried out using the methods of solid
state field theory as developed by Van Hove 23) and the results are

1 -
R(kf, kl) = -h—27 j‘ dt exp [lﬁ(k% - klz) t/2m] J‘ drj dr’xg') (r)

x 757(r) 477 () L) Z[: ; Zk: ; exp [ik' -(r = r) —ik-(r — 1]
oo exp [— () = We () + Qur (K5 )], 62)

The term W,(k) is the Debye-Waller exponent and depends only on that
component of I which counts crystal planes parallel to the surface. The expo-
nent Q,.(k, k'; t) is essentially the two-particle correlation function dis-
cussed in detail by Glauber24). For a monatomic lattice it has the explicit

form . .
k-e* (1 V| eefr Q
Q.,,(k,k';:)=2;M;[ <‘v2,]v([g) ()
C {(n(@)+ 1) exp[iQ-(R = R) +160,(Q) 1]
+ ny(Q) exp[— Q- (R, — Ry) — i, (@) 1}, (3.3)

where M is the mass of a lattice ion, n, (@) is the Bose-Einstein. occupation

[, Y.

number and e <I‘?) is the unit ;po'larizé.tion vector for a phonon of parallel

wave vector Q and other labels v (perpendicular wave vector, polarization, .
etc.). The polarization vector also depends only on the component of / which
counts planes parallel to the surface.

It is apparent from (3.3) that the factor exp [Qu (k, k’; £)], through its
dependence on ¢, contains all the possibilities for energy transfer. The elastic
(zero-phonon) and inelastic (one-phonon, two-phonon, etc.) reflection coeffi-
cients are obtained by expanding exp [ Q- (k, k’; t)] in powers of Qy (kK5 0).
From the zeroth order term, upon carrying out the trivial sums and integra-
tions and recalling the definition (2.3), we obtain the elastic reflection coeffi-
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cient in the form A

\
™ ~ -
RO (k,, ki)=g;;c—_ 2 (7 (e 2), Ug(2) 17 (ks 2))12
ZlG

hZ
x3(K,—K,—G)é <2—m [k - k?]) (3.4)

It is seen that R is non-vanishing only for wave vectors K that satisfy the
condition of Bragg diffraction.

The inelastic scattering in which a single phonon is exchanged is obtained
from the first order expansion of exp[Q,. (k, k'; t)]. Again many of the
sums are trivial and the differential reflection coefficient for one-phonon in-
elastic scattering can be written

dR (ky, k) _ e
dE,dQ; Zh“NMk,, ©,(Q)
G Qv

x {I(Z(-_)(k:ﬁ 2), V-U_g-6,+(2) 7 (ks z))'z("v(Q) +1)

<5(K, =K+ + )3 (3 [ - K] + 0,(0))
+ |(X(-) (sz; Z), V UQ—G,V(Z) X(-)(k:ﬁ z))lz nv(Q)
<80 - K= 0.+ 6)3 = 16 - K] - wv(Q)>}, (.3)

where the reduced vector potential Uy, ,,(z), and the divergence operator
V are defined by

Uger(9) = N T L expliq(z = 2)] tger.aexp [~ Wi(Q + P, 9)] ¢ <z lg),

A L - ' (3.6)
and

- lv UQ+P,V(Z) = (Q + P) —1 %).UQ*-P,V(Z)' (37)

The physical meaning of (3.5) is as follows. The term proportional to
n,(Q)+1 describes processes in which a single phonon is emitted into the
surface, while the term proportional to n,(Q) describes single phonon ab-
sorption. The conservation of enefgy and parallel momentum is given by the
d-functions. The appearance of the divergence operator V suggests, as
expected, that the effective potential for one-phonon scattering is just the
first order term in a Taylor expansion of the complete thermally averaged
interaction potential, U.
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The extension of this procedure to include scattering by any number of
phonons is straightforward. For instance the two phonon differential scat-
tered intensity is obtained from (3.3) by replacing exp [Q,, (k, k'; ¢)] by
3[Qu (kK5 1)] g

One would expect the Born approximation to be good for scattering of
low energy particles by a low temperature surface with a shallow potential
well. However, at present no experiments have been carried out in this region.
In order to explain existing data, such as those of Fisher et al.l), we must
have a more exact theory. As mentioned in section 2, a more satisfactory
result is obtained by solving (2.20) exactly for the reduced r-matrix and this is
done in the next section.

