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We consider a simple approximation (0 the general theory of thermal attenuation of el
peaks as 1 funcuon of sarface temperature in low eneegy atom surface swatienng. The results
tlustrate the complexay of the strongly interacting atom-surface system, yel provide smple
closed form expressions which are no more difficult 1o apply than a standard Debye . Waller
factor. Very good agreement is obtained with existing experimental data. We hiad a new form for
the corrections due ta the adsorption well of the interaction potential. We consider the damping
coeflfivient arising, because the incoming atom interacts simuflancously with severad surface atoms,
and we develop a frequency cut-off fuctor which anises naturally due o the fact that low
ficquency phonons are the most important i thermal attenuation.

1. Introduction

The thermal attenuation of elastic diffraction intensities in atom scattering
from surfaces has long heen a problem of experimental and theoretical interest
{1). The typical experiment is to measure the intensity of a given diffracted
beam as a function of surface temperature with the incident energy and angle
held fixed. and the results are usually presented on a logarithmic plot. The rate
of attenuation is found (o depend strongly on the momentum of the incident
and diffracted beams. This effect is common to all diffraction processes from
crystals such as neutron or X-ray diffraction and low energy electron diffrac-
tion where it is called the Debye -Waller effect after those who first correctly
described it theoretically 2], In these bulk diffraction applications, the inten-
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sity of each diffraction beam is multiplied by a Debye - Waller factor, which in

its simplest form is

ﬁl "A:F;._;..:_..VV. (1)

where k, and &, arce the incident and diffracted momentum, respectively, u, is
the thermal displacement of a crystal atom and the angular brackets denote
the thermal average. Since for a harmonic crystal the mean (uly is propor-
tional to the temperature 7' for sufficiently elevated temperatures, o typical
logarithmic Debye Waller plotis finear in T. The attractive simpliaity of this
approach has led to the use of ey. (1) for describing altenuation in atom surface
scattening in spite of tack of theoretical justification except in the extreme
semiclassical limit [3.4]. or for the case of a very hard surface giving rise to an
instantaneous collision [5.6]. In fact, careful measurements of the thermal
attenuation of light atoms or molecules from metal surfaces usually give
curved logarithmic plots even after correcting (or zero point motion [7].
Nevertheless, eyg. (1) often gives reasonable results, at least qualitatively, but
usually only after muaking corrections for the well depth of the attractive
atom surface potential {8} or various correlation effects due to the interaction
of the incoming atom with a region of the surface which includes several
crystal cores [9).

The case of low energy atom surface scattering is far less simple than most
bulk diffraction because the interaction energies ard large compared to the
mcident particle energies and the interaction potentials are relatively soft. For
example, in X-ray or neutron diffraction from bulk crystals the scattering
intensities can be adequately caleutated in first-order perturbation theory
which gives rise to the Debye Waller factor of eq. (1). To get satisfactory
results for the diffraction of atoms, usually many orders of perturbation theory
need to be retained [10].

The authors have developed elsewhere a general method for treating ther-
mal attenuation in atom surface scattering which up to the present has been
applied 1o flat surfaces and works quite well [11,12]. In this paper, we use this
general theory as a starting point for developing a simple approximation’ {or
explaining the salient features of the Debye-Waller effect in atom surface
scattering. This simple model is capable of reproducing quite well the general
features observed by the experiment. It is sufficiently sophisticated to show
how inelastic effects must be treated in atom-surface scattering, and it often
leads to useful expressions which are not much more complicated than the
Debye- Waller factor of eq. (1). A correction for the depth of the surface
adsorption well is obtained which is much more realistic than a simple
refraction effect. Various cut-off factors which have been introduced in the
past to account for the importance of the exchange of low frequency phonons
113} or for the spatial extent of the atom-surface interaction [9,14] urise quite
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_:.:_:.__..<. Multiple-phonon processes are also readily included in this model
but a discussion of these as well as infinite summations of certain classes :m
graphs is left for a separate paper.

The organization of the paper is as follows. In section 2 we review briefly
the general theory of thermal attenuation and in section 3 we draw out of this
theory the simple model. Section 4 is a discussion of the well depth correction
.._:: arises from the simple theory. In section S we show how the damping
_...r”:: associated with the spatial extent of the atom sarface interaction arises
quite naturally in this maodel. Section 6 is a discussion of how the matrix
c_c_.:...:_z of the mteraction give rise 10 a frequency cut-off implying that
mainly low frequency modes are responsible for the thermal attenuation. This
frequency cut-off shows that it is possible for materials with rather similar
vilues :... surface mean square displacement to have radically different thermal
attenuation characteristics. Finally, all of these effects nx_,x.;»d by our simple
maodel are reviewed and discussed in the concluding section 7., .

