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We present a method, based on projection techniques, for introducing bound state resonances
into approximate methods, such as the quantum-sudden or semiclassical wave pocket approaches,
for the diffraction of atoms by periodic surfaces.

Exact calculations of the elastic diffraction of atoms by crystal surfaces are
often lengthy numerical procedures, particularly when the incident energy is
high, the surface corrugation is strong, or the unit cell is large [1-4]. On the
other hand, simpler approximate treatments, although usually easier and
numerically much shorter, often cannot handle properly the resonances with
bound states. Here we suggest a method, based on projection operations, for
introducing resonances into such a calculation. The need for simplified calcu-
lational procedures is quite evident since usually the interaction potential is
inferred from a trial-and-error comparison of calculated and experimental
intensities. This means that a short and inexpensive calculation, such as a
semiclassical or sudden approach, is necessary as many calculational runs are
usually required. However, bound state resonances can be very important
features in the experimental data and are essential in determining the form of
the potential in the region of the attractive adsorption well.

The bound state projection technique here proposed is a general approach
and can be applied to various processes such as selective adsorption reso-
nances in surface scattering and rotational and vibrational Feschbach reso-
nances in gas phase scattering. In the following, the formulation of the method
is given for atom-surface scattering. The application to gas phase processes is
straightforward and will be discussed at the end of this note.
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The projection method is most simply developed from the transition
operator approach [5,6], although it can also be applied directly to the wave
function. If the total interaction potential V is separated into the surface
average contribution U plus a remainder v,

V=U+o, (1)
the reduced transition operator obeys the equation
t=uv+vGt. (2)

If we divide the projection operator P into two parts P= P, + P,, eq. (2)
appears as

= p + vP,Gt + vP,Gt (3)
and can be replaced by the equivalent pair
t =h + hP,Gt, (4)
h = v+ vP,Gh. (5)

Now we assume that the projection operator P, projects out a small, finite
subset of resonant discrete states of the surface averaged potential U,

Pz=§.le)(Xd|- (6)

The |x,) are eigenstates of the surface averaged potential U. Then in matrix
element form the pair of equations (4) and (5) become

hp=v,+ Y vf,(Ei—E,—I—ie)_lh,,-, (7)
!

-1
tfi=hfi+§,hfd(Ei—Ed) Lais (8)

where the sum in eq. (7) runs over the complete set of states of U except for
the discrete states which appear in the sum of eq. (8). In eq. (8) a resonance is
signaled by the denominator E; — E, approaching zero, but this now poses no
numerical problems because the ¢, vanish simultaneously. For example, if
only a single resonant bound state is projected we obtain

heophy,

fb'*bi

ty=hp+ ————— (9)
/i & Ei"Eb_hbb
for the transition matrix from the initial state ; to the final state f. For
atom-—surface scattering the intensity of the final scattered beam will be given
by

2imm

n k. k, %

(10)
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where 1/, is evaluated on the energy shell and k;. and k,, are the initial and
final perpendicular wave vectors.

At this point, we recognize that there exists a restricted wave function
equivalent to the restricted transition matrix of €q. (7). This restricted wave
function, which we denote by AS*)(r) is the solution to the Schrodinger
equation with the non-local projected potential U + Pv. The notation (+) on
AYT)(r) signifies outgoing wave boundary conditions. Its major difference
from the complete wave function corresponding to the t-operator of eq. (4) or
(8) is that it contains no bound state resonances since intermediate coupling to
the bound states has been projected out. Matrix elements of 4 such as those
appearing in eq. (9) can be calculated according to

Bam = (Xn | B Xm) = (Xa 0] ASD), (11)
where the x, are distorted states of U, including the bound states.
X.=N, ei(K,+K,.)~ka"z(z)’ (12)

where the x, (z) are eigenstates of the one-dimensional potential U with z
the direction perpendicular to the surface and R parallel; N, is the normaliza-
tion coefficient.

The central point concerning the usefulness of the proposal presented in
this paper is the assumption that there are approximate methods for obtaining
the scattering wave function which produce an approximation to AGY) rather
than to the true wave function. Various approximate methods may fit this
description including the sudden approximation [7,8] and the recently devel-
oped time-dependent wave pocket method for surface scattering [9,10]. Both
methods have been found to give accurate results at higher energies but their
range of validity towards lower energies and the resonant regime is limited. In
a recent study [11] the wave pocket approach has been found to “ignore”
isolated resonances. In the sudden approximation, resonances are excluded
altogether as it is based on uncoupled solutions of elastic wave functions.
Nevertheless, in the regime of isolated resonances, these approximations may
still provide a reasonable description of the overall intensity distribution and
thus they can serve as a starting point for the present scheme.