4. Unitary treatment of one-phonon inelastic scattering

We first consider the solution of eq. (2.20) for a situation in which there is
only one-phonon inelastic scattering about the specular beam. The reduced
t-matrix for the specular beam is given by

ty=—13 Y 0, ,N,t,, 4.0
Kp {np}
where {n,} differs from {n;} by the absorption or emission of a single
phonon. The matrix element v, has been omitted since it never contributes to
the elastic or one-phonon scattering. Eq. (4.1) represents a virtual phonon
process in which the same phonon is absorbed and then re-emitted (or vice
versa). The inelastic part of the scattering is given by

thy = Ups — 105Nl 5. 4.2)

Egs. (4.1) and (4.2) completely define the z-matrix for this simple case since
any other.processes which might be included will necessarily involve two or
more phonons.

Solving for the full z-matrix of eq. (2.16) gives

s

i exp‘[‘isi] 1 ‘—WNS ; Ivsp’[- Np-'“ (4 “)
= , 3
* 2Nl 1 +N:Zlvsp'|sz'
g
and
T,, = exp[i6;] ps (4.4)

L+ N, Y v * N,
5

where ), now implies ) g, 3 (a,; @5 in €q. (4.1). As one can check, the inher-
ent unitarity of eq. (2.16) insures that

NIT + N, I Tl = 1.
4
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The T-matrix for nonspecular scattering differs from the Born approxima-
tion of the previous section by the factor

(L + N, Y [v,12N,)
P

appearing in the denominator.

In order to find the experimentally measurable quantities it is necessary to
insert (4.3) and (4.4) into (2.8) or (2.9). However, the process of carrying out
the sums and averages over phonon states is far more difficult than in the
case of Born scattering. This difficulty can be circumvented without des-
troying the unitarity by averaging the term

N, Y log|* N,
4

before the T-matrix is inserted into the transition rate of (2.7). The desired

expression can be obtained by the methods of Glauber?4), or by computing
first '

N, (T Iv,|*N,> = N, (2} p({rD Y X logl*N,, (4.5)

Kp tnp}

without any restriction on {n,} as in the derivation of (3.2) in the previous
section, and keeping only the first order term in the expansion of

exp [Que-(k, K'; 1)].

The result is seen to be: the integral of the one phonon reflection coefficient
(3.5), divided by 4. Explicitly:

W2’k
N (Y o, 2N,y =2 N,
‘NM w,(Q)
14 Kp Q.v

x {107 (ka3 20, V-U—g,0(2) 1 7 (kops ) (n,(Q) + 1) 6(K, — K, + Q)
17 (kags 2), V- Ug, o (2) 7 (keps D) 1, (Q) 5 (K, — K, — @)}, (4.6)

where Uy ,(z) and the divergence operator V are defined as in (3.6) and
(3.7) respectively.

When (4.6) is substituted for N,)_,|v,,|>N, the T-matrix for specular scatte-
ring (4.3) becomes independent of phonon variables and the phonon sums
in the reflection coefficient of (2.8) give unity. The result is given below in
(5.21). In the case of inelastic scattering the substitution of (4.6) into the
denominator of (4.4) effectively decouples the numerator from the denomina-
tor and removes all phonon dependence from the denominator. Consequent-
ly, when this expression for the inelastic 7-matrix is inserted into the diffe-
rential scattered intensity (2.9) the result differs from the results of (3.5) with
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G =0 only by the multiplicative factor