2. General development of thermal attenuation

. ._= order 1o consider the effects of surface temperature on clastic scattering,
it is appropriate to begin by writing the intensity of a diffraction peak [/,

s.__nq.r. G is its associated reciprocal lattice vector, in terms of the transition
matnix 7,

X

1, = AA 1 (2mim/ntfk &, vs...tvv. (2)
i._.e._.e. k, and k., are the perpendicular momenta of the incidenmt and
diffracted beam, respectively, and the angular brackets represent the thermal
average. For elastic scattering an important simplification is provided [3,15] by
the fact that ((| 7;;, | *)) can be replaced by the simpler expression [{(T;;,))|?
ﬂ.:_z we need 1o calculate the thermal average of the integral equation ‘m: -?...

-l X,

L=t % Yo (K ~E t&8-8&+vie) 'T,. 3)
i

We work in the distorted wave formalism where the total potential is
V=U+n, (4)
with U a coveniently chosen distorting potential for a rigid lattice. The
quantity E, or I, 1s the particle energy and &, or ¢, is the crystal energy.

The .:2::._ average is most readily carried out by nxvqn.?,.:m the Green
operator in integral form

G'=(E+& I, - H +i)
- .\3\_. expli( £, =&, - My~ H_v i)i/h] di, (s)
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where 11, is the crystal Hamiltoman and H,, is that of the particle

Hy=(~h/2m)o? + U, (6)

Then. in terms of the particle evolution operator P(#) = expli( F:, - n,+
1 )h/1). The thermally averaged fransition operator can be expressed as

(T = e = G/m) [ d () PITY), (1

with (1) the potential expressed in the interaction picture
() =exp(i M a/h)o exp(-iH.t/h). (8)

leration of eq. (T) leads 1o the perturbation expansion in time ordered
operators

(TYy = (o)) + (- .\s\..g dr ((o(1)P(£)0(0))) :'S_Q_.s dr,
X.\...S dr, (el + ()P (e ) P()0(0))) + ... (9)

The iterative series of ¢q. (9) is particularly adapted to a potential which is the
pairwise sum of interactions between the incoming atom and those of the
crystal, and we discuss this point further in section 5 where such considera-
tions introduce a damping cut-off factor. For the present we consider a
potential with a thermally corrugated exponential repulsion and 2 static
attractive part,

bz, u')=D{exp|—2x(z~ 0’ M/t - A(2)). (10)

where u’ is the normal component of the thermal potential displacement,
._..n~x2~x~AA=va_ is the thermal average of exp(2xu’) and A(2) is the
attractive part, The choice of a repulsive part of exponcential form is justified
by the fact that the repulsive interaction is, to a very goxl approximation,
proportional to the electronic charge density outside the surface [16].

With the potential of eq. (10), all thermal averages 1o all orders can be
readily carried out in the harmonic approximation. It is convenient to choose

U={(V(z.u'))) (1)

as this will cause the first-order tesm of eq. (9) to vanish. At this point it is
useful to convert (o dimensionless variables by scaling with the range parame-
ter & of the potential. The specular intensity, in terms of the dimensionless

transition matrix Fu(p,) s
L=11- (in/8p )W) (12)
where p, =k, /x and F(p,)=(8m/h*?)T,. Using the potential of eq. Qo
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with the choice for U ol eq. (11) gives for the leading. or second-order term of
the perturbation series (9), after converting to dimensionless variables

(FOp ) = :\A:\..S dy .\.‘.8 dr nxlx pl-q+ :T._

XAAAG::..! ....x.n:::l..._vvv.\.wA\u.. Qv\:_.”
.:E:SM\:&%

Xr.x_o__A \vw +e,+ .AV.-_AA?:.: _ ..:Xn..:: _ :..vvv\x .. =v\...~..
(13)

where u(r) = xu'(r) and e, are the hound state energies of /. f( P ¢) and
ICp,. n) are matrix clements of the perturbing potential ¢ **° taken with
respect to states of the distorted potential U, with g representing continuum
sttes and n the bound states. The thermal averages in (13) can be carried out
in the harmonic approximation giving

