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Résumé. — L'intensité du faisceau spéculaire produit par la diffusion d'un faisceau de particules incidentes mono-
énergétiques par une surface plane, est calculée en fonction de la température du cristal. Le calcu! inclut les processus
virtuels & un et deux phonons. La procédure exposée précédemment {1, 2] est utilisée et permet de calculer exacte-
ment les éléments de matrice des sept différents diagrammes décrivant les échanges virtuels de deux phonons.
Pour tous les systémes étudiés (He-Cu, H,-Cu, Ne-Cu) les résultats indiquent que la coatribution la plus impor-
tante 4 I'intensité est donnée par les diagrammes provenant de lordre le plus élevé dans le développement en pertur-
bation. L'intensité totale est plus grande que celle donnée par le processus 4 | phonon seul, excepté a trés basse
température. La température a partir de laquelle la contribution des effets de deux phonons devient appréciable
est en général basse. Les intensités calculées reproduisent les données expérimentales dans le domaine de tempé-
rature ou les contributions des processus a 3 phonons ou plus sont négligeables.

Abstract. — The specular intensity produced by the scattering of monoenergetic incident particles by a flat surface
is calculated as a function of the crystal temperature including one and two virtual phonon processes. The exact
procedure developed previously {1, 2] is employed in order to get the matrix elements of the seven different two
phonon diagrams. For all the different systems studied (He-Cuy, H,-Cu, Ne-Cu) the results show that the most
efficient two-phonon term is the diagram of highest order in the perturbation expansion. The total intensity is
greater than that obtained by considering the one phonon process alone except at very low crystal temperature.
The temperature for which the two phonon couatribution becomes non-negligeable is in general low. Comparison

with available experimental data gives good agreement in the temperature domain where higher order phonon pro-

cesses could be neglected.

1. Introduction

To date many papers have been published dealing
with elastic diffraction studies of monoenergetic
particle beams scattered by ordered surfaces. The
general purpose of these works is the determination
of the interaction potential particle surface, either by
theoretical calculation from first principles or by
construction of a potential model. If some important
progress has been made in this direction many pro-
blems remain to be solved. One of the most important
and perharps difficult is certainly to relate the thermal
crystal agitation to the thermal fluctuation of the
interaction potential.

(**) Present address : Max-Planck Institiit fiir Festkdrper-
forschung — Heisenbergstrasse 1 — D-7000, Stuttgart-
80, F.R.G.

As a contribution to the solution of this problem
we have developed recently a procedure which allows
us to calculate exactly the diffraction peak intensities
or the cross section of inelastic events as a function of
the crystal temperature [1, 2]. Up to now this proce-
dure has been used to calculate the effect of the one
phonon virtual process on the specular intensity of a
helium particle scattered by a flat surface. The atomic
crystal vibration is introduced through either har-
monic (1, 2] or quasi-harmonic approximation [3].

In this paper we extend the above calculation in
order to include the effects of the seven different dia-
grams which describe the totality of the two phonon
virtual processes. Results are presented in the case
where experimental data are available, that is to say
for the scattering of helium, molecular hydrogen and
neon by the (100) copper face. With these particles
the different parameters such as their mass, potential



1320

well depth and damping coefficient, vary in a suf-
ficiently large domain. Thus their influence on the
elastic intensity can be evaluated.

2 General theory.

In inelastic scattering theory the transition rate W
between initial (i) and final (f) states is proportional
to the square modulus of the T matrix elefent -

W = | T, 12.

By performing on this expression the usual Van
Hove transformation one gets the reflection coef-
ficient :

R | dtexp( 5 E=E) [<CT 10=0, T 0

(M

where E; and E; are respectively the final and initial
energy of the scattered particle, and where the double
bracket ({ >) stands for a thermal average over
crystal phonon states.

If the final particle state coincides with a diffracted
beam Levi and Suhl [4] have shown that expression (1)
is greatly simplified and reduces to

R = [ K« Y EDD) ,2 . 2

This can be understood in the following way. The
thermal average in (1) yields time dependent cor-
relation functions between crystal atom displacements.
This expression can be expanded in powers of the
correlated displacement and the zero order term,
that is to say the time independent term, gives the
elastic contribution. This can be calculated directly
by performing the thermal average of

T (= 0)T,(t = 0) >

which is equal to | (T, >> |2, and expression (2) is
recovered.

Throughout this paper we intend to calculate the
two phonon contribution to the thermal attenuation
of the specular beam. Thus it is sufficient to obtain
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the thermal average of the T matrix element ;T,,
including one and two phonon processes.

The simple procedure which allows one to calculate
this average exactly has been presented in some
preceding papers (1, 2), for the general case of a cor-
rugated surface. Therefore we just give here a brief
account of this procedure.

Let us consider the T matrix equation :

T=VR zu)~-UR)+(VR,zw)-U)G* T (3)

where V is the potential depending upon space
coordinate through R and z (which are components
respectively parallel and normal to the surface), and
crystal thermal atom motion denoted by the symbolic
operator u. G is the Green operator for the problem
at hand :

G'=(c+E"—H® +ig)"!, c=E —H,,
hz
HO = - EVZ + U(Z)

in which E{? and H' are respectively the initial
energy and harmonic Hamiltonian of the crystal.
H, the Hamiltonian of the distorted potential U(z),
and m the mass of the incident particle.

Taking an integral representation of G * namely

G* = —-hl— ‘. exp[i(c + EF = HO 4 jg) ﬁi‘,dt
v 0 -

equation (3) can be written as :

T=V—U;i[

- FolY oy o
7 exp(in h>(V U) x

v0

x expé(c — H® + jg) %) Td:.

Then inserting on the left of V — U the factor

exp(—- iH® %) exp(z‘H‘” ft) =1

one gets :

TeV_U-— f’ [ exp(i(Ei“’ _ H(c>)hl)(V(u(z)) - U(2) exp(i(c + ig) ;;‘) T d:

vo

V(u(r))is now the potential ¥(R, z, u) in the interaction picture. In the calculation of the T matrix element between
crystal state | n, > corresponding to the energy £/, the first exponential under the integral is unity and the thermal

average is given by :

KTy =KVR zu) - Uz — ﬂ

0

«wm@mm-wmu%w+mﬂr»m. @
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The iteration of this equation gives the perturbation expansion. One gets with t(u) = V(R, z,u) — U(2) :
T =Kvwyp - ;i-f: dr << v(u()) CXP((ic ) %) v(u)>> +
+ (—— -;;)2 ”: dr, de, << v(u(r, + 1,)) e;xp((ic - %) v(u(z,)) CXP<UC - &) %) v(u) >>
+ (- %)3 ”.r dr, di, diy << v(u(e, +1; + 13) exp((ic —€) %) v{u(ry + 1,))
0
x exp((ic —€) fﬁi) v(u(t)) exp((ic —€) %) v(u) >>

+ e

(5)

In each term the remaining exponentials depend upon particle coordinates only through ¢. One can carry
out the thermal average and then the integration on the ¢ variables. In this way all orders of expansion could

be calculated exactly.