1
T NGO 1ol Ny P 7
)4

The determination of the scattering matrix for more complicated systems is
a straightforward matter. For instance, if we add to the example of eq. (4.1)
and (4.2) the possibility that the particle can undergo a diffraction into the
intermediate bound state b, the t-matrix is defined by the following set of
three linear equations

t Y 0N, + : t (4.8a)

ss = 1 Ug s T Usp == Ibs» -0a
14 ree ’ E, - E,

tbs = Vpy — ivbsNitss -1 Z vprptps ’ (48b)

‘ 14

by = Upg — 10, Nty + Uy ——— by, (4.8¢c)

p P ps P! Ei _ Eb

If instead of the bound state, the diffraction process carries the particle into
a continuum state g the above equations become

ty==1Y v,N,t, —iv Ny, (4.9a)
P
B lgs = Ugs — ivgsttss -1 Z vgprtPS) ) (49b)
p
ths = Ups — 10, Nty — 10,0 N,t 0. (4.9¢)

Discussions of these two examples with particular emphasis on the possi-
bility of the incoming particle undergoing a resonant scattering with the
bound state have appeared in previous papers 20-21),

As a final illustration of the one-phonon approximation we consider the
case in which the incoming particle can be resonantly scattered into a bound
state by an inelastic process. If we introduce into the example of egs. (4.8)
the set of bound states ./, whicli'cai: be obtained from the iuitial state by a
one-phonon process, then the t-matrix is defined by the set:

1 ) 1
Ei _ Eb lps — l;v,prtp, + ; Usd Ei — Ed Liss

t.u = Vg

(4.102)

tbs

. . 1
Ups = 10psNytsg — 13 0y, Nptps + 2. Upa A (4.10b)
14 d i g

ts= —iv, Nt ———1 the — 1 Nyt .+ ———1 14
Ups — iv + v e — 12 UppNytyo + Y v, iss
oo prws - P E-E, Y FRERRE G PE-E "%

(4.10¢)
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. 1 . 1
tag = Vg — 104Nyt oe + Vg E—E Ly — 1 Z VaplVptps + dZ_ Vaar E_E. Ly
P) i e

i L
. (4.10d)
Egs. (4.10a) and (4.10b) describe processes in which the energy of the scat-
tered particle does not change, while egs. (4.10c) and (4.10d) describe pro-
cesses in which the particle absorbs or emits a phonon during the scattering
process.

At first glance it would appear that egs. (4.10) are a set of coupled integral
equations for which it would be impossible to find exact solutions. However
the one-phonon approximation affords a great simplification. The t-matrix
elements ¢,, and #,, must have an overall exchange of exactly one phonon,
and this implies that the matrix elements in the last two terms of egs. (4.10c)
and (4.10d) can describe diffraction only. Because we allow only a single
diffraction process connecting a bound state to the continuum these two
equations become -

. 1
ths = Up — w,,N,t,,(+ u"bf-—:f; tys + Upg E—F tass (4.112)

and

tds = v,,, band iUd_‘Nst&‘ + udb tbs - ivdPNPtP!‘ (4.11b)

E,-E,
The t-matrix for this system is now given by (4.10a), (4.10b), and (4.11).
Again this is a set of linear equations which can be solved by the standard
techniques of matrix algebra.

It is now apparent that the extension of this procedure to systems contai-
ning any number of diffraction states and any number of continuum states is
straightforward %), and we need not write it out in detail here. The advan-
tage of the one-phonon approximation is that in every case the set of integral
equations (2.20) is reduced to a set of linear equations which can be solved
by standard matrix algebra.

There rematns but one maiter to be discussed and that is how to actually
carry out the phonon summations in (2.8) and (2.9) once the r-matrix (and
thence the T-matrix) has been determined. This was a rather straightforward
process in the Born approximation of section 3, but for the more complicated
t-matrices of this section there are as yet no simple methods for carrying out
the averaging process. Thus it has been necessary to develop an approximate
averaging procedure as indicated by the treatment of the first example in this
section. First we assume that all diffraction matrix elements are to be taken
using the thermally averaged potential defined by (2.4). Secondly we must
average separately such terms as