AAAr_E.. - ....:c::: - ...vvv\:.m =eV -1, (14)

where Q(7) is the displacement correlation function, which in the usual way
can be expressed in terms of an integral over the phonon spectral density p(w)
and the Bose FEinstein function n(w)

m [ win
Q:vn&AAzAl:onvvHAI.\. do plw)n(w) ot (15)

M W )
where m and A are the masses of the projectile atom and crystal atom,
_.wvve.p,._<a_<. (The mass of the projectile atom appeirs because of our choice of
.;::E_.,,..c:_....,& variables.) Expanding eq. (14) 10 first order in Q(7) and
__;c.‘_._:m back into (13) gives the first non-vanishing contribution to the
transition matrix

. m e ©
(Fip,)y= Iy, dyg .\ dw ﬁlmlv\: r,. Qv.lﬂl\:..wv. e
“u o w P, .Q.. fwte
moos ™ plw) n{w)
D) dw =550 (pyon ) e S
n M, .\. w0 w r VP.. te,twtie (16)

This describes a single phonon virtual exchange process with positive values of
w giving phonon creation and negative values giving phonon annihilation. In
fact eq. (16) contains exactly all possible single phonon virtual processes for
__.... potential of ¢y. (10), including all phonon assisted bound stale resonances.
Higher-order terms in the perturbation series contribute 10 multiphonon
processes and these are considered elsewhere [17). Eqg. (16) has been used to
explain the thermal attenuation of the specular beam of He or 11, scattering




Si6 J R Manson, ¢ Arowand 7 Fhermal atienuation in atom--surface scatiering

B P

Fig V. Diagrams showing the single virtual phonon exchange process which comes from the
wecond order of perturbation theory,

from smooth Cu surfaces and excellent agreement with experiment has been
obtained [11]. As a useful visual aid, the phonon exchange process deseribed
by ¢q. (14) can he presented as a Feynman-type diagram, the single bubble as
shown in fig. 1.

3. Simple approximation

We now outline a series of approximations which greauly simplify the work
of calculating the thermally averaged transition matrix but which retain almost
all of the salient features of the method. These approximations consist of the
following:

(1) Replace the time dependent phonon correlation functions by an effective
mean square amplitude, i.e. in the simplest case

(1) = 4¢u(1)u(0)) -+ 4¢u*(0)) = Q(0).

(2) In integrals over intermediate perpendicular momenta, retain only the
imaginary or 8-function, energy conserving contribution.

There are also two further approximations which are less stringent but quite
useful:

(}) Ignore the contribution of hbound states in the intermediate sums.

(4) Approximate the speciral density p(w) by that appropriate o a Debye
phonon madel. (This is certainly not a necessary approximation but is very
useful in obtaining numencal estimates when no better p(w) is available.)

Of these approximations (1) is the most severe and least justifiable. How-
ever, comparison with our detailed calculations [11,12,18] indicate that
works rather well. We note by comparison that only (4%(0)) appears in the
Debye-Waller factor of eq. (1). Approximations (2) and (3) are both well
justified by our more detailed calculations. The neglect of off-cnergy-shell
contributions in the sum over intermediate state is justified by the fact that
they contribute less than 20% of the total in all systems we have investigated.
These contributions are not always negligible in atom-surface scattering, in
fact for clastic scattering from highly corrugated surfaces they can be domi-
nant. [L appears here tiat in single phonon regime the thermal roughening s
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sufficiently small that off-shell contributions are not large. A similar argument
appears to hold for the intermediate sum contribution from the bound states.
I'hey are negligible except for grazing angles, for example even at 0, = 75°
they contribute only u few percent to the total intensity. This again an.n:; to
be ...:c 10 the smallness of the thermal roughening.

. ::.”zu approximations are readily applied to eq. (16). Neglecting the term
_=<:_<_=m bound states and retaining only the imaginary contribution from the
continuum states gives

o _imm e p(w) [ p. p)
(F(p) 5wy Sn_elﬂllnlM.I'=T.L. (17)
with p?=pl 4 .

We can write this in the form
(F(p)y = =im|f3(p.. p)/8p.] Qe (1%)
where the effective mean square displacement is
Quu=4(m/M) [~ dolp(w)/0]A(0), (19)

with

Me)=p, [ (p.. p)/rf(p,. p).

