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Abstract

A brief review is given of some applications of a novel form of self-energy theory.
These include the image force experienced by an electron near a metal, the van der
Waals interaction between two molecules, and the polarization potential of atomic
scattering theory.

Introduction

In this review we will cover some of the basic ideas about the way a probe, which,
for example, could be an electron or an atom in arbitrary motion, interacts with a po-
larizable body such as a condensed matter surface or another particle with internal
structure. The approach is straightforward and unconventional. We will focus on the
way the quantal properties of the probe affect these long-range interactions. The lin-
ear response function of the condensed matter system is assumed to be known. We

employ an unfolding procedure [1] to obtain a spatial representation of the proper
self-energy of the interacting probe.

Application of this straightforward formalism to describe the image potential of an
electron approaching a surface and an electron tunneling through a barrier is made. A
new treatment of the van der Waals interaction between two molecules and of the po-
larization potential in atomic scattering theory will be given. Finally, other applica-
tions of the formalism are discussed briefly.

Classical Long-range Interactions

A point charge Q located at distance z from a plane-bounded semiinfinite dielectric
experiences an attractive force derivable from the electrostatic potential
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Of course this potential arises because the charge polarizes the dielectric. This polar-
ization charge reacts with the applied charge to yield the self-energy V...
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Similarly, a charge Q located at distance R from a molecule with isotropic polariz-
ability o induces charge separation in the molecule and gives rise to a self-energy
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in the asymptotic region.
Two molecules separated by a distance R interact with the asymptotic self-energy
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where the constant C is determined by the molecular properties of the interacting
systems. It is interesting that, although the R " dependence of V'Y may be inferred
by a simple classical argument, the value of the constant C must be found using
quantum arguments.

The Self-energy of a Particle Interacting with a Target

Consider a projectile incident on a many-particle target. Suppose that in the absence
of interactions with the target the projectile is described by the basis set {|¢,)} with
eigenenergies {E,} and that a typical many-particle state vector of the target is |y,)
with eigenenergy E,. The projectile may possess internal degrees of freedom. For
simplicity, we write the interaction energy between the target and the projectile as
V = X3 V(r, p), where 1, is the coordinate of the ith particle making up the projec-
tile, and p; is the coordinate of the jth target particle.

Consider the Green function G(r,r’, E) of the projectile. As Feynman has shown
[2], this is the probability amplitude for finding it at r if it is originally at r’ and if it
has energy E. The development of the Green function due to repeated scatterings on
the target is represented in Figure 1a and symbolically as

G = Gy + G,VG, + G, VG, VG, + - - - @)

where G, is the noninteracting Green function, and matrix multiplications are indi-
cated. If we include purely elastic interactions in G, and hence account only for
inelastic interactions in a perturbation series for G, then it may be represented as in
Figure 1b. A Dyson summation [3] involving only proper self-energy diagrams may
be carried out as indicated in Figure 1b and Ic, resulting in an explicit form for the
exact Green function of a projectile interacting with a many-particle target, viz.,

G(E) = {E - £ — Ek(E)}-l o)

where G(r,r',E) = Z,G(E)d(r)dF(r’) is the exact nonlocal Green function. For
simplicity, we assume here that the projectile has no internal structure, and that
exchange between the projectile and target may be neglected.
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Figure 1. Feynman diagrams representing the interaction of a projectile with a many-

particle target. For a detailed description, see the text.

One may show [1, 4] that the spatial dependence of the projected (or local) self-
energy may be written
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where only proper self-energy diagrams are to be included in the infinite sum repre-
sented in Eq. (6). The obvious abbreviation |nl) = |¢,) [¥,) is used and |} |W,) is
taken to be the state vector of the noninteracting system. The unfolding procedure
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used to obtain this equation may be employed in a straightforward generalization to
derive [4] an expression for the nonlocal self-energy.

The Classical Image Potential for a Model Solid

It was early recognized [5] that the image potential of a classical point charge
located at a fixed distance from a metallic surface can be thought of as arising from a
shift in the zero-point energy of the surface plasmon field. As is well-known, one
represents the Hamiltonian of the noninteracting surface plasmon oscillators as

H, =2 hobib, + ) 0)

where b, is the annihilation operator for a surface plasmon with wave vector & and
frequency w,. A perturbing charge Q located at distance z outside of the surface gives
rise to the perturbation energy

H = QY Te*v7Hp, + b)) ®)

where Q is located at (p,z), and ' = 7hw?/Akw,. The surface area is A, and
0, = w,as k—> 0.