N, 3 (vl N,
4
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which appears in egs. (4.3) and (4.4) for example. These two steps will pro-
duce suitable averaged expressions for all t-matrix elements describing
elastic processes. For the one-phonon r-matrix elements these two steps
produce expressions which are the sums of several terms, and in each term
there will remain a single un-averaged one-phonon matrix element. The in-
elastic ¢~-matrix in this form can be substituted into the formal expression for
the differential scattered intensity and the desired thermally averaged results
will be obtained by carrying out the phonon sums as in section 3 and keeping
only the contributions due to single phonon exchange. This procedure
consists simply of averaging individually many of the various terms in each
T-matrix element before insertion into the reflection coefficient. It can rea-
dily be shown that under this approximation the contribution of the diagonal
matrix element v, is non-vanishing only for exchange of two or more
phonons and hence will never enter in the one-phonon approximation 25),
However, the results still obey the very important property of unitarity.
¥

5. Numerical calculations and discussion

A great variety of physical effects (elastic and inelastic scattering, diffrac-
tion, adsorption) is described by the general formulae of the previous
section. In the discussion of real systems, it is most desirable to introduce
further simplifications based on the relative importance of the various
processes. In some cases order of magnitude arguments can easily be made,
while for other effects detailed model calculations are necessary.

We illustrate here the case of scattering of a very cold beam by absorption
of phonons from a warm surface. The incoming beam energy is assumed to
be so low that diffraction cannot take place, i.e. egs. (1.1) and (1.2) have no
solution for G#0 and p2,>0. In practice this can be realized by using a He
beam at liquid He temperatures. The scattering surface is assumed to be at
temperatures comparable to its Debye temperature. Under these conditions
phonon absorption is deminast, since"most emission processes are for-
bidden by energy conservation. We want to estimate the intensity of the
inelastically scattered beams and determine whether surface phonons give
rise to a distinct peak that can be used to study their dispersion relation.
A crude description of the surface phonons will be sufficient and we can
neglect all effects of the discrete nature of the crystal, except for the intro-
duction of a Debye cutoff in the phonon spectrum. The crystal can then be
replaced by a semi-infinite isotropic continuum whose surface can undergo
perpendicular vibrations. The model scattering potential we use is

Vi=VoS(—z +u), (5.1)
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where V,, is the strength of the interaction, u, is the small displacement from
equilibrium in the perpendicular direction, and the step function is defined by

1, z>0,
This potential is not entirely realistic, especially in view of the fact that it does
not include the possibility of a bound or adsorption state near the crystal
surface. Nevertheless, it should give reasonable qualitative results, especially
for particles which absorb a phonon upon collision with the surface, and in
any case it indicates the range.of validity of the Born approximation when
adsorption is not important.

Considering first the case of Born scattering discussed in section 3, we
proceed to evaluate the averaged potential (2.3) and the vector potential for
inelastic scattering (3.6). Since the crystal model does not exhibit any perio-
dic structure there can be no diffraction and the thermally averaged potential

will contain only the single term Ug(z)=U,(z). The process for evaluating
the sums in (2.3) is outlined in I and gives

Vo
Uo(z)=U=—-(2n—<u§35;‘[exp(—§x2(uf))dx, | (5.3)

z

assuming that the surface Debye-Waller factor is of the usual form

W(q) = 14" ui(z =0). (54

The vector potential of (3.6) can be readily determined since there is no sum
over lattice sites. It has only the z-component given by

A4

al=e(%)u. 69

where e, (8) is the perpendicular component of the phonon polarization

vector at the surface. It is seen from (5.3) that the sharp step-function is
‘“‘smeared’’ by the thermal vibrations. However, for any reasonable ¥, the
effect of the smearing turns out to be small. Hence at first we simply neglect
the difference between U and V; the matrix elements of dU/dz [see (5.8)
below] become then independent of V,, for incident energy A*kZ/2m less
than V,. We shall comment later about deviations from this limit.

There are three distinctly different types of phonons that can exist near the
surface of an isotropic continuum and these are surface (Rayleigh) waves 26),
mixed waves27-28) and bulk waves?2?). For the case of Rayleigh phonons the
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frequency is completely defined by the parallel momentum, i.e.

