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Within the context of a recently developed simple approximation model, we consider multiple
phonon processes in the thermal attenuation of elastic peaks in atom-surface diffraction. A
discussion of two phonon processes results in a set of parameters which indicate the relative
importance of the three distinct types of multiphonon processes. We discuss multiple virtual
phonon exchange, and the summation of certain classes of multiphonon transfers is carried out to
all orders. This model illustrates clearly the distinction between thermal attenuation in
atom-surface scattering and the more familiar Debye-Waller analysis valid for neutron or X-ray
scattering. We obtain closed form expressions which are just as easy to apply as a Debye—Waller
factor.

1. Introduction

In a recent paper, we have developed a simple approximation for the
thermal attenuation of elastic diffraction intensities for low energy scattering
of atoms from surfaces [1]. There, we restricted the development of the theory
to processes involving the exchange of a single virtual phonon. Here, we
consider, within the same model, processes involving multiple exchange of
virtual phonons, including infinite resummation of certain classes of terms in
the perturbation series.

The process of thermal attenuation in atom-surface scattering is inherently
more complex than the case of more widely known diffraction experiments,
such as neutron or X-ray scattering from bulk crystals [2-5]. There, multiple
scattering can usually be ignored and the diffraction intensities are well
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described by the Born approximation. The thermal attenuation appears as a
Debye—~Waller factor, which in its simplest form appears as

exp(——2W)=exp{—<[(ki—kp)-u{]2>>, (1)

where k; — k, is the momentum exchanged and u, is the thermal displacement
of a crystal atom. The angular brackets imply a thermal average. In contrast to
eq. (1), in atom-surface scattering, the interaction potential is extended and
soft (particularly for metal surfaces) and the important contributions to the
thermal attenuation come from higher order terms in perturbation theory. The
simple model considered here allows us to demonstrate clearly the importance
of these higher order contributions; furthermore, it demonstrates that the type
of virtual phonon exchange giving rise to the ordinary Debye-Waller factor of
eq. (1) is of negligible importance in atom-surface scattering.

In the next section, we restate very briefly the essential elements of this
simple approximation as more detailed explanation has already been presented
elsewhere. In section 3, we discuss the virtual exchange to two phonons. We
show that these processes can be divided into three general classes, and the
relative importance of each class of two phonon processes can be expressed in
terms of simple parameters. For the most important class of events, we recover
the well known parameter of Weare [6]. In section 4, we extend the model to
multiple virtual phonon exchange. Section 5 contains a discussion of the
summation of certain classes of terms in the perturbation series to all orders.
We find that two different classes of processes can be resummed, resulting in
particularly simple expressions for the scattered intensity as a function of
temperature. In section 6, we draw a number of conclusions on multiphonon
processes in general for the scattering of atoms by surfaces.

In the present paper, we consider the effects of phonon exchange on the
elastic scattering from a flat surface which has no nonspecular diffraction
beams. We have also considered the case of strongly diffractive systems,
including inelastic effects in resonant interaction with the surface bound
states. We discuss these more complex systems in a later paper [7], but we
remark that the basic importance and effect of phonon exchange is quite
similar to that exhibited by the model developed here.

2. Review of the simple model

We review very briefly here the theory of thermal attenuation in
atom-surface scattering together with the reduction to our simple approxima-
tion. More detailed explanations are given in ref. [1].

It is appropriate to work in the distorted wave formalism with the total
interaction potential between incoming atom and surface V" expressed as

V="U-+v, (2)
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with U a conveniently chosen distorting potential for a rigid lattice. Then the
transition operator obeys the equation

T=v+0G;T, (3)
where the Green function is
Gt =(E,+&—Hy—U—H®+ie) ™, (4)

where H, and H° are the unperturbed Hamiltonians of the particle and
crystal, respectively. Expressing the Green function as an integral representa-
tion and with the usual definition of the particle evolution operator

P(t) =exp[i( E,— Hy+i€)t/h]. (5)
The transition operator becomes

1 oo
T=u—zf0 drv(t)P(1)T, (6)

with v(¢) in the interaction picture
v(t)=exp(iHt/h)v exp(—iHt/h). (7

Eq. (6) can be iterated to yield the perturbation series in terms of time ordered
operators

—p- %fowd«u(z)p(z)u(o»

+(_%)zfowdt'fgwdt<u(t'+z)P(t’)u(z)P(t)v(0)> + o (8)

It is convenient to use the range parameter « of the potential to obtain a
dimensionless transition matrix. For the diagonal matrix elements considered

here this becomes
F(Pi)=(8m/h2K2)Tiia (9)

with m the particle mass and p,= k,,/x with k,, the particle wave vector
normal to the surface. Then the intensity of the specular beam is given by

Iy= 1= (im/4p, )X F(pi)) 17, (10)
where we have used the fact that for elastic scattering the thermal average
(| F(p)|?) can be replaced by the simpler expression |{F)|?> [8,9].