As is well known, a linear transformation of the operators b, and b; puts the total
Hamiltonian in the form H, + H' = 2, fw (C;C, + ') {- AE, with the resulting
shift in the zero point energy

AE = —Q?%/4 9)

if dispersion of the surface plasmon eigenenergy is neglected. One may show that
this expression is asymptotically correct even when dispersion is included. By choos-
ing ; = 0} + ak + Br* + A’«*/4m*, Echenique et al. [6] have shown that the
divergence displayed by AE in Eq. (9) is removed and that results are obtained that
are equivalent to the use of a surface dielectric function that contains the effect of
both surface plasmon modes and single-particle excitations. Mahan [7] has shown
that the Hamiltonian H' of Eq. (8) may be generalized to describe interactions with
surface optical phonons by multiplying I'2 given in the line following Eq. (8) by the
factor (g, — 1)/(gy + 1) — (8, — 1)/(€- + 1), where (&9, £2) is the (static, optical)
dielectric constant of the insulator and by taking w, = w,, the surface optical phonon
frequency. Mahan [7] has also shown that interactions with bulk plasmon or optical
phonon modes may be represented by the Hamiltonian

H' = 0(z) X T,e™ 9 sin(zk,) (b, + b)) (10)
k

where T'} = 4me’hw?/Qok’w, with an additional factor (1/e.) — (1/s,), and w; —
@, * @, in the case of bulk optical phonons. Also the sum over £, is restricted to
k. = 0; 6(z) is the Heaviside step function, and () is the volume of the half space.

.
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The Self-energy of an Electron Interacting with a Condensed Matter Surface

To lowest order.

z (l‘) = z (‘I’olvw’n} (nk|Vi00> ¢k(r) (11)
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In general 2 is complex. The real part is just the exchange-correlation potential at
large distances from the surface. The imaginary part contains the effects of real tran-
sitions (energy exchange between the probe and the target) and, except when a com-
pletely self-consistent projectile basis set is used, also consists of a portion describing
energy transfers that are overall conservative.

There have been many papers dealing with the dynamic interaction of electrons
with condensed matter surfaces. References 5-8 lists some that are pertinent to this
topic '

For purposes of orientation, we may employ a plane-wave basis set, i.e., ¢ (r) =
e™*/VQ, where Q is the normalization volume. This allows one to examine the
effects of projectile recoil in its most transparent aspect. One finds

-0z 1
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where & = 2mw,/#, and the state of the electron interacting with the surface is
specified by the vector (¢, ko). The integral over k may be carried out straight-

forwardly, and the integral over Q may be done numerically. The results may be
written, for the case K, = 0, k, = mv/#A,

2 2
Re 3(z) = — ezc:, {f < :” ]zl) + quantal correction} (13)
e’w, | (2o, _
Im3(z) = > 18 —v—|z| sgn(z) + quantal correction (14)

Here f(x) = [5 dte™/(1 + ¢*) and g(x) = —df/dx are tabulated functions. When
kolz) > 1,k/@"? > 1

e2

Re 2(z2) = —Zl;l

(1 — v¥/2w?z?) (15)

e2

Im 2(z) = ™

;2(1 ~ 3v%/2w%% sgn(z) (16)

s

and near the surface kyz| < 1, k,/0"* > 1

) 2 ) ; 1 - 2ﬁ ] 12
3(2) = _”;v“’ {1 -—iln[l _ w,/my ) ]sgn(z)} a7
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In the low-velocity limit |ky|/w!? < 1

e2

20 =~

{1~ exp(=a'z)) + &'z|Ex(@"}2)}

- - e’@"%/2 as z—0 (18) .

showing that the divergence of the classical image potential at the surface is removed
by quantal recoil of the electron.
In the case k, = 0, x5z > 1, xy/w" > 1, one recovers the expression [9]

2
Im 3(z) = _e_a_;iK()(Zws |z|>

2v y

The original paper of Manson and Ritchie [1] considered only the interaction with
dispersionless surface plasmons. This is known to be a good approximation for non-
relativistic particles and for points not too close to the surface. Recently Mahanty
et al. [10] have used the Manson—Ritchie formalism, together with a hydrodynamical
representation of the response function of a metal, to obtain results for the self-energy
both interior and exterior to the metal. Figure 2 shows a plot of Re 2(z) for two dif-
ferent values of ky(«, = 0) for an electron incident on the surface from vacuo.