The simplest choice for Qg is to set A(w)=1 which from eq. (15) s
equivalent to

Qo= Q) = 4¢3 (0)). (20)

. >:‘ =_.w:_::<o approach is to replace Q(r) by Q(U) in eq. (14) and after
insertion into (13) and neglecting bound states one abtains

N 00 2 .
CFOp)y = e~ 1) [* gg LA200) (21)

o Pl—qttie

_ﬂn..h::m:m only the imaginary contribution to the remaining integral leaves us
with

) 7
(Fp)) = = P (p p Y- 1), (22)
.&En... upon .2?.:::.& the exponential, is equivalent 1o (18) with 0., = Q).
T'his expression involves only the diagonal matrix elements of the potential
and the temperature dependence is entirely in the factor Q).

If we let p(w) be a Debye spectral density

plw) =30 /0], (21)
and using the fact that for sulficiently high temperatures
n{w) s kpT/w, (24)
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we have from eq. (15)

0(0) = 4 “e de .uxcm W.h.‘\ —24 M T . (25)

MJ w0 W, @ M Lol
where 8,, is the Debye temperature and k is refated to Boltzmann®s constant
ky by ky=2mh /.

In spite of the fact that the mean square displacement (A(0)) is found in
the exponential of eq. (21) this is not at all of the form of a Debye Waller
factor as in eq. (1). In fact, to compare with previous results involving single
phonon transfer we expand the exponential and insert (22) into cxpression
(12) for the specular intensity to obtain

u n ~
w=1-2(%) \IA.,\..WE,_ CONE (20)

In order to see how well this approximation works we proceed to make
some comparisons with previous theoretical results as well as with experiment.
In previous work [11.12] the authors have found it convenient 10 approximate
the distorted potential by a Morse potential

U(z)=D(c ™ —=2c ¥). 27

which implies that the attractive potential of A(z) of eq. (10) is simply the
attractive exponential in (27). The diagonal matrix elements of the perturbing
potential are then rather simple

fpp)=(pie ™ p)=@/m)|pi+pd Imy(3-d+ip)]. (28)

where d? =2mD/h*x? and §(2) is the di-gamma function of complex argu-
ment.

Some care must be taken in evaluating the mean square surface displace-
ment (1’(0)). This should not be the mean square displacement of a single
surface atom. but instead the weighted mean square displacement averaged
over the surface atoms simultancously “seen” by the incoming projectile atom.
In previous work this number of crystal atoms is best taken to be four for
close-packed metal surfaces (more exactly, the spectral density is tiuken to be
the average spectral density of four ncighboring crystal atoms). The effect of
this averaging process on () is, 1o o very good approximation, to multiply
it by a factor 1/4. An cquivalent statement is that (ul(0)) is the effective
mean square displacement which is approximately 1,/4 that of a single surface
atom. ‘The need for this spatial averaging is discussed further in section 5
where we consider the damping factor that arises when we assume that the
potential is a pairwise sum of atomic interactions.

A further factor of 1/4 arises because of the use of the Morse potential.
The static attractive part of the Morse potential enhances the isopotential
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corrugation of the total potential. That is 1o say, a potential of the form of eq.
(10) with only the repulsive part thermally corrugated will find its constant
energy corrugation enhanced with respect to the actual corrugation amplitude
of the function «’. For the Morse potential this enhancement is a factor of two
at fow energies, decreasing stowly (o unity at large encrgies. To account for
this enhancement we multiply (1?(0)) by another factor a = 1,/4 as was done
in previous work [11,12]. Now, using eq. (26) for the specular intensity and the
above discussed Debye phonon model we can compare with the experimental
data. This is done in fig. 2 for the case of He scattering from the close-packed
Cu(100) face. The parameters for the Morse potential are D = 6.35 meV and

735¢°

2 .
318°
®
1. 1 i t . 1
0 200 400 600 800

qucl (K}

Fig. 2. Thermal attennation of the specular beam for the He/Cu(100) system with inaident energy

21 meV and thiee different angles of incidence. The points are from expeniment {7} and the curves

ate the stngle phonon calculstion of eq. (27). The surfuce Debye temperature for @, = 73.5°
276 K, for 8, =355° in 240 K and for @, = ML.R° is 220 K.
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Table |
Values of the diagonal matnix clement f( p,, p,) and the Debye temperature for the system
He/Cu(100) at the two energaes £ = 21 and 63 meV, and for several incident angles #,

E, (meV) 8, (deg) P, . f(pi. p) 8,, (K)
2 735 1 23 276
21 hb] 145 49 240
21 MK 5.8 L1 220
63 716 i 47 285
63 19 9.9} 204 200

x =105 A", these values being fixed by elastic scattering data from stepped
Cu surfaces [19]. The values of matrix elements and Debye temperatures are
given in table 1. For all of the three difference incident angles excellent
agreement with the experimental points is obtained. It is found that the Debye
temperature (the only varisble parameter) must change somewhat with inci-
dent angle but the values which are obtained, 200 < 8, < 280 K are within the
expected range of the surface Debye temperature of Cu. Measurements have
also been made at the higher incident energy of 63 meV and our simple model
gives equally good agreement for these data. The Debye temperatures and
other parameters for two different angles of incidence at this higher energy are
also shown in table 1.