3. Flat surface.

As in preceding papers [1, 2] we consider the scattering
of a neutral particle by a flat surface. The particle
surface interaction is modeled by a soft potential :

V =Dlexp(= 2 x(z — u) = 22 K D) - f(2)].
(6

Its attractive part is stationary while its repulsive
part is thermally displaced in the direction normal
to the surface through the displacement operator u
This last quantity should be suitably chosen, in order
to reproduce as well as possible the influence of
crystal atom motion on the potential.

For such a choice of the model potential the par-
ticle can gain or lose energy without any change of its
momentum component parallel to the surface. The
following calculation is therefore the quantum mecha-
nical equivalent of the old one dimensional classical
inelastic theories, in which one supposes the conser-
vation of the parallel component of the incident
partticle speed.

Due to the lack of parallel momentum exchange the
description of physical reality is not complete. Never-
theless the results should reproduce the general
evolution of the thermal attenuation with respect to
the number of phonons taken into account, and with
respect to the different potential parameters. Parti-
cularly, the effect of assisted resonance with bound
states by phonons exchange is exactly included in the
calculation.

The thermal average of (6) is

VD = Dlexp(— 2 y2) — f(2)).

<<iT(iZ)>> = hiD2<eilh.l¢i

0o

J drexp(- 2 2) exp((ic — ¢ %)(W(t, 0) — 1) exp(— 2 z2)

In the following we make the choice U(z) = L V D,
and consequently :

v(u) = Dexp(—2 x2) (exp(2 qu—=2 72 {u* D)—=1). (1)

Obviously { t(u) ) = 0, and the first order term
in the perturbation expansion (5) does not contribute
to the averaged T matrix element.

Note that the eigenvalues and eigenstates of the
distorted potential will be denoted by e and ¢ respecti-
vely. The subscript p and b on these quantities label
respectively continum and bound states. As in previous
papers we use dimensionless quantities defined with
the help of the inverse energy factor 42 = 2m/h* 2.
They become :

I = F =4A2iTi

frequency w->Q=A4%hw
2 2
e, — =A‘e
energy {" P .
e, >, =A% ¢,
. t
time 1> 1 =—

R4

In terms of these dimensionless quantities the
reflection coefficient to be calculated is given by

R =11 —in,F/ap|*. ®

4. Second order term.

With v(u) given by expression (7) the thermal average
can be made easily and the second term in expan-
sion (5) becomes :

¢_ eil(‘.l >
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with | K;| = k;sin 8, k, the incident wavevector, 6, the incident angle, and

W(t,0) = exp(4 1* L () u(0) B).

The correlation function is given by :
h ™ plw) . .
«mw©»=zgr—5—«mw»+num—wn+«mw»awwnm
v0

where { n{w) ) is the Bose-Einstein factor, p(w) the spectral density of u and M the mass of a crystal atom.

Noting that { n(w) ) + 1 = — ( n(w) » and putting p(~ w) = p(w) this expression is transformed into :
L)) ) = 5% [ %0)2 & n(w) » expliwr) dw

which in dimensionless form becomes

+ 2
[ R((—g)-)- K n(Q) D exp(iQr) dN . )]
-0

42 KUl u0)) = 47

Now we expand W(T, 0) in powers of the correlation function and consider for the moment the first order
term (for order 0 it gives 1). The integration over ¢ yields a modified Green operator which depicts an exchange
of one phonon :

G™(w) =(E — Hy + fiw + i)~ !.

This dressed propagator is located between two exp(— 2 xz) factors. The introduction of the projector states in
&;T{¥' Y yields, after transformation into dimensionless quantities :

dm (T Q) * Jo ofn, dp byl
‘F-(2'1)=4A2D2 do Q [ p¥'p p/p; pihbip; 10
ol ( ) M_[ Q Kn(@) x pf—p2+.Q+ie+§pf+Qb+Q+ie (19

~Qpm vo
with
Piz = (klz - |Ki IZ)K_Z’ p-fp = <¢vi|e7‘p(_ 21:)I¢p>’ mlb = (¢m]exp(-— 21:)]¢">‘

The physical interpretation of this equation is straightforward, noting that p? + Q is the normal kinetic
energy of a particle which has gained (2 > 0) or lost (2 < 0) the phonon energy corresponding to Q. The expres-
sion in brackets is the matrix element of a particle scattered elastically by the thermally averaged potential but
having a normal energy p? + Q during the propagation between the initial and final states. On the other hand
one cansay that the particle goes from an initial state to continuum (p) or bound (b) state with the matrix element

», T/, and with creation or a annihilation of one phonon. It propagates and undergoes the reverse process in
order to go out into the final state which is identical to the initial one.

During the propagation the particle energy is not conserved except for Q values which cause the deno-
minators to vanish. These occurrences are given respectively by the principal value integral and the delta function
yielded by the Green operator. The occurrence of transitory non-energy conservation processes. which is a
purely quantum effect, should be kept in mind when results are compared with those of a semi-classical theory.

It is important also to notice that the resonances assisted by phonon exchange are correctly included in the
calculation.

The whole one phonon process is depicted diagrammatically in figure la : the vertex represents the matrix
elements and the lines the dressed Green operator. It is assumed that the integration over all frequencies has
been carried out, the matrix element being multiplied by the weighting factor given in expression (10).

In order to have a simpler representation of the following two phonon expressions it is more convenient to
perform the integration over Q prior to those over p. This gives :

iFi(Z.l) = 4(A2 D)Z[“ ppr‘z,l)(Cp’ Dpj;n dp + Zpilb G(z‘”(Cb, nblpi]’ (“)
vo b
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Fig 1. — Second order diagrams — a) one virtual phonon process, b) two virtual phonon process.

with
c, + 0
G(z,n{icp ;_))} = %J B%« Q) _C__E‘E___ (12)
» 2 {C’}+Q+is
b

and C, = p} — p%, C, = p? + Q,, where T labels the crystal temperature.
The second order term in the W(t, 0) expansion is equal to :

2 KDY
Expression (9) shows that its contribution to the ¢ integration is
exp({2 + Q) 1)
and the modified Green function is therefore :
G'(w+w)=[E - Hy, + i(w +w) +ig] '

This clearly yields a two phonon exchange. The preceding interpretation is valid and the corresponding diagram
is represented in figure 1b. The dimensionless ( T ) matrix element is given by

4 ©
iI;-i(2.2) = ﬂ(Az D)z['[ pnfp G(Z.Z)(CP’ T)pfm dp + ;p.lb G(z.z)(cb’ T)blp.] (13)
1]
with :
C,,T] 4m ("™ ) {C +Q,T}
2,2) | 44 =7 2e) 2,1) 4 14
G {C,,T} MJ'_,,_ g Km@YGEV g r(ee (14)
where generally speaking
4m (O p(Q9) dQ’
2.1y = e Lok il A ¢ 1
GHAC+QT) MJ.-a,. oY <<n(Q)>>C+Q+Q’+i£ (15)

2

M
The following higher order terms in the W(t) expansion will give three, four and further multiple phonon
exchange. Each term is composed of two matrix elements (vertices) and one dressed Green propagator. The
corresponding T }) matrix element will be given by an expression similar to (11) or (13) with the appropriate
G function. For the n phonon exchange G'*** contains n integrations over {2 and therefore it will be proportional

G'%#? is therefore proportional to (ﬂ

to % (%) . One can expect this yields negligeable T })» matrix elements except in the case where the mass

ratio m/M is close to or higher than 1, or if the matrix elements fand / are large, that is to say for very high
x values. -

JOURNAL DE PHYSIQUE. — T. 47, N 8, A00T 1986 9
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5. Third order term.