0,(Q) = w(Q) = c£lQl, (5.6)
where ¢, is the velocity of transverse waves and ¢ satisfies the well known
Rayleigh condition

& — 8 48823 ~2cX ) —16(L =clfcf) =0 (5.7)

(c, is the velocity of longitudinal waves). Thus after inserting (5.5) into (3.5)
we need only to carry out the sum over parallel phonon wave vector Q. For
phonon absorption the differential scattered intensity is
dR (k;, ki)_ m? k| N T d_U.(—) k. : lz
dE o - 2h4 k b4 ( Zf’z)7d X ( zsyz) !
r4Q,  8n'htpk., w(Q) z i

<o (@@ (3 (4 - K] -0(@). (Y

where 0=K,—K; and NM/L? has been replaced by p, the mass density of
the solid. A similar expression with n(Q) replaced by n(Q)+1 describes
phonon emission. The square of the perpendicular component of the phonon
polarization vector is 29)

2
le.(Q)I* = o {IQ‘;'ib}Qz , (5.9)
- {K‘ + b2 2 +2b IQI}
2k, 21
with

Ko = (Qz - wZ/ClZ“)«}’ (5-10)

and o
| b=2(1 - &2~ &2). (5.10)

For bulk and mixed phonons the index v labels both the perpendicular
phonon momentum and the polarization. However, there is only a single
polarization for mixed modes, and only one polarization of the bulk modes
has a non-vanishing perpendicular component. Hence the sum over v in
(3.5) can be converted to an integral over the perpendicular component of
momentum, ¢, and the differential scattered intensity for phonon absorption
becomes

dR  m’lkj
dE dQ, 8r’h*k.pw

- aUu 2(d
(Z( )(k:f;z)’E;Z( )(k:s; Z))‘ (’&‘Z‘)) [e:|2n ((D),

(3.12)
where

R _ . .,
=—T[k7i—k;].
w 2m[f ;]
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For bulk phonons the density of modes for perpendicular motion, or
dg/dw, can be obtained simply by remarking that the total energy of trans-
verse and longitudinal motion must be the same as in the bulk, up to terms
of order 1/L. Let 6, and 6, be the angles at which the longitudinal and trans-
verse part of the wave are incident on the surface25). For the bulk modes with
anon-vanishing perpendicular displacement at the surface we obtain 28 29):

dg 4“‘23' Gy @) & (5.13)
dw (1 ~a)*+al ccosf, ¢ cosb,
e = [(a; = 1) cosf, — a,sin8 ] (5.14)

(I1—a)* +a} '

where g, and g, are the amplitudes of the longitudinal and transverse waves
arising from a unit longitudinal wave impinging on the surface. Explicitly:

c? sin 26, sin 26, — c? cos® 26,
a = ; -
¢?sin26,sin26, + ¢ cos?26,’

(5.15)

2¢,c, sin 26, cos 26,
a, = i
' ¢Zsin26, sin 26, + ¢ cos® 26,

(5:16)
For mixed phonons the longitudinal part does not propagate in the medium
and g labels the perpendicular wave number of the transverse part. Then
dg/dw = 1/c, cos¥,, (5.17)
2a? sin? 26,
cos*26, + 4a?sin?6, sin>26,”’

le|* = (5.18)
where ’

a = (sin?§, — cZ/c})* (5.19)

and aw/c, is the attenuation constant of the longitudinal part of the wave.

The differential scattered intensity for one-phonon ‘absorption computed
from egs. (5.8) and (5.12) is shown in fig. 1. This is a plot of the scattering of
a low energy He* beam [(4%/2m) k} =(4°K)ks] perpendicularly incident on
an isotropic crystal at room temperature (300°K). The longitudinal and
transverse sound velocities were evaluated from the values of the elastic
constants for silicon tabulated in the American Institute of Physics Hand-
book®). The differential scattered intensity is plotted against scattering
angle for the absorption of phonons of the Debye energy (6, =658°K). The
surface phonon contribution is a §-function of strength shown by the
straight line, while the bulk and mixed phonons exhibit a spread in angles.
Note that each of the three types of phonons scatters particles over a sepa-
rate range of angles, with the well defined beam due to the surface phonons
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most widely separated from the specular beam. For absorption of lower
energy phonons the picture is quite similar to fig. 1 except that the various
beams are scattered closer to the normal.