4. Well depth correction

The effect of the attractive adsorption well in the potential has long been
recognized as sufficiently important to introduce a substantial correction in
the thermal attenuation. This has usually been done as a “refraction” effect,
by simply adding in the depth of the well to the energy associated with the
normal motion of the incident particle, and is often referred to as the Beehy
correction [8]. The Debye Waller factor of eq. (1) applied to the specular
heam of a flat surface gives
1, = exp[ ~2W(T)] = exp| - (8k,) ¢’ (0))]. (29)
where Ak, = 2k,.. The Beeby correction is to replace &, by an ¢ffective value
K, =k2=k U+ (D/E). (30)
where D s the well depth and £ is the energy associated with normal motion

E=hkL/2m. (3n

Our simple approximation as expressed in eq. (26) provides a more
sophisticated and easily justiliable well depth correction. We can write eq. (26)

R
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in the Debye Waller form exp| — 2W(T')] by performing the first-order cumu-
lant expansion

i

2
x(u’? (0))

1, - _A$v~ 4 rep) !

AW

- r

#

Mip. )Y L,
1 -AHV l\l\ﬂ_uﬁa.w ,x~A: ~A3v+:. (32)

and make the identification

2
av., /(pi. p) xNA:LAcvv. (33)

1
W(T nA AvdINIY
(T)= 515 ’.
Comparison with the Debye-Waller expression of eq. (30) shows that our
cffective perpendicular momentum is
i fpep)
o) (L) (34)

ko uA r

or from eq. (2K)

k% =k [V YDZE m (3 -d+ip,)). (35)
This well depth correction is considerably stronger than the Beeby correction
of eq. (30) and is in better agreement with most experimental observations. i.¢.
use of the Beeby correction almost always leads to an overestimate of the
depth of the adsorption well.

One thing that appears a bit forbidding in our correction expression (35) is
the presence of the di-gamma function (3 —d +ip,). This poses no problem
at all in practice because for practically all systems d > 1 and p.> 1 and we
can make use of a rapidly converging asymptotic series [20):

1 1 1 1

S -+ - +. 3
2z 12z 12024 25220 (36)

Usually two or three terms will give several decimals of preasion and often

Just the logarithm term will suffice as a good estimate. Sinve } ~ o is negative

for all well depths having at least one bound level, eq. (36) shows that for most
systems we will have

n/2sImy(y-d+ip)sm, (37)

$(z)~MIn(:) -

with the upper limit approached for small p, and the lower limit for large p,.

Of course, the well depth correction obtained here is based on the Morse
potential but one would not expect the results to change drastically if the
attractive part of the potential is replaced by a more realistic - 1/2° form.
although the dependence of D might be somewhat weaker.
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However, there is onc very interesting effect that occurs with the well depth
correction, namely that it completely disappears if both the attractive and
repulsive parts of the Morse potential vibrate in phase with each other. To see
this we consider a potential of the form

V(z u')=D{exp| - 2x(z — 0’ ) /vw - 2expl - x(z -’ N/m). (34)
with o, = ((exp(xu’))) = vy’ “. 16 we now carry through the same simple
approximation we will obtain exactly the same form for the specular intensity
as in eq. (26) except that the perpendicular matrix element will be of the form

£ p)={ple ™ 1p) —(ple **1p)=(4/7)p!. (39)

The part of the matrix clement coming from the attractive part of the potential
exactly cancels the term containing the di-gamma function in eq. (28) und the
net resultis 1o leave us with no well depth correction at all. Incidentally, it is
of interest 1o note that the matrix element of eq. (39) above is exactly the same
result which would be obtained if there were no altractive part at all, ve. if the
potential consists only of a vibrating exponential repulsive parst. This is. in
fact, a special case of a general result valid for any one dimensional potential
appropriate 1o the surface scattering problem. It can be shown that for a
distorted potential U¢z) of the general form of eq. (11) the diagonal matrix
clements of dU//dz taken with respect to the eigenstates of U are the same as
ey. (39) (21}