Results for 3(z) from higher-order perturbation theory are under development [4].

It is of some interest to see how dependent the self-energy is on the form of the
basis set used to represent the electron. In particular, an analytically manageable set
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Figure 2. Real part of the self-energy, E'(z) = Re X (z), for incident particle speeds far

above the threshold speed. Here &, is the wave number of the incident particle, and k, is the

wave number of a particle with energy equal to the energy of the volume plasmon. The

dashed curves represent the surface contributions to E’(z), whereas the solid curves show
the total E'(z) functions.
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with one or more bound states would be very useful. For simplicity and convenience,
then, we choose the set having a single bound state with the form

do(r) = Vpye e a/\/4 (20)

and whose other members lie in the continuum. The binding energy of this state is
g, = h’pl/2m, and, of course, the state has plane wave character for motion parallel
with the surface. The surface itself is taken to lie in the plane z = 0. The continuum
eigenfunctions are analytically very simple, can be shown to form a complete set
with the bound state eigenfunctions, and facilitate all calculations.

The self-energy of an electron in the bound state may be derived in a straight-
forward manner. One finds [11] for the self-energy due to interaction with the surface
modes, if x, = 0,

2 -]

mo.e -

2,0 =———= e”ozf ke “dk
7h o

f = (p + ip)e*¥ipdp

= (PP + P+ kT + pY)(p* + po + & + & + i8)
In a sense we may regard this as the self-energy of an electron tunneling through a
barrier. Jonson [12] has approached the problem of the self-energy of a tunnelling

electron from a different viewpoint.
Carrying out the integration over k we find,

e [~ dk ) K
_— —2xjz| _ - (kt+s—po)lz|
E — e e 22

0 2 Jy (@ — 2pyx) S — Do (22)

2D

where s> = p2 + @ + «*. The second integral is due to recoil of the tunneling elec-
tron, decays exponentially away from the surface, and may be expressed as an expo-

nential integral. The first term yields the classical image potential at large distances,
viz., as z —> o,

e’ Po Po
2 (2) = ~ 1 l{1 + 26 + 5t } (23)

As one expects, Im(Z,) = 0. Figure 3 shows a plot of the ratio of Re 2(z) to the
classical limit V;, = —e?/4z as it depends on z for two different values of w, and for
Po = 1 a.u. One sees that the correction may be important at fairly large distances
when the surface plasmon energy is appropriate to, e.g., the alkali metals.

When k, # 0, one may look for the contribution of the surface plasmon field to
the effective mass of the bound particle. This is of current interest in the theory of
image potential-induced surface states on solids. We find [11] that m*/m — 1 =
dm/m = a few percent for p, = 1 a.u. Furthermore, it is interesting to evaluate the
error incurred in invoking closure in the present calculation. Closure is invoked fre-
quently, e.g., to determine the binding energy of a positron at a metal surface [13].
In the calculation of the energy shift of the bound state [11], the closure approxima-
tion leads to an error or ~30%.
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Figure 3. The image potential appropriate to a tunneling electron. 3 (z) is the self-energy

for an electron tunneling into vacuum from a metal characterized by the surface plasmon en-

ergy fiw,. The attenuation length appropriate to the electron was taken to be 1 a.u. The clas-
sical image potential V4(z) = —1/4z in atomic units.

