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The image potential appropriate to an electron tunneling from a metal into the conduction band
of an insulator is calculated with the many-body self-energy formalism developed by Manson and
Ritchie [Phys. Rev. B 24, 4867 (1981)]. Analytical results are derived for a simple but complete
basis set of eigenfunctions of the one-electron potential experienced by the electron in the nonin-
teracting system. The dynamical corrections to the classical image potential are analyzed.

I. INTRODUCTION

The analysis of electron tunneling from a metal,
through a classically forbidden region, into vacuum or
into the conduction band of an insulator is of central im-
portance in processes leading to dielectric breakdown.
Current phenomenological theory of such tunneling uses
classical image theory reduced by the static dielectric
function of the insulator in representing the potential seen
by a tunneling electron.'

The interaction potential between a charged particle
and a semi-infinite polarizable medium has been investi-
gated within classical, semiclassical, and quantum-
mechanical frameworks. A short discussion of self-energy
calculations prior to about 1981 is given in Refs. 2 and 3.
These studies are important for the interpretation of the
results obtained with various electron-based surface spec-
troscopies, including low-energy electron diffraction
(LEED) and electron-energy-loss spectroscopies as reflec-
tion techniques (REEL) or as scanning transmission mi-
croscopy (STEM). A detailed knowledge of the attractive
potential is important also for the analysis of bound-state
formation in the electron-surface interaction.* In a situa-
tion where an electron tunnels through a classically for-
bidden region one needs a quantum-mechanical descrip-
tion of both the dynamics of the surface excitations and
the dynamics of the electron. For particle positions close
to the surface of the medium with which it interacts, one
cannot neglect the change in the perpendicular component
of the particle motion due to the exchange of virtual exci-
tations with the many-body system.? Jonson® investigated
also the dynamical image potential appropriate for tunnel-
ing electrons (through a rectangular barrier) by way of the
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Green’s-function formalism, for a square-well potential.
The formalism in Ref. 2, which will be used in this paper,
includes full three-dimensional recoil effects, and has been
applied recently to investigate particle-surface interactions
by neutral particles,’ and also to a reevaluation of the van
der Waals forces between two atoms.® Comparison with
the results of Jonson® will be made.

We shall employ here modern many-body theory? to
study the image potential appropriate to a tunneling elec-
tron, and shall calculate the self-energy of the tunneling
electron due to its binding with its image potential. The
self-energy depends significantly on the dynamical
response of the electronic system near the metal surface.
In order to obtain fully analytic results, a complete
orthogonal electron basis set appropriate to an artificial
one-electron potential near the metal surface has been uti-
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FIG. 1. Geometry of the system. The plane z=0 locates the
interface between the metal (z <0) and the vacuum (z > 0). The
potential-energy barrier V(z) seen by the electron will be
modeled as a § function in this paper.
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lized to obtain the complex, spatially dependent self-
energy in this region. This self-energy is a generalization
of the classical image potential and includes dissipative ef-
fects as well as the effect of virtual surface and virtual
bulk excitations. In our application, we have described
the binding with a §-function potential, for which the cor-
responding basis set has the simplest form after the
momentum eigenfunctions set.

The outline of this paper is as follows. In Sec. II we
briefly sketch the self-energy formalism, which is then ap-
plied to an electron interacting with a many-body target.
The resulting self-energy and energy shift, obtained for a
5-function interaction, are given in Sec. III. Some results
are evaluated and discussed in Sec. IV.