The results expressed in the above paragraph lead to a very significant
observation on the attractive part of the potential. If the attractive part
vibrates with the repulsive part, eq. (39) implies that there would be no well
depth correction associated with the thermal attenuation. The fact that analyses
of the experimental data from essentially all surfaces have needed to include a
well depth correction {1.7] leads to the conclusion that the attractive part of
the potential does not vibrate strongly. In general, one does not expeet the
long-range part of the attractive potential to vibrate very much in COMPAnson
with the repubive part. This is because the reputsive potential is predomi-
nantly the result of an anteraction with a small aumber of suelace atoms,
whereas the long-range - 1/:" term arises from the pairwise sum of the
pokarization interactions with all the crystal atoms including those in the bulk.
However. shorter-ranged corrections to the attractive potential may vibrate
more or less strongly and the above observation would seem to indicate that
this would tead to reduce somewhat the actual well depth correction.

5. Damping coefficient

The simple maodel presented in this paper affords an illustrative way (o
introduce the damping factor associated with the inelastic atom surface
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interaction that arises because the incoming beam interacts simultaneously
with more than one surface atom. This effect has been discussed previously 7,<
the authors and others {5.9] and has recently been put on a more :m:.:.:‘z
..c:.:r:.c: by Celli et al. [14] using a pairwise summation of wtomic poten-
tials. The essence of their result is that the probability of single phonon
exchange is multiplied by a damping factor exp( - Q°Z/2x) where @ is the
:.:.:ﬁ::.: transferred by the phonon, 2 is the classical turning point of the
meoming atom and « 15 the range parameter of the atom-surface potential as
n eq. (I)).

.‘_.Ez result arises from the assumption that the repulsive potential can be
written as a sum of pairwise exponentially decaying atomic interactions
between the incoming atom and those of the crystal. For simplicity, consider a
sum of Yukawa potentials (other forms can be obtained by appropriate
differentiation with respect to the range parameter x)

el
V(z. R) = Mﬂ - !_ls‘HM._'hi =Y exp(-f,:) expliQ- R). (40)
[/
i..n?. Cis a constant [14] and S, = .\wlx~+xcﬂ Expanding fi, to first order
gives
V(zo R)=Cexp(~2x2)Y exp(iQ- R) exp( - Q’:/4x). (41)
v

The .._h::?:w cocfficient of rel. {14)] is recovered by approximating = by the
classical turning point # in the factor exp(— @'z /4x), .

Pz, R) = C exp(—~2x:) ) exp(i@- R) exp( - Q7:/4x). (42)
(%]

Fq. (42) is to be reparded as the static repulsive part of the interaction
potential of ¢q. (10) ansing from a pairwise summation. Il we now assume
phonons for which the momentum transfer as negligible we can sull retain the
damping coefficient by replacing (07 by w?/¢? where ¢ is a representative
phonon wave velocty. This imphies that the perpendicalar matn clements are
of the form

(P 1 1ay = (pohexp( - 282) | q) exp( - w2 /4xi?)

=f(p,. q) exp(—w’i/4x?), (43)

i_..o.?. fOp,. ¢)is the same matrix element defined after ey. (13), and with w
being the dimensionless frequency of section 2 we must have &= 2me/h’x 2.

I we now go back and develop the general formalism for the thermal
attenuation as in section 2 above using the potential of ¢y. (42) we would
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obtain. for the first non-vanishing contribution to the transition maltrix, eq.
(16) with f( p,. q) replaced by eq. (43): .
L2, ¢) exp( - w'2/287x)

L " W(w) futiiis
A\..A\v.vv ?h 0 ,_Q‘\ 8.._8 _:E n{w) pPl—q’ +w+ic '

where we have ignored the bound state contribution. We now E.v.« the cn::..s_
approximation developed in this paper which is equivalent to setting w = 0in
the denominator of (44) and retaining only the 8-function contribution to the
integral over ¢

(D) = =52 f e ) Quu(0). (45)
where
F._::ua?:svsuam " o Eeﬁievﬁz - w'7/28%). (46)

When e¢q. (45) is compared with ¢q. (22) we see that .:F. transition =W=:‘_x is
reduced through the fact that the mean square displacement (1(()) is
replaced by a smaller effective value. .