The formalism described above has also been used [14] to determine the self-
energy of a positronium atom near a metal surface. We have shown [14] that for
the dispersionless surface plasmon model of the metal, the self-energy of an atom
moving parallel with the surface may be written

2- 2
Re 2(2) _ _ctw 2 |§l|r|0)| [1 _ 22((;,6k(2) .. ] (24)

-+
2z 5 @+ q; + qp)°

where g = 2me,/h%, and ¢, is the excitation energy of the /th atomic state. The first
term of Eq. (24) is the well-known Lifschitz [15] expression for the van der Waals
potential between an atom and a metal, and the correction term agrees with that
obtained by Ferrell and Ritchie [16] using a semiclassical approach. Figure 4 shows
a plot of the ratio of 3(z) to the semiclassical Lifschitz term 3.(2) as a function of
distance from the surface for a positronium atom.

Interactions with Atomic Systems

The present self-energy approach has been used to study the polarization potential
between an electron and an atom [17] and the van der Waals interaction between two
atoms [18].

The long-range attractive interaction between an electron and an atom or molecule
has its origin in the polarization of the collective system by the approaching electron.
For atoms or molecules without permanent dipole moments, the force is entirely
quantum mechanical in nature and is usually calculated in a development based
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Figure 4. Ratio of the total atom-surface self-energy X,(z) to the semiclassical Lifshitz

term 3, as a function of distance z from the surface. Shown are two cases of slow positron-

ium moving perpendicularly to a metal surface: (a) 4 eV Ps and Al with Aw, = 11.2 eV; (b)
2 eV Ps and Cs with Aw, = 2.5 eV.

on perturbation theory. The potential is determined as a power series in the inverse
distance 1/R between the electron and the atom, the lowest-order term being 1/R*
and the next term being 1/R® and containing, in part, the nonadiabatic correction
due to the inability of the atomic electron cloud to follow faithfully the motion of
the electron.

When a virtual quantum is exchanged, both the atom and electron must recoil
in order to conserve momentum. Even for the lightest atoms such as hydrogen or
helium, the effect is negligibly small, but for the electron which has a very small
mass, the recoil may cause measurable changes in the interaction. To lowest order
in our formalism, the nonadiabatic effects appear as the velocity-dependent 1/R®
correction to the leading 1/R* term. The effect of recoil of the scattering electron is
to reduce the strength of the interaction, and, for small separation, it causes the 1/R*
interaction to saturate to a 1/R? form. For simplicity, consider the interaction be-
tween an electron and a hydrogen atom, neglecting exchange interactions. Take the
unperturbed system to be an isolated atom and an electron for which the correspond-
ing eigenstate is the product of an atomic function and two momentum functions.

e Ry ,ipg-Ry

) = ur)———7—= 25
with corresponding unperturbed energy
E = ¢ + ky/2(m, + 1) + p3/2 (26)

where ¢ is the unperturbed atomic energy measured from the ground state, and
atomic units are used throughout. If 7, and 7, are the vectors from the origin to the
atomic nucleus and to the scattering electron, respectively, and if p, is the vector to
the atomic electron, the perturbing potential is then
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H' = ! + L (27
I”'x - 72| IPl - 72|

The first nonvanishing contribution to the self-energy may be written

(R|K> (ilH'] j) (£, x|H'|0, 0)

Evaluating the matrix elements by expanding to first order in the variable r = p, —
7, and neglecting terms in the velocity and recoil of the electron, we recover the
familiar 1/R* potential.

(28)
Ei - Gj

A\ 2
a R &
where z is the polarization operator parallel to the direction of R.

However, because of the light mass of the electron, the neglect of its recoil in the
denominator is valid only for asymptotically large values of R. This is most readily
seen for the case in which the relative velocity of the system is small, i.e., P, — 0.
The self-energy can then be obtained in closed form and is

- [flzla)® 1 a\_
2R = - 2 [RZ (R2+R)e ] (30)

€
where
2 2(m1 )
(ml + 2) E

An interesting case that illustrates that recoil indeed causes a saturation of the self-
energy is the limit aR— 0 where we recover

2(m, + 1)

m, + 2 GD

1
2R a=d ~ S il
The effect of recoil as the system exchanges virtual quanta is to weaken or saturate
the interaction to a 1/R? form. The range of the effect is given by the parameter
a= \/2—ef, which can be several atomic units, as noted by estimating €, to be a typical
atomic excitation energy. Although the limit of zero separation distance (R = 0) is
certainly beyond the range of validity of the approximations used to develop the
general formula for €(R), this is more than a mere academic exercise. It demonstrates
that the inclusion of electronic recoil weakens the leading 1/R* term (and will also
act similarly on the high-order terms as well) at separation distances where the effect
can become noticeable. Furthermore, this effect is not expressible in terms of a
power series in 1/R.
We have also studied 2 when the system has finite relative velocity. It is found that