After evaluating the thermal average the third term in expression (5) can be written as :

Ty = (= 7) 0> (exeng

j J de, dey exp(— 2 y2) x
o Jo

eiKi.l ¢i > .

Wlta, 1) = TW(63, O Wty + 13,0 W1, 0) = 1] = [W(1, 0) = 1] = [W(t, + 13,0 — 1] = [Wiz,, 0) — 1].

X exp((ic —'g) %—) exp(— 2 yz) exp((ic —¢€) %) exp(— 2 x2) Wity 1))

Noting that W(t, + 1,,1,) = W(t,, 0), one has :

With a little algebra this expression is transformed into :
Wiy, 1) = [W(1,,0) — 1] (Wi, 0) — 1] + [W(1,, 0) W(t,,0) — 1] x [W(t, +1,,0) — 1].

The expansion of the different W functions up to first order leads to :

Wt 1) = 4 2 ut)uD 4 2 Cult)u) + 4 (K ult)uy + ur)uD)d 2 Lulty + 1)uy.
The contributions of these terms to the t; and ¢, integrations are respectively :
expif; 1, + Q, 1), [exp(i, 1,) + exp(i€, t,)] exp(i(z, + t,))

which depict clearly a two phonon exchange. The integrations lead to two dressed Green operators located
between the three factors exp(— 2 z). The diagrammatic representation is given in figure 2a and 2b respectively
for the first and second term. The latter yields two diagrams which are symmetric.

In order to calculate the corresponding T ) matrix element one introduces two projectors. This yields
four different terms describing the transition vig continum-continum, bound-continum, continum-bound and
bound-bound states. One gets :

— diagram 2a :

j f oSy GH(C,, T),f,GPUC, T f, dpdq +
0

+ J. Z PJ;: G(Z'”(CP, T)plh G‘“’(C,,, T)blp. dp
o b

F> = 442 Dy’ (16

+ ;J' wh GGy, 1) [, GHIC,, T) f, dg
0

+3 T,4G%UG, Dy 651G, T, 1,

with , j,. = (@, | exp(— 2 x2) | @y ).

The functions G31) are those which appear in the one phonon exchange of the second order term. Thus,
two such G functions account for two successive single phonon exchanges.

\ y \ VAN /

A N

a b

Fig 2. — Third order diagrams with two virtual phonon process.
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— diagram 2b :

iFil3.2) = 4(A2 D)J[J~ J hfp ,fq(G“'z’(C , Cp D+ G(J'Z)(Cq, Cp’ T)) qu dpdg +

o] 0

+ terms arising from other possible intermediate states as in Eq. (16)" a7
where : -
(3.2) —aqn (Q) __dﬁ__ i2.1)
GO(C,, €, ) 4ML B0 (DD e GG + 2T, 13

The sum of G® functions correspond to the sum of the two symmetric diagrams.
The G+? factor clearly reproduces the form of diagrams 2b. With the G2 function in (18) we have two
phonon exchange (see expression (15)) located at one of the diagram extremities. The phonon Q' contained in

G'%!) is then exchanged on the intermediate vertex and the phonon € is itself exchanged on the other diagram
extremity.

Note that expansion to higher order of the W functions in W(t,, ¢,) will yield diagrams with at least three
phonon exchange.

6. Fourth order term.

The fourth order term in expansion (5) is, after the thermal averaging :

&TOY = ) J‘J‘J‘ exp(— 2 xz) exp[(ic — &) t3/h] exp(— 2 xz) exp[(ic — €)t,/h] x

x exp(— 2 xz) exp[(ic — &) t;/R) exp(— 2 x2) W(ty, 15, 1,) dt; dt, dt,
where W(t,, 1,, 1)), after some algebric transformation, is given by

W(ty, t3, 1) = (W(t5, Q) W(ts + 1, 00 W(t, + ¢, + 15,00 — 1) x
x [(W(t,, 0) W(t,,0) — DN(W(t, + 15,0) = 1) + (W(1,,0) — 1) W(z,,0) — 1)]
+(W(t, + 1ty + 15,00 — 1)(W(t; + 1,00 — 1) {W(1;,00 - 1)
+ Wty + t; + 15,00 W(t; + 1, 0)(W(1,,0) — 1)(W(15.0) — 1)
+ W(t;, 0 W(t, + 1y + 15,0 (W(t, +1£,,0) — 1) (W(1y +1,0— 1)
+ W(t;,0) W(ty + 5, 00 (W(1,,0) — 1)(W(t, + 1, +1,,0) — 1).
By expanding the W functions one can see that the first and second terms in W(t,, t,, t,) give diagrams of at

least three phonon exchange. The two phonon diagrams come only from the three last term. The corresponding
exponentials which enter into the different ¢ integrations are :

exp(iR2; t3) exp(iQ2, 1,) (a)
exp(i€, (15 + 1,)) exp(i,(z; + 1)) (b)
exp(i2, t,) exp(iQ,(z, + 1, + 13)). (c)

The corresponding diagrams are depicted in figure 3a, b and c. For the sake of convenience we shall label
them as « spectacle », « exchange » and « direct » diagrams respectively. As there are three propagators in this
fourth order term, one should introduce three projectors. Thus each T ) matrix element contains eight terms,
each composed of four matrix elements f, / or j multiplied by an appropriate G function. This function must
be calculated in each case and if possible with the help of the preceeding ones.

— « Spectacle » diagram :

It is composed of two single phonon diagrams separated by a free or elastic propagator. Thus it is straight-
forward to calculate the T ) matrix element which is equal to :

iFi(t.Z) = %[J‘ dp F(z U(P, p)

e P ep) + TP b 2 FONG, p)] (19)
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Fig. 3. — Fourth order diagrams with two virtual phonon process. a) « spectacle », b) « exchange ». ¢) « direct ».

where F'>!)(p, p) or F3*)(p, b) and the reverses F***')(pp,) or F>1(bp.) are respectively the matrix element of
single phonon exchange between initial state p or b and final state p, and the matrix element of the reverse process.
These different quantities are given by expression (11) in which p, has to be replaced by p or 4 at the appro-
priate place. As F*!)(p; p) or F**:!)(p, b) contains two parts ;F{*- consists of eight different terms.
It is interesting to note that the integration over p leads to

— in(,F*Y(p; p))* + principal value

where the coefficient of — in is the square of the one phonon matrix element.

