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We present 2 set of simple approximations for models of the thermal attenuation of elastic
intensities as a function of surface temperature. The results illustrate the complexity of the
strongly interacting atom-surface system, yet provide simple closed-form expressions which are
no more difficult to apply than a standard Debye—Waller factor. Very good agreement is obtained
with existing experimental data. The importance of the various types of multiphonon
contributions is assessed and the resummation of bubble diagrams is demonstrated.

I. INTRODUCTION

In the scattering of low-energy atoms from surfaces inelastic
processes become increasingly important as the surface tem-
perature is raised. The increase in inelastically scattered
atoms is paralleled by a decrease or attenuation of the elastic
diffraction intensities.’ ™ This effect is common to all diffrac-
tion processes from crystals such as neutron or x-ray diffrac-
tion. In these latter cases, multiple scattering can usually be
ignored and the diffraction intensities are well described by
the Born approximation. The thermal attenuation appears
as a Debye~Waller factor, which in its simplest form appears
as

e Wame UK "kf)'“f]7>, (1)

wherek,; — k,is the exchanged momentum, u, is the thermal
displacement of a crystal atom, and the angular brackets
imply a thermal average. In contrast to Eg. (1), for atom-
surface scattering the interaction potential is extended and
soft (particularly for metal surfaces), and the important
contributions come from higher-order perturbation theory.
In this paper we develop a simple approximation for the
thermal attenuation which allows us to demonstrate clearly
the importance of these higher-order contributions.

In Sec. IT we develop briefly the essential elements of the
inelastic scattering formalism. En Sec. ITI we present the sim-
ple approximation and consider the single virtual phonon
contribution for a flat surface model. Section IV is a com-
parison of single- and double-phonon contributions and a
discussion of the relative importance of multiphonon inelas-
tic scattering. In Sec. IV we also consider infinite summation
of certain classes of multiphonon terms.

il. GENERAL DEVELOPMENT OF THERMAL
ATTENUATION

We very briefly present here the theory of thermal attenu-
ation in atom-surface scattering®™'! {ogether with the reduc-
tion to our simple approximation. It is appropriate to work
in the distorted wave formalism with the total interaction
potential V' between incoming atom and surface expressed
as
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V=U-+uv, (2)

with U a conveniently chosen distorting potential for a rigid
lattice. Then the transition operator obeys the equation

T=v+0vG, T, (3
where the Green function is
G =(E +¢ —H,—U—H +je) !, (4)

where H; and H © are the unperturbed Hamiltonians of the
particle and crystal, respectively. Expressing the Green
function as an integral representation and with the usual
definition of the particle evolution operator,

P(5) ::ei(E,-'n’I,.'%is)r/ﬁ. (5)

The transition operator becomes, for elastic processes,
T—y— (i/ﬁ)j dt (PO T, (6)
Q

with v(¢) in the interaction picture,
v(t) =exp(iH t /fiYvexp( — iHt /). (1)

Equation (6) can be iterated to yield the perturbation series
in terms of time ordered operators

T=v4(— l'/ﬁ)Jm dro()P(t)v(0)
(o)

+(mi/ﬁ)2f dt’ [ dt'o(t' + 1)

Q v0

XP Yy P()u(0) + . (8)

It is convenient to use the range parameter « of the poten-
tial to obtain a dimensionless transition matrix. For the diag-
onal elements considered here this becomes

F(p,) = 8m/HkHT,, (%)

with m is the particle mass and p, = &, /k, with &, the parti-
cle wave vector normal to the surface. Then the intensity of
the specular beam is given by

Ip= |1 — (in/4p ) (F(p;)) % (10)
where we have used the fact that for elastic scattering the
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thermal average {|F(p)|*) can be replaced by the simpler
expression | {(F }|%.%°

In order to proceed further, we must adopt a potential for
the interaction process, and we choose a thermally vibrating
exponential form

Vizu'y =D e ™% fu, — 4(2)], (i1

where #’ is the normal component of the thermal potential
displacement,

vo = {exp(2xu')} = exp(2x*{u'?)),

and 4 (z) is a static attractive part. The choice of ant exponen-
tially decreasing repulsive potential is justified by the fact
that to a good approximation it is proportional to the elec-
tronic charge density outside the surface.