Rez(R)=—El;§fj'—<f-|z—'i>'—2{ 6P2+---} (32)

3.2
€ R
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The correction term, proportional to the initial energy, is recognized as the first
velocity-dependent nonadiabatic contribution [19]. The leading term in the low-en-

ergy conservative imaginary part is proportional to the electron velocity and is given
by

A2
m 3 ) = 2 3 WO, 33
R°F &

We should emphasize the importance of keeping full three-dimensional recoil in
these calculations. It is considerably simpler to neglect the longitudinal component
and retain only the two-dimensional recoil in the directions transverse to the axis of
relative motion. If this is done, one obtains erroneous recoil corrections to the 1/R*
potential that can be expanded in 1/R in the asymptotic region. However, the correct
three-dimensional treatment gives the much faster exponential decay of recoil effects.

Our formalism carries over easily [18] to the treatment of the long-range attractive
interaction between two atoms, or the van der Waals force. It is only necessary to ex-
pand in terms of eigenfunctions for each atom that depends on both the internal coor-
dinates and the center-of-mass coordinates. The dependence on the latter is naturally
expressed in terms of momentum eigenfunctions. Defining the self-energy in a man-
ner directly comparable with Eq. (28), we find the leading term in an expansion in
powers of R ™' to be proportional to 1/R® with a coefficient that agrees with that origi-
nally found by London [20]. London’s calculation assumes that the atomic nuclei are
infinitely massive.

When a virtual quantum is exchanged the atom must recoil in order to conserve
momentum, but even for the lightest atoms such as hydrogen or helium the effect is
negligibly small and is usually completely ignored. However, recent advances in the
development of high-intensity thermal-energy positronium sources have led us to in-
vestigate the interaction of positronium with an atom, or with another positronium
atom, situations in which recoil must be accounted for.

We find that for the interaction between positronium atoms significant deviations
from the van der Waals 1/R® form extend out to separations of 10 a.u., and for small
R the self-energy saturates to a 1/R* form. Further deviations are due to finite rela-
tive velocity of the two atoms, and for positronium these can be substantial for ener-
gies even as small as a few electronvolts.

Figure 5 shows the dependence of the ratio of X (R)/Z,, on R for two positronium
atoms. Here X, is the London expression for the interaction energy, 2, = limg_,,
2 (R). One sees that the recoil effect is appreciable at rather large separations here.
Recoil can also affect the interaction between a positronium atom (ps) and a normal
atom, although one expects the effect to extend to smaller distances. Shown in Fig-
ure 6 is the same ratio for Ps interacting with several different systems. It is evident
that recoil can significantly lower the interaction energy out to separations ~5 a.u.
Although recoil is totally unimportant for ordinary atoms, we see that it can con-
tribute to a significant weakening of the van der Waals potential in a system involv-
ing positronium. A finite relative velocity also weakens the interaction to a noticeable
degree even for ps kinetic energies of less than a few electronvolts.
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Figure 5. The ratio of the interaction self-energy X (R) to the London potential 3, for two
positronium atoms as a function of distance R between the atomic centers.
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Figure 6. The ratio of the interaction self-energy 3 (R) to the London potential 3, for
positronium a distance R from several different atomic or molecular species.

The formalism discussed here has been applied to a number of different physical
problems in addition to those described above. For example, we have analyzed the
energy loss of a slowly moving atom to surface optical phonon [21] when the lowest
excitation energy of the atom is appreciably smaller than the surface optical phonon
eigenenergy. We have also [22] discussed the wake potential generated in condensed
matter using this approach to study quantal aspects of the potential for the first time.

Other applications presently under development include investigations of the prop-
erties of the hydrated electron in small water droplets [23], the characteristics of elec-
trons tunneling from metals into the conduction band of insulators [24], higher-order
perturbation theory contributions to the image potential of charged particles [4], and
related developments.
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