— « Exchange diagram » :
For simplicity we write only the component in the < T > matrix element corresponding to transition vig
continum states. After performing the three integration one gets :

F&D = 442 Dy* J J J oS oo ofs oSy, G4AC,, C,, C T) dp dq dr (20
(1]
with
4m\2 (T (7% p(Q)) p(R;) 1
42 _ (M 1 2
G (M) J_Q Jln _Qx < n(2,) > a, < n(Q2,) » ———-—-CP O T E X

1 1
>(C,,~}-{2,+£2,+i:sC,+Q,+ie

dQ, de,. (1)

The three Green factors could be transformed easily into :

1 1 | | 1
(C,,+Q1 +ia+c,+92+ie)(c,+91 + Q, +ie—C,+C,+Q, +Qz+2ie)C,+C,—C,+ie
and the Q integration leads to :

1
(4,2) _ (3,2), 3,2)
G = e e e TR O G D + GONC, 6, D)

- G‘“’(Cp, C, + Cp T) ~ 6(3'2)(Cn G + CP’ n]J. @

The G*? function is already defined in equation (18). Now in the integration over ¢ in equation (20) the factor
— im(C, + C, — C,) gives obviously zero and only the principal value yields a contribution.



TWO PHONON EFFECTS IN ATOM SURFACE-SCATTERING

1365

In order to get the total dimensionless ,F!*? matrix element it is necessary to add to(20) :

— three terms with one bound state in place of p, ¢ and r, respectively,
— three terms with two bounds states in place of pq, qr and pr, respectively,

— and one term with three bound states.
— « Direct diagram » :

The < ;T; » matrix element for this diagram has the same form as the « exchange » one. The G'*-? function

is different and given by :

(4m 2 * Oom ()
M) ), e =T

G4 =

s p(2) ‘
Q,

1

2)>X

1 1

X
C,+Q+ieCo+Q, +92, +ieC, +Q, + ic

The integration over 2, gives :

1 1

4Q,dQ,. (22

am\? [*7 p(Q,)
(4.2) _
G = (-—-M) J‘-n a, < n(Q,) »

C,+Q, +ieC, + 2, + ic

GEI(C, + Q,, T) dQ,

and the remaining integration is performed using the usual method of integration employed in the case of a single

. On gets

1
o e o e

G = [G(S.Z)(

If C,=C,, G*=

r P

7. Extension to higher order or higher phonons pro-
cesses,

Let us consider a diagram of order « with an exchange
of B phonons. It contains a vertices, (x — 1) propa-
gators and § phonon lines, each of them connecting
two vertices.

In the associated dimensionless matrix element,
associated with each propagator there corresponds
univocally an integration over a given t variable,
and to each phonon line a factor expif(r, +
T,+1 + o + t,,.) where x is equal to the number of
propagators comprised between the two connected
vertices by this phonon line.

In order to perform the (« — 1) integrations over t
variables. the different exp i, 7 for each t are collected.
This yields for a given t an mtegrand equal to

exp{(ic — €) 1) exp ir<i Q.,>
=1

where s is equal to the number of phonon lines which,

© 2-2
F@P = 442 Dy J _[ Pftn( I1 p,vf;v.+qp"> pafp BPac GECL ., €, T
. -

\_—v-__a

2 -1

€y Co D = GO, Cp 1] e

60(3'2)(

C,

C,Co T

ac,

on the diagram, are drawn in front of the propagator
corresponding to the variable . This yields a Green
operator equal to

1
+(Z Q,)+ie
ym1

To get the complete expression of the matrix element
one should introduce (@ — 1) projectors. This pro-
duces the appearence of 2“~ ! terms depicting the
different possible ways of transition via continuum
or bound states. Each of them contains « matrix
elements f, / orj with the corresponding integration
over continuum states for f or summation over bound
states for / and j. This product of matrix element is
multiplied by an appropriate G**# function which can
be written with the help of the above considerations.
For instance, for transition by only continum states
one gets :

(23)
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with
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< n(Q) > dQY>

In this way for a given diagram the associated
dimensionless matrix element can be directly written.

8. Conditions for numerical calculation

Prior to numerical calculation we should ascribe
definite values to the potentiel parameters and to the
spectral density p(Q2). This last quantity depends only
upon the crystal properties.

— Crystal : the type of potential used in writing
the different matrix elements is relevant to a flat
surface. Such a surface is well represented by the (100)
face of FCC crystal like copper. In effect, in helium
scattering experiments the diffraction peak intensities
are less than 10™* of the specular one (15). Thus we
consider this face for the determination of the thermal
displacement u of the repulsive part of the potential.

It is well known that in the repulsive region the
potential is proportional to the surface electronic
density in the first approximation (5). In this way the
potential thermal displacement is directly linked to the
thermal fluctuation of the electronic density, yielded
on a given point by the thermal motion of many
surface atoms close to the point considered. In the
absence of theoretical calculation of this effect we
propose to model it by taking a displacement u equal
to the mean displacement of the four atoms belonging
to the (100) cell. Due to the one dimensionality of the
potential model we consider only the normal displa-
cement to the (100) face. This gives :

u=%(ufz+u§z+u§z+ufz)
and we get for the thermal average
) ) > = 3 CuFH0) 132(0) > +
+ 3 CEO ) > + 5 1820)

where the subcripts 1, 2 and 1, 3 label, respectively, the
correlated displacement between nearest and next
nearest neighbour atoms.

Therefore the spectral density is given by :

1 1 1
Q) = 7 pTHQ) + 515Q) + 715D

> . (24)

The different quantities above have been calculated
previously {6). The crystal used for this purpose does
not exhibit any surface plane relaxation and takes
account only the centra} force between nearest neigh-
bours.

With this simple model of force the different quan-

tities relative to the crystal are calculated as a function
1/2

of dimensionless frequencies Q. = w( K , where K

M

and M are respectively the force constant and the mass
of a crystal atom. In particular the spectral density
p(L,) is invariant whatever the K and M values may
be.

This allows one to introduce crystal anharmonicity
through the quasi-harmonic approximation. For that
one considers the variation of the equilibrium dis-
tance between atoms with the temperature, and given
a central potential interaction, the force constant K
is evaluated at this equilibrium distance for each
temperature. At a given value of this quantity the
crystal properties depending upon phonon frequencies
are calculated in the harmonic approximation. The
anharmonicity of the atom potential yields a decrease
of K values as the temperature increases and this
produces a contraction of the real frequency scale
characterized by the variation of the maximum
frequency.