A potential in the form of Eq. (11) is extremely conven-
ient for carrying out the thermal averages as will be shown
below. s major disadvantage is that it describes a flat vi-
brating surface and hence the phonons will not giverise toan
exchange of momentum parallel to the surface. As we have
shown™'? this is not a fundamental difficuity for the problem
of thermal attenuation where most of the phonons involved
are of low energy and hence long wavelength. It is conven-
ient to choose

U= ({V{z,u'}), (12)

so that the average of the perturbing potential vanishes
{v) = 0. Then the first nonzerc contribution to the thermal-
ly averaged transition matrix is from second order in Eq.
(8):

(FPp)) = (1/40[ a’QJ‘ dr T
0 0 .
X ({e“(ﬂ - U()} [eu(m - U()] )fz(p,-ﬂ)/l.’z‘)
+ ( 1/477_21)2 ‘J‘ d’f ei(p‘:‘ + ey, Ve

X[ — v} e — vl \)}2(1),»,1’1)/05, (13)

where u(7) = ku'(¢) and ¢, are the bound-state energies of
U. Here, f(p,,q) and [{p,,n) are matrix elements of the per-
}

turbing potential e~ *** taken with respect to states of the
distorted potential U, with ¢ representing continuum states
and n the bound states. The thermal averages in Eq. (13) can
be carried out in the harmonic approximation giving

<[eu(~r‘; o U()] [eu(()) . U(J} )/Ué — eQ{r) . 1’ (14)

where @ (7) is the displacement correlation function, which
in the usual way can be expressed in terms of an integral over
the phonon spectral density p{w) and the Bose-Einstein
function n(w):

Q(r) = 4u(nu(0))) =42 fw deoo L0V @), e,
M Jo @
(15)

where m and M are the masses of the projectile and crystal
atoms, respectively. (The mass of the projectile atom ap-
pears because of our choice of dimensionless variables. ) Ex-
panding Eq. (14) to first order in @(+) and inserting back
into Eq. (13) gives the first nonvanishing contribution to
lowest order in virtual phonon exchange:

(F‘z’”(p,»)) mfﬁ%f'dq’j ’da)—&(—@l
0 0

w

sz(pf;Q)“:z——%ig)——“f‘
Pi—4 +w-+ 1€

m * plw)
+ dw ——=—
M E,; L

4]

n{w)
Prte, +w+ie )
This describes a single-phonon virtual exchange process
with positive values of & giving phonon creation and nega-
tive values giving phonon annihilation. In fact Eq. (16) con-
tains exactly all possible single-phonon virtual processes for
the potential of Bqg. (11), including all phonon assisted
bound-state resonances.

We now consider some of the higher-order terms in the
perturbation series of Eq. (8). The third-order term, with
the potential of Eq. (11) and after converting to dimension-
fess variables has the form

X12(p,m) {16)

o0 = + (V[ [ [ [ ey e on g
0 0 Q

0

X pixg:3(q),:6:)f(g20p;) (e oMy

where bound-state contributions have been ignored. The ex-
pansion of the factor involving the phonon correlation func-
tions G (7) begins with the quadratic term, implying that the
third-order contribution must invoive the exchange of at
least two virtual phonons. A similar calculation shows that
the fourth-order contribution to the perturbation series also
exchanges at least two virtual phonons.

i1l SIMPLE APPROXIMATION AND SINGLE-PHONON
CONTRIBUTIONS :

We now present the following series of approximations
which greatly simplify the work of calculating the thermally
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Y eQ"T‘) . eQ(r;) _ eQ{T“ +75) + 2),
Eiveraged transition matrix but which retain almost all of the
salient features of the method: (1) Replace the time-depen-
dent phonon correlation functions by an effective mean-
square  amplitude, 1ie, in the simplest case
Q(7) = Q(0) = 4{*(0)). (2) In integrals over intermed;-
ate perpendicular momenta, retain only the imaginary or 8
function, energy-conserving contribution. ('This is justified
by the fact that for most temperatures of interest the surface
thermal roughening is small, as demonstrated in more exact
calculations.®'%} (3} Ignore the contribution of bound
states in the intermediate sums. (This is justified except at
very low incident energies or very grazing incident an-
gles.g’m)