To make a numerical estimate of the size of (12(0)),, we can approximate
p(w) by a Dehye spectral density as in eq. Awuw. The integrals in the high
temperature limit are trivial and comparing 1o (#°(0)) of eq. (25) we have

R

Q0) _ tA‘:.‘...::vn: _ | Tk (47)

(0) Lt (0)) 2wy, 3
For a typical metal and a helium beam we i.u__r.u have the Debye :\,ﬁ_:camw
approximately 7x 10" Hz, =3 A, x= | A ' and ¢= 1000 /s which
would give a value of about 0.2 10 ey. (47). This compares quite favorubly with
the value of ~ 0.25 obtained by considering (#?(0)),,; t0 be the average over
four surface atoms as discussed above in section 3. .
The damping factor in egs. (43) and (44) is a cut-off n .Q,z?.n... _:.: __.:z
implies that it is also a damping factor in real space since the .;E:e.._.
transform of the Gaussian form is also a Gaussian. Consequently, ::_._z
damping factor is essentially the same as the so-called “Armand cffect” in
which one averages the thermal displacement over several surface =_:=.7. _=
other words, it accounts for the fact that the incoming atom actually “sce

several crystal atoms in the region of its classical turning point and _._:. relative
vibrations of these crystal atoms tend 10 cancel leaving a net effective surface
vibration which is smaller than that of any individual ».Qz.:_. atom,

We note in passing that this damping factor will be a%n::m:.w the same for
atoms or light molecules scattered by all noble metals. This is readily seen
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. . - -~ .
from the fact that the relevant parameter is w2 /28 The range parameter x
is, for a given projectile, essentially the same for all metals and the same can
he said for 2. The ratio w,,/& also remains essentially the same since the sound
velocity scales approximately with the maxinum crystal frequency.

6. Frequency cut-off correction

In addition 10 the damping factor of the ahove section there is also a
frequency cut-off correction which arises because the relevant matrix clements
decrease rapidly in magnitude with the frequency of the phonon exchanged.
This effect has been introduced previously to explain the decrease in inelastic
ntensity with increasing phonon (requency {13} for the exchange of Raylegh
mode quanta,

This frequency cut-off can be of real importance in the thermal attenuvation
of clastic diffraction beams. For example, in the noble metals the mean square
displacement (17 (0)) remains relatively constant as one goes from Cu to Ag o
Au. The effect of the increased spectral density p(w) s cancelled by the
decrease in the mass ratio m/M and this would imply that the thermal
attenuation would vary very little. However, because Au and Ag have a larger
proportion of low frequency phonons in their spectral density relative 1o Cu,
the frequency cut-off developed here gives rise to the prediction that there will
be substantially increased thermal attenuation as we progress from Cu o Ag
to Au, regardiess of the projectile atom.,

The starting point is the expression for the thermally averaged transition
matrix of eq. (17), which is written in terms of the effective mean square
surface displacement of eq. (19). The frequency cut-off factor is quite sumply
the Tactor A(w) appearing in eq. (19)

L Cpe p)/p=12(po p)A(w)/p.. (48)

For the Morse potential a good approximation to A(w) can be obtained
readily. The Morse matrix elements are given by

o e

V2p sinh(2mp )24 .J:.ENE\ )

fCpoa)=(p} expl ~282)lq) = sinh[7(p + ¢)] sinh[7(p —q)]

. r(y-d+i
X{(p'-qtv2d) 1A|u.||m..ll_.e!v
(i -d+ip)

P gty PG odxip)
(r 4 ?:T:l: i) \ﬂ

(49)
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where 1(2) is the gamma function of complex argument and the diagonal
matrix clements are given by eq. (28). To first order in the parameter
2 = mw/2p! we have

LT N ey ), (50)

M) = e re/2p)

Under most circumstances the parameter £2 will be small even in the range
where mw /2 p, s fairly large. We note in passing that eq. (50) is also recovered
for the case in which the potential is a purely repulsive exponential with no
attractive part, i.e. the exponential repulsive potential.