The effective pair potential has been calculated
by one of us [7] for copper and the corresponding
maximum frequency variation is depicted in figure 4.
For comparison the available experimental data
obtained by neutron scattering experiments are also
plotted in the same figure. One sees that the available
experimental values are very well reproduced.

In this way for our calculation the spectral density
p(w) 1s given by

1/2
oo = Q(—;";) ) = p(@).

Note that this procedure supposes that anharmoni-
city on the surface is the same as in the bulk.

— Potential : the attractive part of the potential
J(2), left undefined in expression (6), enters only in the
thermal average potential which has been chosen
equal to the distorted potential. In particular, it does
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Fig 4. — Vanation of the maximum phonon frequency of
Copper as a function of temperature. Experimental data :
© reference [8], x reference [9], ¢ error bar from refe-
rence [10].

not affect the () expression (Eq. (7)) and consequently
does not change the analytical form of the different
JF{"™ quantities. Its influence is localized in the
matrix element ,f, ,4, o, through the eigenfunctions
of the distorted potential.

One can then infer that the shape of f(2) is amongst
the different parameters, the one which has the least
influence, except when the normal kinetic energy of
the incident particle is low. In this case the transition
through bound states gives an important contribution.

For convenience we take f(z) = 2e % and the
distorted potential is of Morse shape. The total
potential (6) could be written as

V =Dexp(— 2 ) exp 2 K @) (X2 — 2 X)
with
X = exp(—y2) exp(2 yu) exp(— 2 x> K u? »).

The equipotential is located at

1 I | 4
=7 —_ y 2 — - ——
z=2u—-2y{u*) - Log l+(l+ X

x exp(2 qu) exp(— 2 1 K >>))”2]

where the + signs stand for ¥ < 0. On the contrary
the minus sign should be disregarded. Therefore the
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potential thermal displacement is equal to

2 u at the bottom of the well
2u for V=0

for Kve large
u ) ry large .

As the particle incident energy is at most ten times
the well depth in the following calculations, it happens
that the potential thermal displacement is close to 2 w.
In order to recover the correct displacement one
should divide u by 2, that is to say multiply the spectral
density by « = 1/4. Note that by varying this quantity
one can compensate the deficiency of the potential
model like, the lack of parallel momentum exchange.
In this way its value could be slightly different of 1/4.

Now the remaining parameter values D and y are
dependent upon the nature of the incident particle. In
each of the following cases these values are taken equal
to those which give a good fit of the experimental data
in an elastic diffraction experiment. They are given
in table I.

9. Results.

— Helium-copper system : for an incident energy of
21 meV (wavevector k; = 6.4 A~ ") figures S, 6 and 7
give the calculated intensities versus crystal tempera-
ture up to 1 350 K, respectively for an incident angle 6,
of 73.5, 55.5 and 31.8 degrees.

The curves are labelled by the symbol AH or H
respectively for quasi-harmonic or harmonic calcu-
lation. In this last case the maximum crystal frequency
is taken equal to 7.3 x 10'2 Hz. A diagram of order n
with m virtual phonons exchanged is denoted (n, m).
In this way the curves denoted AH. (2, 1) is the result
of one phonon anharmonic calculation, and those
labelled AH. (2,1) + (3,2) + (4,2) give the calcu-
lated intensity including the whole one and two
phonon processes. In this last case two curves could
be seen for large incident angles, labelled ¢ orc + b.
They give respectively the calculated results including
only continum states or continum + bound states.
Of course, only one curve is drawn when the effects
of bound states are negligeable.

Table . — Potential parameter values used in the calcu-
lation for the different incident particles.

Incident D b .
particle meV A-l Fiton Reference
He 635 1.05 (110), (113), [11]
(115), (117)
H, 21.6 097 (110), (115) {12]
Ne 12.2 1.9 (110) ll}]
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H.{2,1)+(3,2)+(4,2)

10 AH.{2,11+(3,2)

AH.(21)

1072 ! l
0 500 1000

TiK)

Fig 5. — Calculated intensity as a function of the crystal
temperature. Full line AH — quasi-harmonic calculation.
Dashed line H — harmonic calculation (2, 1) one photon —
(2, 1) + (3, 2) one phonon + two phonon of third order —
(2, 1) +(3,2) + (4, 2) all one and two phonon contribution:
curve labelled ¢ continum states. ¢ + b continum + bound
states He-Cu system, E; = 21 meV, 6, = 73.5 degrees.

H.(2,1)+(3,2)+(4,2)

AH.{2,1)+(3,2)+(4,2)

-1 b
10 AH.(2,1)+13.2)

AH{2,1)

102 ] ]
0 500 1000

TIK)

Fig 6. — Same as 5 but 6, = 55.5 degrees.

For the same conditions figures 8, 9 and 10 give the
results for an incident energy of 63 meV (k, = 11 A~ 1),
respectively, for incident angles of 71.6, 51.5 and
19 degrees.

— Molecular hydrogen-copper system : with the
same notations, figures 11 and 12 give the calculated
intensity for molecular hydrogen with an incident
energy of 77 meV (k, = 8.6 A1), with incident angles
of 75.5 and 31 degrees respectively.

The points represent the experimental data [14].
They have been translated along the vertical axis by a
factor equal to the lack of unitarity. Note that the sum
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HAZ,1+(3,2)+{4,2)

AH.(2,14{3,2)+(4,2)

0
0 AH.12,1+(3,2) H-\(2,1)
v
AH.(2,9) /
/
/
\ 7
102 ] |
0 500 1000 T{K)

Fig 7. — Same as 5 but §, = 31.8 degrees.
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AR B2+ 2{ 5

AH.(2,1)+(3,2)
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AH.(2,1)/

! 1

0

500 1000 T(K)

Fig 8. — Same as 5 but E;, = 63 meV, 6, = 71.6 degrees.

107

102

AH.(2,1)+(3,2]+(4,2)

AH.(21(3,2)

AH.(2)1)

1 [

0 500

1000 T(K}

Fig 9. — Same as 5 but E; = 63 meV, 6, = 51.5 degrees.
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Fig 10. — Same as 5 but E, = 63 meV, 6, = 19 degrees.
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Fig 11. — Same as 5 but H,-Cu system, E, = 77 meV,
6, = 75.5 degrees, the points represent the experimental
data

AH.(2,9+(3,2)+(4,2)

H.02,1¢{3,2)¢(4,2)

/
10 - /\H 2.1
AH(2,114(3,2) o
AM{2,1) .
10-2 1 1 ! I ! 1 L 1 1
0 200 400 600 800 TiX)

Fig 12. — Same as 1] but 6, = 31 degrees.
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of diffracted peak intensities in this experiment is at
most equal to 1072 that is to say 30 times smaller than
the measured specular intensity.