(17)
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We illustrate by example. Consider the lowest-order con-
tribution in perturbation theory, the second-order term of
Eq. (16). Applying the above three approximations leaves
us with

(F2p)) = (—in/8p;) [e2P — 11F2(prpi) (18)
and the term for exchange of m phonons is expressed as

(F 2 p)) = (— i/ 8p ) (pip ) [Q7(0)/mi]. (19)

The single virtual phonon contribution to the thermal at-
tenuation [the m = 1 term of Eq. (19) together with Eq.
(10)] is compared with experimental data for the specular
scattering of He from the close-packed Cu(100) face in Fig.
1. The attractive part of the potential of Eq. (11) is chosen to
be an exponential so that the average potential U(z) is a
Morse potential. The parameters are D = 6.35 meV and
x = 1.05 A1, values fixed by previous comparison of theory
and experiment for elastic diffraction intensities from
stepped Cu surfaces.'? For evaluating the correlation func-
tion Q(0) = 4(u”) we use a Debye spectral density averaged
over four surface atoms to account for the number of surface
atoms actuaily “seen” by the incoming atom in the region of
its turning point'’: p(w) = 3w°/4w},. The static attractive
part of the potential enhances the isopotential corrugation of
the total potential and to account for this we multiply p(w)
by an additional factor @ = as in previous work.® The
agreement shown in Fig. 1 is remarkably good. Although the
Debye temperature (the only variable parameter) changes
somewhat with incident angle, the values obtained, 200
K <8, <280 K, are within the expected range for the sur-
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Fic. 1. Thermal attenuation of the specular beam for the He/Cu(100)
system with incident energy 21 meV and three different angles of incidence.

The experimental points are from Ref. 2 and the curve is the single-phonon
calculation. The surface Debye temperature for #, = 73.5%is 276 K, for 6,
= 55.5"is 240 K, and for 8, =-: 31.8%is 220 K.
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face Debye temperature of Cu. Measurements have also
been made at the higher incident energy of 63 meV and our
simple model gives equally good agreement for these data.

V. MULTIPLE-PHONON CONTRIBUTIONS

This simple model aliows us to discuss clearly and simply
the relative importance of the various types of multiphonon
events that contribute to atom-surface scattering. We begin
by comparing to the single-phonon contribution the three
different types of two-phonon processes. The two-phonon
amplitude from second-order perturbation is obtained from
Eq. (19) with m = 2:

(F(p,)) = — (in/16p )f*(p.,p )37 (0). (20)
The third- and fourth-order perturbation contributions start
with double-phonon exchange terms which are, respective-
ly,

(FO2p)) = 4(m/p) (pop )@ (0), 20

(F2p)) = — &(7/p) (pip )2 7(0). (22)
The relative importance of these contributions is best ex-
pressed by comparing them to the single-phonon term from
Eq. (19). Again we make use of a Debye spectral density and

we take the high-temperature limit where {(#*) « 7', the sur-
face temperature:

(FEDY /(FDY = 12 ﬂ[ﬁz’r} r , (23)
Ml 2m 1kz63
<F(3,z)>/<ﬁv(2,l)> - _ 12_”1[ ﬁ‘K“]Wf(piapi) T . (24
Mi2ml p kg8
(F4y(F2Y) = i’ﬁ[ﬁzkznﬂf@npf) ]2 r
’ 8 ML 2m D; k;ﬁfp '
(23)

Representative valtues of f(p,,p,)/p; for typical systems
are of the order of 10 or larger, therefore clearly the fourth-
order double-phonon term is the iargest while the double-
phonon contribution from second order is small. This pre-
diction is borne out by detailed exact model calculations’®
which show that among the three different types of two-
phonon contributions the fourth order is dominant, the sec-

“ond order is negligible, and the third order is substantially

smaller than the fourth order but not always negligible.