II. SELF-ENERGY CALCULATION

A. The general formalism

Manson and Ritchie have presented” a general expres-
sion for the space-dependent, complex self-energy of an
electron in a given state interacting with a specified N-
particle target. The quantal self-energy was obtained
from an exact solution of second-order perturbation
theory including full three-dimensional recoil effects. For
an electron with energy &; in an initial state defined by
an eigenfunction ¢;(r), the space-dependent self-energy is
defined as

B ¢a(r) CiO|H'|aB){yp| H' | )
Zilr)= § zﬁ: 6i(r) & +Eq—&,—Eg+id

(1)

where | 1) is the exact state vector of the target in its /3-
excited state with energy Eg, and |¢,) is the electron
state vector when it has the energy &,. The state vector
of the noninteracting system is |aB)=|d,) |¢¥p), and
H'’ is the interaction energy. & is a positive infinitesimal.
The result in Eq. (1) is the lowest-order nonvanishing con-
tribution to 2;(r). Extension to higher order in perturba-
tion theory is immediate.

The shift in the energy of the electron in the | ¢; ) state
is then given by the ground-state expectation value of the
space-dependent self-energy

AE;= [ ¢}DZ,(r)¢;(r)dr . 2)

Note that Eq. (2) gives the self-energy times the probabili-
ty of finding the particle in the initial state, integrated
over position.

To obtain an accurate expression for the self-energy we
need both a good description of the interacting potential,
i.e., the screened electron-target interaction, and an ap-
propriate orthonormal basis set describing the system
under consideration in the absence of any coupling of the
electron to the many-body target.

B. Self-energy of a tunneling electron

Take an electron, in vacuum, at a distance z >0 from a
metal surface; see Fig. 1. Let V(z) be the “one-electron”
potential experienced by the electron, neglecting the image
potential. Then, an arbitrary state of the electron in in-
teraction with the potential that is originated by its own
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presence near the surface, can be expanded in terms of the

complete orthonormal set that is generated by the
Schrodinger equation,

#V?

T 2m

¢n+V(z)¢n:gn¢n ’ (3)

m is the electron mass. Since there is translational invari-
ance parallel to the surface of the medium, the wave func-
tions ¢, will be written as the product of plane waves in
the transverse coordinates p={(x,y), modulated by func-
tions u,(z) of the perpendicular coordinate, z; see Egs. (7)
and (8) below.

We assume that the dynamical properties of the metal,
which is located in the half-space z <0, may be codified
in a surface-plasmon field” whose interaction with an elec-
tron at the point r=(p,z) is represented by the Hamiltoni-
an

Hy=3 ae™P 7l +b",), 4)
K

where k is the wave vector of a surface plasmon with en-
ergy #ws,, and the annihilation (b,) and creation (b+_,)
operators for the surface plasmons obey the following
commutation relations:

[bmb:']zsx,x' - (5)
The coupling coefficient in Eq. (4) is®
meio} | (©)
U= AKwg, ’

where w; = lim,_, g0, and A is the area of the surface.
For many purposes it is sufficient to take the dispersion-
less limit wg,=w,;=w,/V'2, where @, =(4mnge/m)"? is
the volume-plasmon frequency of an electron gas of densi-
ty ng.

The initial-state vector to be introduced in Eq. (1),
eiP’-p

|0i )= Va

u;(z)]|0), (7

represents a noninteracting electron surface-plasmon field
ket. #P; is the momentum, perpendicular to the z axis, of
the electron in its “initial” state, and IO) is the ground-
state ket vector of the surface-plasmon field. Similarly,
the intermediate-state vector, |af3) in Eq. (1), which we
write as

iPp
evg un(z)by |0) (8)

|aB) =

represents a virtual state in which the electron makes a
transition to the state characterized by the momentum #P
parallel to the surface and the excitation quantum number
n, with a total electron energy &, =#*P*/2m +¢,. €, is
the eigenenergy corresponding to the state u,(z). The
surface-plasmon field is excited to a state with momentum
iK.

Calculating the matrix elements in Eq. (1), and carrying
out the sum over P, one obtains for the z-dependent self-
energy
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2:(z) ; ga,‘e u;(z)

Since the system is translationally invariant in the x and y
coordinates, the energy shift of a given state i, Eq. (2),
reduces to

AE;= [ dzul(2)Z(2)u(2), )

and, introducing the result in Eq. (9),

2
’ f dz uj(z)e %171y ¥(z)

AE=3 S a;
n K

2 .
& —t, + (P2 [P, —K]*)—Fico,+i®
2m

(10)

So far, the one-electron potential in Eq. (3) has not been
specified. A constant potential, and the corresponding
plane-wave set, was taken in Ref. 2 for the calculation of
the self-energy.