— Neon-copper system : the calculation is done
with the quasi-harmonic approximation for an inci-
dent energy of 63 meV (k; = 248 A~'). Figures 13a, b
and c give the results for incident angles of 75, 60 and
45 degrees respectively. As in the case of hydrogen the
experimental data {15] has been translated in order to
compensate the lack of experimental unitarity.

10. Discussion.

10. 1. — The variation of the factor %@ & n(d»
as a function of Q in the interval — Q, to + Q,, is
represented in figure 14. Note that the ordinate scale
is logarithmic and that for + Q,, this factor is equal to
zero. This is not a universal curve as the spectral density
varies from face to face for a given body.

AH[2,10+(3,2)+(6,2) AH.[2,104(3,2)+{4,2)

AH(2,10+(3,2)014,2)
/

AH.{2,1)
) 1l St

10 ) 10 P 10 .

AH.(2,1} AH2N

8,275 - 9, 60° .

9, = 45°
10°? ) ! 10-2 1 L 1072 ! 1
0 00 200 TIK) 4 100 200 T(K) 0 00 200 TIX)

Fig 13. — Same as 11 but Ne-Cu system, E;, = 63 meV,
8, =75, 60, 45 degrees.

P wniQ)e /0

1200

0l
800

400

107

10.‘ L — —/n

Qa 0 Qa

Fig. 14. — Variation of the frequency factor in the interval
- 2., +Q,. Each curve is labelled by the crystal tem-
perature.
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At low crystal temperature T the phonon creation
process is preponderant. At T = 400 K and above the
curves are almost symmetric with respect to the Q
values : creation and annihilation processes are
practically equally probable. More interesting is to
observe that above 400 K, 40 to 50 % of the low
frequencies will contribute significantly te the scatte-
ring process.

This interval could be reduced by the integration
over the p variable which introduces the matrix
element linked to each vertex. Taking account only
of this integration we consider solely the transitions
via continuum states which are the most efficient
processes. In order to illustrate this point let us consi-
der the (2, 1) diagram. The imaginary part of G‘*V
-2 @)y
with Q = p? — p2. As p varies around p, this factor
remains practically constant as long as the correspon-
ding Q value falls into the Q interval defined above.
In the p integration this factor is multiplied by the
square of the matrix element , f, which is maximum for
P = p; and decreases as the quantity | p—p, | increases.
This would yield a reduction of the low frequency
domain giving the main contribution to the scattering
process.

In order to verify this fact the calculation has been
done for the scattering of H, keeping only + X % of
the low phonon frequencies. With X = 40 the inten-
sity versus temperature curves could be superimposed
over that calculated with X = 100. Taking X = 30
the calculated intensities are approximatly 109
higher. Therefore the bound state resonance could
be an efficient process if the normal kinetic energy
of the incident particle E, is less than 30 % or 60 %
of the maximum phonon energy respectively for the
one and one plus two phonon processes. For copper
the two corresponding values are, respectively, 9 and
18 meV. The numerical results presented above confirm
this view.

We should outline that this effect is a consequence
of the structure of the correlated displacement and of
the shape of the matrix element attached to each
vertex. Thus one can expect that the same limitation
in the phonon efficiency can happen with a three
dimensional potential allowing the exchange of parallel
momentum. As the phonons of low frequency have
also low parallel momentum, the exchange of this
quantity will be limited to a more or less extended
domain of the Brillouin zone around its center. This
expectation tends to justify the use of a one dimen-
sional potential such as we have chosen, and to under-
stand its success in the representation of experimental
data for scattering by a flat surface.

10.2. — The different expressions giving the
&;T™”» matrix element written above for B
equal 1 or 2, and the rule allowing one to write the
matrix element for diagrams of higher order, show
that for a virtual exchange of B phonons there are

(see formula (12)) is equal to
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integrations over £ variables, each of them containing
the Bose-Einstein factor { n(Q) ). At sufficiently
high temperature T, { n(Q)» is proportional 10
kT/hw and therefore the  , T*# ) matrix element is
proportional to T whatever the diagram order  may
be. The ratio Ry = « ,;T*# »/T” should be constant
at high temperature. One verifies this statement in
harmonic calculation where one finds that R; tends
asymptotically to a constant as T increases. This is not
the case in the quasi-harmonic calculation due to the
variation of Q,, with T. But the comparison of the ratio
values calculated at high temperature for different
diagrams with the same f value, allows one to appre-
ciate the efficiency of each of them. Tables Il to V
give the Ry values for the different cases studied here.

Looking for the moment to the absolute value
of the real and imaginary parts of this ratio one can put
the different two phonon diagrams in the following
decreasing order of importance : « spectacle », « ex-
change », « direct » XX, @ @ 8

This order is independent of the nature of the
incident particle and of the experimental condition
(E;, 8)). One notices that this classification coincides
with that obtained by taking the decreasing order of
the diagram order.

We have pointed out in paragraph 7 that the Green
operator corresponding to a propagator is equal to

s -1
(Ch + 7; Q, + ie) , where s is the number of
phonon lines associated with the propagator in a
diagram. One can think that as s increases the contri-
bution of the Green function in the different Q inte-
grations decreases. Thus the efficiency of a diagram
could be inversely proportional to the sum of s values

2—-1

relative to each propagator say S = Y s With this

1
assumption we tentatively compare the efficiency
of diagrams belonging to the same order. This last
condition is required by the subsequent integration
or summation over the product of matrix elements f; /
or j by G™™ functions, which for comparison should
be identical.
For the (3, 2) diagrams we have :

> TS
Effectively the ratio Ry is greater for the former than
the latter. Let us now make a quantitative comparison
by looking at the ratio R;.../R;— given in the tables.
One observes that these values (real or imaginary part)
are located between

T S =

123 - 19 for He-Cusystem
[.37 — 1.72 for Ne-Cusystem
1.06 — 133 for H,-Cusystem

and that it decreases as the incident angle decreases for
each system. By definition these values are indepen-
dent of the mass of the incident particle and their
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Table 1. — Real and imaginary part of Ry which is equal to the ratio of the diagram T matrix element to the tempe-
rature T (2, 1) or to the square of the temperature T? for the others. — n stands for 10™". He-Cu systems — E; =

21 meV — T = 1000 K; in case of two values :

the second is with continum + bound states.