It should be pointed out here that there is a discrepancy between the
results shown in fig. 1 and the previously reported results of the same calcu-
lation29). In the earlier paper the mixed and bulk phonon part was in error

and the surface phonon contribution was inadvertently multiplied by a factor
of two.

13 T T 13 T T 13 11 T

osf J
s o4f J
-]
-
x
~ 03} -
a MIXED
- PHONCNS
= —\ SURFACE
< 02 ) PHONONS 1
o
N -

BULK PHONONS ——
o .
0.00 003 005 007 - 009 Ol  0I3 0I5  QI7
EMISSION ANGLE 8 (RADIANS)

Fig. 1. The differential scattered intensity versus scattering angle 8 for absorption of
Debye energy phonons by He* atoms at a silicon surface. The helium beam is perpendicu-
larly incident with an energy (h?/2m) k:2 = (4° K) k3.

The phonon emission calculation has also been performed for this case
and the features of the differential scattered intensity are similar to fig. 1.
However, because the scattering potential (5.1) does not contain a well near
the surface, the magnitude of the phonon emission intensity is smaller than
that for absorption by a factor of 102 and is completely negligible.

It has been shown in section 4 that to make the above calculation into one
which obeys the condition of unitarity we need only multiply all the scattered
intensities by (4.7). The quantity

N (Y lugl? N (5.20)

of eq. (4.6) has been evaluated for the same system and initial conditions as
described above and its value is 0.0084. Thus the unitary differential scattered
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intensities differ from that of fig. 1 by the factor 0.984. We recall that (4.6)
gives the totalinelastic reflection coefficient in the Born approximation, divided
by 4. Then the total inelastic reflection coefficient in the unitary theory is
R;,=4x0.984 x 0.0084 =0.033. Of this number 0.004 is due to bulk phonons,
0.007 is due to the mixed phonons, and 0.022 is due to the Rayleigh phonons.

The specular reflection coefficient from (4.3) and (2.8) together with the
averaging approximation of section 3 is

i- N:<z lvspIsz>“)‘2v
R, = £ I
“ 1+N,<21v,,|2N,,>“>,
P

(5.21)

and for the system at hand has the value 0.967.

It is interesting that the surface and mixed phonon contributions. to the
total inelastic scattering are considerably larger than the bulk contribution.
For a surface wave this can be explained qualitatively by noting that its
energy lies in a small region near the surface, while the energy in a bulk wave
is spread throughout the volume. Classically speaking the N atoms at the
surface contribute 3Nk, T to the total energy of the crystal, of which NkgT is
associated with the motion perpendicular to the surface. There are N surface
phonons, each carrying energy kg7, and it can be shown that these oscillate
almost entirely in the direction perpendicular to the surface. The mean pene-
tration depth A of a surface phonon is determined by some average over the
damping constants given in (5.10). If a is the interatomic spacing, we can
reason that a portion a/1 of the perpendicular energy of each surface atom
is due to the surface phonons. Rough estimates lead to a value of a/4 of
about 0.5. The mixed phonons are combinations of transverse bulk waves
and longitudinal surface waves, both of which exhibit perpendicular displace-
ment. Since the transverse waves involved travel relatively close to the
surface and hence give a large perpendicular displacement we would expect
the mixed mods scattering to be much larger than that of bulk modes,