III. APPLICATION: §-FUNCTION POTENTIAL

The treatment presented above will be applied here to
the calculation of the self-energy of an electron initially in
the bound state of a one-dimensional 8-function potential.
The case of an electron initially in a continuum state will
be considered at the end of Sec. III.

One would ideally like to consider eigenfunctions of the
one-dimensional Schrodinger equation (3) with a potential
V(z) taken from a density-functional calculation. This
potential would include the static image potential for
Z— oo. A more modest calculation would use a step func-
tion for V(z), along similar lines as in Jonson’s work.}
Even these eigenfunctions give integrals in Eq. (9) that are
rather intricate. In order to obtain fully analytic results,
we now apply the results obtained for the energy shift and
the self-energy to the set of eigenfunctions obtained when
the 8-function potential energy, V(z)= —(#Ay/m)8(z), is
inserted in Eq. (3); see Fig. 2. The complete and orthogo-
nal basis set consists of a bound state,

ug(z)=(Ag)1 2 017! (11)

and two states in the continuum, corresponding to travel-
ing wave eigenfunctions directed towards *z,

h 1 iA _.
2 _ tiAz 0 FiAz —
uy (z)-————zﬂ_ e A—z‘loe O(¥xz)
Tilz, + 12
}»——ikoe O(+z) |, (12)

which can also be expressed in terms of the transmitted
and reflected waves; see Fig. 2. ©(z) is the unit step func-
tion. Alternatively, the continuum states can also be ex-
pressed as standing waves of odd or even parity, i.e.,
sin(Az) and cos(Az), but the above representation of trav-

> .
€ —E, +h—(Pi2—[Pi—K]2)—ﬁ(l)SK+i8
2m

eling wave eigenfunctions is more convenient. The bind-
ing energy of the single discrete state is gy= —ﬁzké/ 2m,
and the continuum states have energies £, =#%A%/2m rela-
tive to the vacuum. The closure relation is satisfied,

2 o0 . .
ug@us )+ 3 [T dru @i (2)=8(z—2") .

i=1
(13)
When the initial state of the electron coincides with the

bound state of the 8-function potential, the two matrix
elements appearing in Eq. (9) are

<uo|e“"'luo>=2—f£—;, (14)
and
(ug e |uy ) = o . -7 ’
27 (A—iA[A2 4+ (Ao+K)?]
(15)

the result for the two states u 3"’ and u$? being the same.

A. Self-energy

We now examine Eq. (9). We are only interested’ in the
self-energy of an electron in vacuum, i.e., in the region
z>0. The term with k=0 and n =0 should be excluded
from the summation in Eq. (9). However, since in the
limit 4 — « the sum over x will become an integration
over K, the case k=0 is automatically excluded, and the

2,2
Discrete ug(z) €°=~?2‘—:;]&
Continuum
_enz Teirz
NI ux(z
Re-l)\z A ( ) -
=04
m
Te-irz e-iAz
—— UA(Z)(Z)
Rel)\z

FIG. 2. Orthonormal basis set of the 8-function potential
described in the text; R and T are the amplitudes for the reflect-
ed and transmitted waves, respectively, for electrons incident
from the left and right, with R =iAq/(A—ikg), T=A/(A—ilkg).
The wave functions ug, u$'’, and u‘f’ are given in Egs. (11) and
(12).
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contribution from the » =0 term must also be considered.
Using the results in Egs. (14) and (15), we can write the
self-energy for the state at the bottom of the band,