{ the first is with continum states

¢

He-Cu E, =2l meV k, = 64A"!
b 9, = 73.5 9. = 55.5 9, = 318
fagram E, = 169 E, = 673 E, = 1516
@0 < ~ 02313 — 1239-3 —0577-3 — 3377-3 — 1.0813 — 7.182:3
22 g ~ 02058 — 0.117-7 — 0524-8 — 03197 — 0.103-7 — 0.687-7
G,2) oo — 06477 03887 — 02156  0.111-6 — 0558-6  0.241-6
G2 OF = & ~ 04067 02067 — 01396 06557 — 03836  0.158-6
ST 1.59 1.88 1.546 1.698 1.456 1.525
c 03166  0.134-6
4,2) oo c+b 02796 —0160-6 07556 03956  0.147-5  0.163-5
¢ 06947  0.184-7
(4,2) N c+b 07907 05847 02896  0254-6  0820-6 08856
¢ 03997 02677
4,2) N c+b 04657 04247 02006  0.188-6 06326  0.7016
o= s 7D 3.53 2.612 1.555 1.792 1.84
AR AN/ 6 3.775 2.10 232 2.32

variation from one system to another should be
ascribed to the potential parameters, the well depth D
and exponential damping coefficient . For the He
and H, scattering the y values are not very much
different. Thus it seems that well depth is the most
important parameter yielding a decrease of the ratio
when D increases. Following the preceding rule the
ratio value should be equal to 1.5 a value which is
outside of the variation interval for hydrogen-copper
system.

Let us now consider the (4, 2) diagrams. We have :
«spectacle » § = 2, «exchange » and « direct » § = 4.
Here the ratio R; spectacle/R; exchange and Ry
spectacle/R; direct should be equal to 2. From the
tables one gets a variation between

Ex 1.28 — 3.53

Di 147-¢ HeCu
Ex 1.55 — 2.63
Di 193 — 405 Ne-Cu
Ex L1 —239
Di 11 —31 HeCu

The same comment as in the case of (3, 2) diagrams
is valid. However here the « theoretical » value 2 falls
into all of the variation intervals which are larger than
those of the (3, 2) diagrams. Also there is a singularity
at large incident angle for He-Cu (21 meV) and H,-Cu
system : the imaginary part of the R; value is negative
for the « spectacle » diagram. As shown in the table,
this is typically an effect of bound state resonances,
the R; value being positive when this effect is sup-
pressed.

To conclude this particular point one can say
that the contribution of a diagram to the final intensity
increases with the diagram order at a constant number
of virtual phonons exchanged. For a given order, the §
value gives qualitatively a measure of this contribu-
tion which decreases as S increases.

We now consider the sign of the R; values in con-
nection with the intensity. The total matrix element
could be written :

F = Flz.l) + F(Z‘Z) + F(B,Z) + F(4,2)‘
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Table II. — Same as 2 but E, = 63 meV.
He-Cu E; = 63 meV k= 11A!
Diagram ’ Eai = 7;.6 6, = 515 6, =19
L= 518 E, = 2441 E, =563
21 Ao —-0544-3 - 31413 - 1.564-3 — 11.675-3 — 3.233-3 — 30.71-3
2,2 1} —0.490-8 - 02977 - 01597 - 0.113-6 — 03617 — 0.314-6
3,2 \& v ~ 0.196-6  0.103-6 — 1.04-6 0.388-6 — 3.59-6 1.02-6
G2 & = 7 - 0.127-6  0.060-6 — 0.747-6 0276-6 - 2.85-6 0.831-6
VAR 1.543 1.716 14 1.405 1.26 1.23
4,2 \wanw 0.707-6 03186  2.515-6 3367-6  1.773-6 143386
4,2 N\VPj 0.262-6 02256  1.594-6 20306  6.08-6 10.53-6
4,2 @ 0.180-6  0.167-6  1.321-6 1.666-6  5.304-6 9.353-6
oo s QY 27 141 1.57 1.66 1.28 1.36
o v N\ 3.92 1.90 1.9 2 1.47 1.53
Table IV. — Same as 2 but H,-Cu system, E, = 77 meV.
H,-Cu E =1 me-V k; = 86A!
Diagram 8, = 755 6, = 31
E = 395 E, = 4628
@2 \ws - 07313 - 4.402-3 — 25943 — 2.510-2
2,2 1] - 06258 — 0.357-7 — 27128 - 30757
(3,2 > v - 03686  0.164-6 — 26886 07356
G2 T&F =TIy - 02776 0.128-6 — 23326 06916
AV ARG 1.328 1.281 1.152 1.063-6
4.2) o c+b 0214 s ! ouzes 6.056-6  11.487-6
@2 QD c+b oir6e 08268 5486-6  9.577-6
4.2 N c+b 06376 d760s 53286 89756
AV ARV 2.397 1.104 12
U=/ @ 3.108 1.136 1279
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Table V. — Same as 2 but Ne-Cu system, E;, = 63 meV.
Ne-Cu E; = 63 meV k= 248A"!
Di 6, =75 8, = 60 8, = 45
lagram E, = 422 E, =1575 L =315
v R)! < - 03762 — 22812 — 09132 — 6129-2 — 1.565-2 — 11.94-2
2,2 1] — 01126 — 0629-6 —0288-6 — 1.719-6 — 0.525-6 — 3.364-6
(3,2 \v v ~ 0655-5  0.286-5 —0217-4  0.805-5 — 0.493-4  0.157-4
G2 &I =7 —~ 0.403-5  0.167-5 —0.142-4  0.528-5 — 0.344-4 0.114-4
AV Q] 1.625 1.712 1.528 1.524 1.433 1377
@2 oo 02694 02414 07064 11064  0.145-3 02723
2 NV 0.1024 01204 03784 05304 09344 01543
4,2 NP 0.664-5  0830-5 02824 03974  0.749-4 0.124-3
A AVIRQVY) 2.637 2.08 1.86 2.08 1.552 1.766
AN 4,05 2.90 2.50 2.785 1.935 2.19
and the reflection coefficient is given by 4p,|Im RV
T= = TrREoE
n 2 7!2 T
R, = ( 1 +-—1Im (F)) + —— (Re (F))? , _ o
4p, 16 p; This is clear from a mathematical point a view. From

where Re and Im stand respectively for the real and
imaginary part of F.

Let us consider first the one phonon process alone.
The tables II to V show that all the Re (F) and Im (F)
are negative and

2
R = [1 - —4’;_ | Im (R | T:| +
+ n? [I Re(REV) | T
16 p? N '

Such a function of the variable T has the behaviour
depicted by the different figures. The minimum occurs
at a temperature

R = [1 - & (Im (R | T + (| Im (RED) | -

nz

+
16 p?

the physical view point the existence of this minimum
certainly means that well before it occurs the contri-
butions of the 2,3... phonons processes are not
negligible as demonstrated by the respective position
of the one and one + two phonon curves.

The (2, 2) diagram like the (2, 1) yields T matrix
elements which are always negative. Thus it produces
a decrease of the intensity given by the (2, 1). The
effect is very small and negligeable except at very high
temperature.