The present proposal of projection methods may also be of use in exact
coupled channel calculations. At lower scattering energies, asymptotically
closed channels (diffraction or not-vib. states) have to be included in the
calculation to obtain converged results. Selective adsorption or Feshbach
resonances are always caused by coupling to these closed channels. On the
other hand, these closed channels lead to numerical stability problems due to
their exponentially growing behavior and frequent stabilization is often re-
quired to ensure linear independence of the solution. By projecting out the
closed states, the numerical procedure is greatly facilitated. Later, those closed
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states which couple to bound states and those leading to resonances can be
projected back in.

Assuming that we have a reasonable approximation to the restricted wave
function A{") we can add the resonance back in and find a good approxima-
tion to the full transition matrix using eq. (8). Clearly, from eq. (8) or the
simpler eq. (9), what is needed is to evaluate three classes of matrix elements
hyi hyy of hg, and h,, and then t; can be found by inversion of a small
matrix whose size is equal to the number of discrete states which have been
projected out.

We proceed to a discussion of how the various h-matrix elements can be
evaluated from the wave function A,(r). The hy are the simplest as they are
the coefficients of the asymptotic wave function from which one calculates the
diffraction intensities of the projected potential U + Pyv

i - i 2mim « My .
(+) — o KR —ik;:z _ oikii2) 4 (K, +K)-R Lik.z
AP (R, z—>0)=¢ (e ekt Y EK ———kfze e'r?,
(13)

where capital letters denote vectors parallel to the surface and kfzz =KX+ k2
—(K,+ K)*.

The h,, are also straightforward and are perhaps most readily evaluated
from direct integration of the matrix element

hyi= (Xgi—)|U‘A(i+))’ (14)
where the distorted state x, is readily calculable.

The matrix elements h,; pose slightly more of a problem because the states
A, are not generally calculated by the semiclassical method. (If these states
were calculable the method would be essentially exact and there would be no
need for the propositions described herein.) However, we can make use of the
fact that on the energy shell we have

hya= (x5 10145) = (45 101x6") (15)
and the calculation is the same as (12) above except that it requires the
additional calculation of A, which is the incoming wave function of the
projected potential U + Pyv. Since in most cases the resonances appear very
close to the energy shell it is reasonable to approximate h, in this small
region near the energy shell by the far right hand side of (15).

The final matrix elements to evaluate are the h,,, which as illustrated in eq.
(9) give the energy shift and lifetime of the resonance

haa = (x5 101 AD). (16)
If the states A, are unavailable, this cannot be calculated directly, but it can
be evaluated indirectly through the defining equation (7)

’ . -1
hdd,::l)dd/-{v-z Udl(Ei—E1+l€) h/d" (17)
!
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Since all resonant discrete states are already projected out of the sum in eq.
(15) we can ignore the remaining discrete states and sum over continuous
states only. Then A,  can be evaluated from (13) above. Further approxima-
tions that simplify the evaluation of (15) are to keep only the 8-function or
energy conserving contribution to the integral; or to let 4 1@’ = Uy, the
first-order development. Both of these approximations have been shown to be
very useful and to produce reliable results in many cases [12,13]. The signature
of an isolated resonance is an intensity lineshape containing two extremes, a
maximum and a minimum. It can be readily shown that this is the case
starting from the form of the ¢-matrix and intensity in egs. (9) and (10) [12,14].

This completes the exposition of the method. To review, we assert that
approximate methods which do not take account of bound states may be
considered as solutions corresponding to the restricted transition matrix A si of
eq. (7), these matrix elements being obtained from the coefficients of the
asymptotic wave function as in eq. (11). The diffraction intensities with bound
state resonance effects are calculated from (10) with the true transition matrix
t;; given by resolving the finite and usually small system of linear equations
(8). The various A-matrix elements appearing in eq. (8) can be evaluated to a
good approximation as shown in egs. (11) through (15).

The application of this proposed technique is not restricted to atom—surface
scattering. Bound state resonances play an important role in inelastic
atom-molecule scattering processes as well [15]. There the resonances occur
through coupling between rotation or vibrational states of the target molecule
and bound states of the atom-—molecule compound. Use of the projection
method for these processes is straightforward. The bound states of the
orientational averaged atom-molecule compound potential can be projected
out. Again a sudden or semiclassical or reduced coupled channels calculation
could be used to obtain the restricted wave function A{*). The role of the
diffraction states for surface scattering would be played by the rotational or
vibrational target states. The scattered plane wave [see eq. (11)] would be
replaced by a radial function representing a spherical wave with the proper
wave vector k, where a denotes a molecular quantum member. Then for each
partial wave, the outlined procedure could be used. The theoretical methods
outlined in this note provide for the possibility of using very quick and
efficient ways of calculating elastic diffraction intensities while still allowing
for the possibility of calculating all bound state resonances.

One of us, JRM. would like to thank the Max-Planck-Institut fiir
Stromungsforschung for its hospitality and support provided during the course
of this work.
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