2z)=Z2p(z)+Zp(2) , (16)

where we have separated the contributions to the self-

J

energy originated from transitions with no change (00) of
the state in the direction normal to the surface, from those
in which the electron state associated with the normal
motion changes, (OA). For arbitrary initial velocity paral-
lel to the surface, v;=#Py/m, the contributions to the
self-energy as seen by a charge in the bound state are

me2a)27xo de e Kz
s - s (17)
of2) mh f Koge (2hg+K)[(Po—K)*—P3+2maw, /#i—i8]
and
meza)fekoz , e "z
Spe)= - — [ d* o I(k), (18)
where
® A cos(Az) — Agsin(Az)
0= [~ dia—5—5— T — . (19)
0 ()\. +)\,0)[)\. +(}\.0+K) ][A, +)\.0+(P0—K) —P0+2ma)s,</ﬁ—15]

The integral I(x) decreases faster than exp(—Ayz) (see the Appendix), so that the contribution 2y (z) is well behaved for

Z— 0.

The effect of using closure in the derivation of the self-energy Z((z) can be investigated. An upper limit to the self-
energy can be obtained by neglecting the energy difference €; —¢, in the denominator in Eq. (9), and using the closure re-
lation (13) to sum over intermediate states in Eq. (9), one obtains

2.2 —
me “w; de e 2z

38(z)=—

27 Koge (Po—K)?—Pi+2mw, /fAi—id

which is independent of A, i.e., of the strength of the 8 potential interaction.

Often, in deriving explicit expressions in the following, we shall take the initial electron state to have zero momentum
parallel to the surface, and shall let Py=0. Also, the dispersionless limit @, —>w; will usually be taken. From Eqgs.
(16)—(19), and from the expression given in the Appendix, one finds that the term X, cancels out with one term of 2,

and then

20(2): -

2% mes/ﬁ—kok

The first term inside the brackets in this expression gives
the classical self-energy image potential (see below),
whereas the second term in Eq. (16’) is due to recoil of the
tunneling electron; this term decays exponentially away
from the surface. At the singular point mw, /%= Ay the
integrand in Eq. (16’) cancels and, as one expects for
Po=0, there is no imaginary part of £,. The saturation
value of Z((z) at the surface can be easily calculated and
is finite due to the presence of the recoil term in Eq. (16').
We only quote the limit for A;—0,

172
2mawg

#i

>

which coincides with a result derived in Ref. 5 for a
charge near a surface and differs from previously obtained
limits which did not include the full three-dimensional
recoil.

me’w, fm o — 2z : kexp— {[(2maoy /fi+ Kk +AH)"V 2 —Ag—k]z)
0 2maog/f+k 4+ 231722,

(16)

—

Asymptotic expressions of the quantities in Egs.
(16)—(20) yield the expected results. In the limit of large
z, only small values of x contribute to the integrals and,
letting k—0 everywhere except in the exponential factors
in the integrand, one gets

Soolz)~— <, (21a)
2z
62
Sonlz)~+—, (21b)
4z
2
S8(z)~— S . 21
o(z) e (21c)

Therefore, both the exact expression for the self-energy
and the one obtained using closure tend towards the well-
known classical image potential at large distances from
the surface, —e?/4z, for any value of the strength, Ao, of
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the &-function potential. The next contribution to
So(z)=Zg0+Zor is — e2Ao/4z2. Let us now discuss these
results in relation with Jonson’s work.> The self-energy
obtained in Ref. 3, when the electron is inside a rectangu-
lar barrier [Eq. (20b) in Ref. 3] is identical with the first
term in Eq. (16’) for the self-energy of an electron initially
in a bound state. However, since Jonson’s calculation
does not include the recoil terms, he extracts both a real
part of 3((z), which coincides with our results, and an
imaginary part of 3y(z), which appears to be spurious.
We have found that, for Py=0, 2y, is canceled by one
term of 2(,, and there is no imaginary part of 2y(z). [See
also the discussion after Eq. (33b) below.]