Another interesting point is the difference in phase
between the second- and fourth-order terms of Eqs. (19)
and (22). The fourth-order amplitude subtracts from the
single-phonon contribution which has the effect of increas-
ing the elastic intensity. A similar effect is noted with an
ordinary Debye-Waller factor.

The parameter involving the most important contribu-
tion, that of Eq. (25), can be put into an interesting form
upon recognizing that

(K2 2m)y [mf(p,.p; ) /p, 1P =16(HKk ¥/2m) = 16E *, (26)

where E * can be considered as the energy associated with
normal particle motion corrected for the well depth. Then
Eq. (25) becomes
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“,2) 2.1 __qemn E T

(FEp )/ FH 0 @) 18Mk39,, o
Apart from the numerical factor, the right-hand side of Eq.
(27) is the well-known Weare criterion' for the importance
of two-phonon terms. However, it appears here with a cor-
rection for the depth of the adsorption well coming from
appearance of the diagonal matrix element in Eq. (26). This
well depth correction is considerably stronger than the usual
correction'” of simply assuming that the well merely refracts
the particles as expressed by £* = E + D.

Another interesting situation in which multiple-phonon
contributions can be considered is in the infinite summation
of the varicus classes of bubble diagrams. The approxima-
tion of neglecting the time correlation of the phonon dis-
placements {i.e., putting (2 {(1)u(0)) = (¥*)] has the effect
of setting, at any given perturbation order, all phonon ex-
change processes equivalent. Otherwise stated, all Feynman
diagrams corresponding to a particular order are equal. The
simplest and most important of all possible infinite summa-
tions is the summation of nontouching bubbles. This consists
of summing the amplitudes from the one such diagram of
each even perturbation order. The summation is a geometric
series and the resummed amplitude is given by

(F(p )Yy = (F*V(p ) /(1 4+ in/8p (F> (p))), (28)

which gives the following particularly simple and interesting
form for the specular intensity:

(27
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Fic. 2. Thermal attenuation of the specular beam for the H,/Cu{100) sys-
temn with energy 77.2 meV and two angles of incidence 6; = 75.5" and &
— 31° The crosses are experimental points (Ref. 2), the solid curve is the
single-phonon result, and the dashed curve i the summation of bubbles
expression of Eq. (29). The Debye temperature for §, = 75.5°is 242 K and
for 8, == 31°is 217 K. (This latter curve is multiptied by 2 factor of 10.)
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1 — (ir/Sp W FED 2
m{{ (im/8p; 3 )]]. (29)

ST+ Grs8p )y (FPY

As an illustration of the usefulness of the expressions
found here, we show in Fig. 2 a comparison with the experi-
mental data for the thermal attenuation of H, at a Cu(100)
surface. The incident beam has an energy of 77.2 meV, and
shown is the specular intensity for two angles of incidence,
75.5% and 31°. The parameters appropriate to the Morse po-
tential for this system are a well depth D = 21.6 meV and
& = 1.0 A ~'."? These results are very close to those obtained
by the exact summation of bubbles. '

As a further note on multiphonon effects, with the ap-
proximation {« (£)u(0)) = {u?), the entire perturbation se-
ries can be summed using a Borel transformation. In this
case the thermal attenuation can be most simply expressed in
terms of solutions to Schrédinger’s equation with tempera-
ture-dependent, effective potentials. Furthermore, if the en-
tire potential, both repulsive and attractive parts, vibrates in
phase [i.e, if V{z,u) = V{z — u}] then the Debye-Waller
factor of Eq. (1) is recovered.'®

The set of approximations considered here permits a clear
demonstration of the important and relevant inelastic pro-
cesses. Not only does it establish the conditions for the im-
portance of multiphonon events in general, but it distin-
guishes between those which are important and those which
are negligible, and gives rise 1o simple closed form expres-
stons for the elastic intensities.
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