The effective mean square displacement of eq. (19) now appears as

- (w) mw/2p,
Q0) ey = 4 (0))o = nn . do © %}:Aevuﬂrg\w\.l;
xexp( - w'z/28%), (51)

where we have included the damping factor of the preceding section. To
compare with the Debye mean square displacement of eq. (25)

o =2a"_T (52)
M k05,
we write eq. (51) at large temperatures as
m kT p, ™ X2 2.2
), (0)=48- - ——- " dyv ——— exp(—x~‘a’), (53)
Qe (0) M o, a\ © sinh” x P

where a! = u\.wm\A PEALINY

In table 2 we show a comparison of Q(0) and Q(0) for the three noble
metals: copper. silver and gold. For a given light projectile such as He or i,
the ratio of Q(0) to that of copper is given by the ratio of MO} and, as shown
in table 2, this does not vary much from unity. This result would imply that
the use of the uncorrected mean square displacement of eq. (52) would give an
clastic thermal attenuation which is only slightly larger for gold or silver as it
is for copper. However, use of the effective mean square ..:.,_.._n_.......:_c_: ..; eq.
(53) gives a much more physically reasonable result. Since, as mentioned in the

Table 2 ,

The ratio of Debye mecan square displacement und elfective mean square disptacement of the
; 3

noble metals: R, = (moby . /Amip) s Ry=(mé}) e, /(mo))

0y, (K) M R, K, ~
Cu 326 [2) 1 1
Ag 226 108 1.23 1.7%
Au 170 197 LI 2.9
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preceding section the quantity a is essentially the same for all these metals for
the same projectile and incident conditions, the ratio of Q(0),, to that of Cu is
approximately the same as the cosresponding ratio of M8, From table 2 we
see that this ratio is roughly 1.8l and 2.31 for silver and gold, respectively.
This implies that silver and gold have a greatly enhanced thermal attenuation
over that of copper. This prediction is quite understandable and is due 10 the
fact that the spectral densities of silver and gold have more low frequency
phonons, and it is specifically the low frequency modes which contnbute most
to thermal attenuation.

7. Conclu

Mms

Starting from the general formalism for the thermal attenuation of the
clastic intensities in atom - surface scattering, we have developed here a very
simple and useful approximation. Although the general formalism requires
extensive numerical calculation, this approximation, while stull retining most
of the general features, allows many results to be obtained in simple closed
form expressions. The main approximation in this method consists of two
parts, replacing time dependent phonon displacement correlation functions
(u(r)u()) by an effective mean square amplitude which in its simplest form
is Ca(0)). and retaining only the energy conserving contributions to integrals
over intermediate perpendicular momenta. In this paper, we consider only
processes involving the exchange of a single virtual phonon. A complete
discussion of multiphonon exchange within the confines of this simple model,
including infinite resummation of selected classes of multiphonon processes is
given in another paper |17}, Numerical comparisons with experimental data
are made using a Morse interaction potential with a vibrating repulsive part
and a Debye spectral denssty for the phonons,

We arrive a namber of new and interesting results. We obtain a well depth
cosrection that is much stronger than the simple refraction effect as applied 1o
the Debye Waller formula. In fact, the refraction or Beeby correction usually
overestimates the depth of the adsorption well, whercas the stronger correction
developed here appears to be in better qualitative agreement with experiment.

We discuss how damping factors and the frequency cut-off affect
atom surface scattering. The damping factor arises naturally in the theory
when we consider a potential which is a pairwise summation of atomic
interactions. It takes into account the fact that the incoming atom interacts
simultancously with several surface atoms and the interference between their
correlated vibrations decreases the netinelastic scattering amplitude. For hight
atom scattering at metal surfaces, this reduces the inclastic contribution in
essentially the same proportion for all metals examined.
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The frequency cut-off, on the other hand, can vary strongly from one metal
surfuce to another for a given incident atom. This is because the thermal
attenuation is largely the result of low frequency phonon transfers and the
metals with low Debye temperatures have many more low energy phonons in
their spectral densities. The frequency cut-off correction takes account of the
fact that the matrix clements for a particular interaction decay rapidly with
the difference between the magnitudes of incident and scattered normal
momentum. Thus those processes associated with a large energy transfer (or a
large phonon frequency) are associated with a small matrix element and are
strongly damped.

The importance of this work s twolold. First it provides a simple maodet for
teeating the complexities of thermal attenuation in atom -surface scatiering, In
geacral, because of the large strength of the interaction, thermal attenuation in
low encrgy atom surface scattering is substantially more complicated than that
predicted by a simple Debye -Waller factor. This simple model provides a way
to illustrate these complexities, yet sull produces closed form expressions for
the clastic intensity which are not much more difficult to apply than the
Debye- Waller factor. Secondly, this model and the general theory from which
itis derived [11,12,18), have demonstrated the ability 10 give excellent agree-
ment with experiment,
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