The T matrix elements of the (3, 2) diagrams have
a negative real part and a positive imaginary one.
For the (4, 2) diagrams the real and imaginary parts
of their T matrix elements are positive. Thus the total
reflection coefficient appears as :

2
Tm (RE-D) | = | Tm (R4) ) Tz)] +

[Re(RE) T + (IRe(REM) | ¥ | Re (RPY) — |Re (R ]) T?)2.
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The imaginary part coming from the (3, 2) and (4, 2)
diagrams yields an increase of the intensity given by the
(2, 1) although their real part produces an inverse
effect | Re(R{*#)| — |Re(R{*?)| being negative.
The different curves show that the imaginary parts
yield the dominant effect and that the (4, 2) diagrams
have the major influence in agreement with the order
of diagram efficiency.

As in the case of the one-phonon process one
observes a minimum in the intensity when the two-
phonon processes are added, located at approxima-
tely the same temperature. Therefore one can expect
that the three-phonon processes will be important at
a temperature lower than that of the minimum.

The above analysis based on the sign of the R;
ratio is in principle valid for high temperature, say
above 400 K. However the intensities corresponding
to the 1 and 1 + 2 phonon processes behave in the
same way below 400 K. At very low temperature the
inverse behaviour is clearly apparent in the case of the
Ne-Cu system. It arises also for the other systems but
the difference is so low that it cannot be seen in the
figures.

A quick examination of the different figures allows
one to determine the crystal temperature T, from
which the two-phonon processes begin to be influen-
tial. Table VI gives these values. T, is equal to zero
for the Ne-Cu system. For the others, as expected, T,
decreases as the incident angle decreases or the

- incident energy increases.

11. Comparison to experimental results.

The intensity of the specular peak in the scattering of
helium by a copper (100) surface has been measured
again recently [16] in an extended domain of tempera-
ture practically up to the melting point Within expe-
rimental uncertainties the results are comparable to
the previous one [15]. As these values are in agreement
with the caiculated one phonon intensities [1, 2] the
domain of agreement should be restricted to tempe-
ratures below T,.

For the scattering of molecular hydrogen the
measured data [14] fall on the calculated one plus two
phonon curves at one incident angle of 75.5 degrees
up to a temperature of 500 K (Fig. 11). For the lower

incident angle (Fig. 12) the experimental data fall

between the one and one plus two phonon theoretical
curves.

In the case of neon the one plus two phonon calcu-
lation seems to be in agreement with the experimental
data [15]. However, the domain of temperature where
the comparison could be made is restricted to low
temperature values. As discussed above in this tem-
perature range the three or higher phonon processes
could modify the calculated intensities. Thus more
precise comparison should be postponed until the
influence of the higher phonon processes has been
calculated.
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Table VI. — Temperature T, at which the two phonon
processes give a non-negligible contribution to the
calculated intensity.

E, 0, T,
73.5 450
2] meV 55.5 300
31.8 250
He-Cu
71.6 400
63 meV 51.5 180
19 100
75.5 150
H,-Cu 77 meV 31 100
Ne-Cu 63 meV Ve, 0

Nevertheless, on the whole, the agreement seems to
be good in the temperature domain where the present
calculation is valid. Unfortunatly, the temperature T,
from which the three phonon diagrams will influence
the intensity is difficult to appreciate. One knows that
its value is below the temperature for which a minimum
of intensity is observed. Thus the hydrogen case seems
to indicate that the introduction of the three phonon
diagrams in the calculation should yield a decrease
of the calculated intensity.

An important point should now be outlined The
bound state energy levels are determined in an elastic
experiment by the observation of elastic resonances and
the zero order Fourier component of the potential is
then deduced The potential so determined is not
always unique and is usually open to the possible
existence of a deeper level, for example a level which
is not clearly resolved in the measurement. This has
been suggested to be the case for the hydrogen and
neon copper systems. For instance the existence of a
level at 26 meV for hydrogen is not precluded [17].
This would give a well depth of 32 meV. With such a
value the calculated intensities will be lower than those
obtained here with D = 21.6 meV and the difference
will be important due to the major influence of the D
value on scattered intensity [2). However, because we
get theoretical intensities comparable to experiment,
the thermal attenuation calculations confirm the
chosen well depth values.

This analysis suggests that measurements of the
thermal attenuation are an extremely useful check on
the choice of well depth for a particular system. In fact
such a measurement could be used to determine which
of several possible values of the well depth is correct.

12 Conclusions.

We are now able to calculate exactly the elastic or
inelastic T matrix elements in a scattering process.
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The adequacy of the calculated cross section or elastic
intensity depends now only upon the chosen potential.
A given potential is in fact a more or less good repre-
sentation of the physical reality.

In this paper all the elastic T matrix elements
containing one or two virtual phonon processes have
been written down explicitely with a one dimensional
soft potential modelling a flat surface. It therefore
precludes the exchange of parallel momentum.

The results show that phonons of low frequencies
are the most efficient in attenuating the elastic scat-
tering As they correspond in the crystal to phonons
of low parallel momentum we can expect a small
exchange of this quantity on a flat surface. For this
reason a one dimensional potential can give a good
representation of the inelastic scattering attenuation
phenomena.

M and m being respectively the mass of a crystal
atom and the mass of the incident particle, the T
matrix elements are proportional respectively to

m/M and (m/M)? for the one and two phonon events.

At high crystal temperature T they are also pro-
portional respectively to T and T2. Moreover they

are strongly dependent upon the well depth value

and the exponential damping coefficient of the poten-
tial repulsive part. Thus the resulting specular intensity
varies strongly from one particle-crystal system to
another. In particular, the temperature above which
the two phonon effect is appreciable varies from 0 K
for the neon-copper system up to 500 K in the case of
helium scattered at large incident angle. Its variation
with the nature of the incident particle and the dif-
ferent experimental parameters are in conformity
with what is expected on an intuitive basis.
Contrary to what is perhaps an intuitive prediction,
the inclusion of the two phonon processes generally
leads to an increase of the calculated elastic intensity
except at very low temperature. This increase, from a
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physical standpoint, appears to be due to the fact that
the dominant effect of the two phonon processes is to
reduce the unitarity defect of the total (elastic plus
inelastic) single phonon processes. As the inelastic
phonon events are well accounted for by second order
perturbation theory the restoration of the unitarity
modifies the elastic intensity which becomes bigger.

This can be compared to a similar occurrence in
ordinary Debye-Waller factor which can be developed
as follows :

2
e =1-2wW +(22W") + ---.
In the above equation the different terms correspond
respectively to 0, 1, 2... virtual phonon processes.
It is clear that the two phonon events raise the inten-
sity given by the one phonon alone.

The total calculated intensities for the different
particle-crystal pairs are, on the whole, in agreement
with the experimental data below the temperature
where higher phonon processes are negligible. Depend-
ing on the system studied, multiple virtual phonon
exchange could yield an appreciable contribution
to the intensity at a more or less high temperature.
This outlines the necessity of performing a calculation
which includes these possibilities. For the two phonon
processes the diagrams of higher order in the per-
turbation expansion yield the most important con-
tribution. In this way, diagrams of low order in many
phonon exchange could be perharps neglected.
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