Equation (20) gives the semiclassical point particle re-
sult, including the recoil momentum #ix. Note that there
is some ambiguity in the use of the closure relation. One
could replace €; —¢, in the denominator in Eq. (9) by an
average value —#ia, and the asymptotic result in Eq. (21¢)
would become instead

Wg 62

S(z)~— -,
o(z) ws+a 4z

(21c")

which coincides with the one in Eq. (21c¢) for fia << fiw;.

B. Energy shift

The energy shift is also a quantity of interest and one
can, for instance, derive from it the effective mass of the
electron. We consider first the case of the electron initial-
ly in the bound state. From the results in Egs. (10), (14),
and (15), and splitting up the two contributions to the sum
over the final electron states, like the case of the self-
energy, we write [cf. Eq. (16)],

where AEy, corresponds to the n =0 term and AE,, to
the remaining terms in Eq. (10), with

2me’wAd d% 1
AEgp=— 23
® Th f sk (2ho+K)[(Pg—K)?— P34+ 2maw,, /%i—i8] (23)
and
me’oli, K ® 1
AEpy=———— [ d% dAA? . (24
oA . f O fo (R4 AN+ Ao+ k)P PIA2+ A3+ (Po—K)>— P2 +2may, /#i—i8] @4

Let us calculate the self-energy in the limit of a deep bound state, Ag— . The contribution AE,, vanishes, and from

Eq. (23) one gets, for P,=0 and w,,=w;,

172
mawg

2%

2
me

AE,= — -
0 2

>

(25)

which reproduces the Evans and Mills* limit for a classical point particle. The limit A;— oo is therefore equivalent to

taking an electron located in a well-defined position.

Although the calculation of the energy shift is exact it is useful to investigate, in the analytically simple case of the
basis set of the 6-function potential, which is the effect of invoking closure in an approximate evaluation of the energy
shift. Following in the expression in Eq. (10), the procedure that led to Eq. (20), yields

g M 1

2mh koge (Ag+K)[(Po—K)?—Pi+2mawg /Hi—i8]

(26)

In contrast to the corresponding result obtained for the self-energy, Eq. (20), the energy shift depends upon the strength

of the potential, Ay. For large A, the expression for the energy shift obtained using the closure relation coincides with

the exact result in Eq. (22). In the limit A,—O0, the expressions for the energy shifts in Egs. (22) to (26) cancel out.
Another approximation in the evaluation of the energy shift was used by Nieminen and Hodges,'® who neglected ¢,

for n >0 in Eq. (10). One gets

2.2
AESIHz—-me (N d* 1

2 |

Ao
2 KOs A3+ (Py—K)?—P3+2maws /Hi—id [Ko+x N

) (27)

2}\.0‘}‘[(

a results that should be compared with those in Egs. (22) and (26). When Pys40, one may look for the contribution of
the surface plasmon field to the effective mass of the bound electron. This is of current interest in the theory of image-
potential-induced states in solids. The effective mass for the tunneling electron can be calculated from the energy shift.
Expanding the integrand in Eq. (26) for small Py, we write

2p2
0
’

AEG=AE{(Py=0)+56 (28)

2m

where
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2 2
me-w }\. ©
AE§(Py=0)= — T80 [ dx = (29)
#i 0 wg (Ag+k)K*+2may,/H)
|
and K, is a Bessel function.'3
22 2 Note that the derivative of the effective potential in Eq.
S— _ 4me‘w;ho f ® dk K (33a) gives the semiclassical force.'* For w,,=w; and
# 0 g (Ag+K) K +2mwg /A neglecting the «%/2 term, the expression resulting from
Eq. (33a) is finite for z=0,
(30)
. . me’w
The effective mass is then R,Z§0)= — ——" | (33a")
4P,
x__m _
m-= 14+8 ~m(1-3), (31) whereas the force at z=07 is given by
which, for large A and for w,,=w;, becomes mew
g€ Ao Wy ls/2 F_L(O)=+ s (34)
* 2 #P
Am e m , 0
= §=— S (31
m 8 | 2wt

The effective mass correction decreases with increasing
or with decreasing electron gas density, a fact that has
been pointed out recently in theoretical studies of effective
masses of image-potential-induced surface states.'®

C. Semiclassical force

Let us calculate the real and the imaginary parts of the
self-energies given in Eqgs. (17) and (20). The solutions, of
course, will have two regimes, depending upon whether or
not the particle has sufficient energy to generate a surface
excitation.