This calculation is only meant to suggest the order of magnitude of the
inelastic surface scattering and not to give the precise location of the cutoffs
and peaks in the differential reflection coefficient, such as are seen in fig. 1,
except for long-wavelength phonons. This is because the Debye approxi-
mation is certainly inadequate for short wavelength phonons. On the other
hand, it is just for these phonons that surface scattering may provide new
information, not obtainable by the ultrasonic methods. It is easy to see from
simple kinematics, as reflected by the d-functions in (3.5), that the angular
separation between the surface phonon peak and the other scattered beams,
at fixed energy loss, will be greater when the various branches of the phonon
spectrum bend over instead of being linear.
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Within the framework of the above model, the surface is described by the
following parameters: the crystal potential V;,, the Debye temperature 8, the
longitudinal and transverse sound velocities and the temperature 7. We have
not undertaken to vary systematically all these parameters, in addition to the
incident beam parameters. However, we have run a number of tests. We
have checked that the results are not sensitive to the magnitude of ¥, within
reasonable limits, even if the thermally smeared potential U is used. A
calculation for V,=1 eV, the other parameters being the same as in fig.
1, shows that the net effect of replacing ¥ by U is a reduction of the in-
elastically scattered intensities by about 2%. In fact, the Debye-Waller
factor (5.4) turns out to be unimportant for all realistic temperatures (up to
10000°K for the case of Si, but it should be remembered that 8, =638°K is
higher than in most materials). The temperature dependence of one-phonon
scattering is then governed by the phonon occupation numbers n,(Q) in (3.5),
that is, the scattering is proportional to the mean square displacement of the
surface. At 500°K the total number of inelastically scattered particles in
Born approximation is about 10% of the incident beam, all other parameters
being the same as in fig. 1. Thereafter the increase with temperature is
approximately linear. The unitary correction is trivial to apply, but in
practice it amounts only to a few percent, for such a low-energy incoming
beam.

For higher incoming energies the inelastic scattering becomes larger, being
approximately proportional to the incoming particle momentum. Thus a
calculation for the same surface as in fig. 1 shows that 109 of a He beam
with incident energy 20 kg will be inelastically scattered. Computations at
higher incoming energies must include diffraction and an extrapolation of
the present calculations is not meaningful.

Acknowledgements

The authors would like to thank Drs. N. Cabrera, F. O. Goodman, and
S. Fisher for illuminating discussions. We would especially like to thank
Dr. Goodman for pointing out an error in our previous calculations.

Appendix 1. Proof of unitarity

For a potential which exhibits no forward scattering the unitary condi-

1 31
tion®) Y S,.Sh=6, (A.1)
c

becomes
- (27“)2 Z 6(Ef - Ec) ch 5(El - Ec) TCT‘ = 5/’5' (Az)
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[For i=f, replacing 8(E,—E.) by the density of states Ny/m=mL/2nh’p.,
the equation can be written ) w,; =j;, where w,; is the transition rate (2.7)
and j;=hp.;/mL is the incident current. We also have Y.or R(ps, pi)=1 from
(2.8), or [ dR=1, from (2.9).] Inserting (2.10) for the T-matrix gives

— @ni)? T 6(E; — E) (¢, Uxt™) 6 (Ei = E) ($er Uit™) = 61
— (2ni)* Y 86(E; — E) (¢, Uit 6(Ei — E) 1l
- (27ti)2 Z 5(Ef - Ec) tlfc 5(51 - Ec) (¢c7 UL(H)?

— (2ni)* ¥ 6(E; — E) 1y 6(E; = E;) te] = 0. (A3)

The first two terms of (A.3) cancel since they are equivalent to eq. (A. 2) for

scattering by the potentlal U. Using (2.14) and (2.15) the condition of unita-
rity becomes

o= the+2mi Yty 8(E;— E.) tl,=0. (A9
However, starting from the defining equation for the t-matrix
try= vy + Z 0;eGeles (A.5)
it can be readily shown that
- t,, Z t,.(G.— Gl =0. (A.6)

A comparison of (A. 6) with (A. 4) shows that the condition of unitarity will
be satisfied if the imaginary part of the Green’s function is —ir times a
S-function in energy. Since the approximate Green’s function which we have
used is

= ind(E - E) A7)

for continuum states and is the exact Green s functlon for bound states it
follows directly that the t-matrix of eq. (2.20) is unitary.
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