Take the real part of the first contribution to the exact
self-energy given by Eq. (17),

2me’oidy rw di e MO(B)
ReX = —_—— (32
e o(z) P I, TR )
where O(f3) is the unit step function and
2
2m g,
B= K2+TS —(2kPy)? . (32))

From the result obtained using the closure relation, Eq.
(20), one gets

me’w?

o ﬂ e —2K29(B)

(33a)

which, except for the factor 2 in the argument of the ex-
ponential, coincides with the exact result in Eq. (32) for
large Ay. Similarly,

me’w} food—Ke—z"ze(_B)
0

ﬁ Wy v _B '

The last result is identical, except for the presence in 3
of the two-dimensional recoil term x2/2, to the result in
Eq. (36) of Echenique et al,'! and leads, for large z and
undispersed plasmons, to the result first derived by
Echenique and Pendry,!?

Im=§(z)= — (33b)

Im3§(z)~ — me’o, K
0 2%P, N0

2mw,z
#iP,

(33¢)

D. Electron initially in a continuum state

Now take an electron initially in a continuum state of
the 8-function potential. We shall report, for complete-
ness, the expressions of the self-energy for an electron
penetrating through a 8-function barrier at the surface.
We want to find =,(z) in the region z>0. The matrix
elements needed in Eq. (9) are easily calculated, and the
expression replacing Eq. (16') is

mezws fw e 2Kz
0

) =——% A o /A—2ihk

f(z), (35)
where we have already set P,=0 for simplicity. The
function f(z) is cumbersome, and not illuminating for the
discussion. Note that the contribution from the ground-
state term has cancelled out as before [see the discussion
before Eq. (16')]. The first term on the right-hand side of
Eq. (35) coincides with the classical image potential for
large z. The result in Eq. (35) can also be compared with
the results of Jonson® for a rectangular potential barrier.
The first term in Eq. (35) is similar to Jonson’s expression
in the free-particle region, but our expression contains, in
33(z), two more complex oscillatory terms which arise
from the 8-function barrier and from the recoil effect.
We thus find some discrepancies, in comparison with
Jonson’s work, as we also noted in the discussion follow-
ing Eq. (16’).

IV. DISCUSSION

The expressions derived in the preceding section will be
evaluated now, and their behavior will be discussed in
terms of the parameter A, that defines the strength of the
8-function potential, and for different electron-gas densi-
ties in the metal. We shall take the initial state of the
electron to have zero momentum parallel with the surface,
and shall set P;=0 in the expressions derived in Sec. III.
The electron density in the metallic system, n,, will be
characterized by the so-called one-electron radius ry, with
re=(3/4mngy)"/3, and atomic units (a.u.) will be used here-
after, so that #i=e =m =1. The surface-plasmon frequen-
cy (or energy), in au., is given by o;=w, /V2
=(4mny/2)" 2 =(3/2r))' "2
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Figure 3 shows the spatial dependence of the two terms
in the self-energy, Egs. (17) and (18). The term X, be-
comes more negative for increasing strength A, of the po-
tential, but it remains finite for z=0, contrary to the
behavior of the classical image potential. The second
term in the self-energy becomes positive for z >2 a.u. but
it is smaller than | Xy | for all z. The asymptotic limits
given by Egs. (21) are only approached for z >>10 a.u.,
and the larger A, is, the faster this limit is approached. It
is obvious from the expressions in Egs. (17) and (18) that
inclusion of the effect of dispersion of the surface
plasmons reduces the absolute value of both contributions
to the total self-energy.

Figure 4 shows the variation of the energy shift with
the strength of the 8 potential. The energy shift decreases
until saturation is reached for large Ay. Note that the re-
sult obtained invoking closure is similar to the exact ener-
gy shift, although slightly smaller. Furthermore, the con-
tribution to the total energy shift due to the term AEg, in
Eq. (22) is very small, below ~5% for all Ay, and cancels

z(a.u)
0 ) 5 10
-54 ./' /
!/
S /
o /
W ]
-104 !
1!
|
1
|
15
(b) \.
0+<= v o :
> / z(au) —
= /
° !
W ',l
_5.

FIG. 3. Contributions (a) Zg(z) and (b) Zpa(z) to the self-
energy, Egs. (17) and (18), with P;=0 and ws=w;, as a func-
tion of the distance z from the electron to the metal surface, for
re=2 a.u. For A;=2 a.u. (dashed lines), and A;=0.2 a.u.
(dashed-dotted lines). The asymptotic results, Egs. (21) are also
shown (continuous lines).
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FIG. 4. Energy shift as a function of the strength of the po-
tential, Ay, for r;=3 a.u. and w,=w,. Solid line: AEy, Eq.
(24). Dashed-dotted line: AEy, Eq. (23). Dashed line: AES,
Eq. (26).

for large A,.

The energy shift is shown in Fig. 5 as a function of the
electron-gas density parameter r;. The dispersionless re-
sults are up to a factor of 2 smaller than the predictions
based on the plasmon-pole dispersion model.!> The effect
of introducing a cutoff wave vector in the calculations is
seen in Fig. 5 also, the resulting energy shifts being inter-
mediate between those obtained neglecting dispersion in
wg,, Or using the plasmon-pole approximation to wg,. The
self-energy obtained invoking closure is the lower curve
shown in Fig. 5. Again, as in Fig. 4, this result is smaller
than the exact self-energy.

In conclusion, we have analyzed, using a fully analytic

rs (a.u.)

Energy shift (eV)

FIG. 5. Energy shifts, Egs. (23), (24), and (26), as a function
of the electron gas density, r, for Ag=0.2 a.u. Solid line: AEy,
for ws=w;. Dashed-double-dotted line: AEy, for w,,=w, and
a cutoff k. =w,/vp. Dashed line: AEy, using the surface-
plasmon-pole model (Ref. 13) for w,. Dashed-dotted line:
AE,, for wg=ws. Dotted line: AE§, Eq. (26).
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model, the image potential appropriate for a tunneling
electron. A reduction of the self-energy at close distances
from the surface is predicted, compared with the classical
result. Several topics are left for further elaboration, like
the effect of virtual bulk excitations, and the study of the
image potential in the region inside the potential barrier.
With the formalism used in this work, one can analyze
also the case of a potential barrier formed by piecewise
constant potentials, and compare it with the calculations
of Ref. 3. The width and height of the barrier against
tunneling and the current resulting from a given applied
electric field are importantly dependent on the self-energy
function. The discussion of the current versus applied
field characteristics of a barrier, based on our self-energy
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results, and implications of the approach for more realis-
tic systems will be presented elsewhere.
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APPENDIX

The quantity /(«) in Eq. (18b) can be written as

(A4iAg)e™ (A —ikgle ~*2

=1+ [~ diis

A ADIA 4+ Ao+ k)2 A2+ A3+ [PE— (Py—K)? ]+ 2mwy /Hi—iB)

Setting Po=0 for simplicity, and using the method of residues, one gets

—A _
1T)noe (' e (Ag+K)z

I(k)=—

mexp—[(2mag /Ai+K>4+13)1*2]

k(K420 (12 4+ 2mawg, /H) Ak Ak—mog/F)  A[2mag/f+K>+ A3 = Aol (hok — m g /)

The first term dominates for large z and finite k and A, whereas the first two terms contribute to the k—0 limit.
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