In order to proceed further, we must adopt a potential for the interaction
process, and we choose a thermally vibrating exponential form

V(z, u")=D{exp| —2x(z —u")] /v, — A(z)}, (11)

where u’ is the normal component of the thermal potential displacement,
vy = (exp(2xu’)) = exp(2x?((u’)*)) and A(z) is a static attractive part. The
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choice of an exponentially decreasing repulsive potential is justified by the fact
that to a good approximation it is proportional to the electronic charge density
outside the surface.

A potential of the form (11) is extremely convenient for carrying out the
thermal averages as will be shown below. Its major disadvantage is that it
describes a flat vibrating surface and hence the phonons will not give rise to
an exchange of momentum parallel to the surface. As we have shown [2-4]
this is not a fundamental difficulty for the problem of thermal attenuation
where most of the phonons involved are of low energy and hence long
wavelength. :

It is convenient to choose

U=(V(z, u")), (12)

so that the average of the perturbing potential vanishes (v) = 0. Then the first
non-zero contribution to the thermally averaged transition matrix is

(FP(p)) = %Lwdqﬁ)wdT e:xp[i(pi2 —q%+ iE)'T]

X ( (47 = vy )(e*® = 0) ) f*(pi 4)/05

1 . .
+ ppcr ;fdﬂr exp[l(pi2+e,,+1e)fr]
X<(eu(7)_Uo)(eu(o)“00)>12(1’i’ ")/Ucz)’ (13)

where u(7)=«u’(¢) and e, are the bound state energies of U. f(p;, q) and
I(p;, n) are matrix elements of the perturbing potential e~ 2** taken with
respect to states of the distorted potential U, with g representing continuum
states and n the bound states. The thermal averages in (13) can be carried out
in the harmonic approximation giving

(7 = 05) (e = 05)) ) /05 = %7 ~ 1, (14)

where Q(7) is the displacement correlation function, which in the usual way
can be expressed in terms of an integral over the phonon spectral density p(w)
and the Bose-Einstein function n(w)

0(1) = 4(Cu(r)u(0))) = a7 [ aw2le) s (15)

where m and M are the masses of the projectile atom and crystal atom,
respectively. (The mass of the projectile atom appears because of our choice of
dimensionless variables.) Expanding eq. (14) to first order in Q(t) and
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inserting back into (13) gives the first non-vanishing contribution to lowest
order in virtual phonon exchange:

, Cmoe, o p(w) n(w)
<F(2”(Pi)>‘ﬁfo dqf_wdwaz(pi’q)p.z—q2+w+if

n(w)

2 .
Tte,twti1e

m * p(w)
+W—2A2§f—wdw—‘;—*l (pi,n)p (16)
This describes a single phonon virtual exchange process with positive values of
w giving phonon annihilation and negative values giving phonon creation. In
fact eq. (16) contains exactly all possible single phonon virtual processes for
the potential of eq. (11), including all phonon assisted bound state resonances.
As a useful visual aid, the phonon exchange process described by eq. (16) can
be presented as a Feynman-type diagram, the single bubble as shown in fig.
la. The notation used in eq. (16) is convenient for distinguishing between
higher order and multiphonon terms. We write ( F"") where n is the order
of perturbation theory and m is the number of virtual phonons exchanged. If
the expression includes all numbers of phonon exchange we write it as ( F)
when n denotes the perturbation order, e.g. eq. (13).

It is of interest at this point to develop explicitly some of the higher order
terms in the perturbation series of eq. (8). The third order term, with the
potential of (11) and after converting to dimensionless variables has the form

(FO(p)) =+ ?:?f()wdqlfowdquowdﬁf:dfz expli( pf - qf +ie) ]

xexpli( p? — g2 +i€)n] f(pi.01) f(q1,92) f (a2, i)
X <(e“(“+72) — v, ) (€4 — vy ) (e4@ - uo)>/03. (17)

For simplicity we have ignored the bound state contributions. The thermal
average can again be carried out in terms of the phonon correlation function.

(™) = 5 ) (47 = ) (e4© = 05) ) /3

= eQ(Tl)+Q(Tz)+Q(Tl+Tz) — eQ(Tl) —_ eQ(“'z) —_ eQ("l"”"z) + 2’ (18)

which when developed in a power series in Q gives as its first non-vanishing
contribution

=Q(7)0(n)+2(m)Q(7n +7) + 0(n)Q(7 + ). (19)

Note that each Q is associated with an integration over w, the integrand
being proportional to e'“”. Therefore, the integration over 7 yields a propa-
gator with w responsible for the virtual phonon exchange. The fact that eq.
(19) is quadratic in Q implies that the third order contribution begins with the
exchange of two virtual phonons and contains no single phonon contributions
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Fig. 1. Diagrams showing the various types of virtual phonon exchange in the first few orders of
perturbation theory. (a) Single phonon exchange in second order. (b) The three, two phonon
~ processes in third order. (c) The three, two phonon processes in fourth order. (d) The two phonon
exchange process in second order.

at all. The three processes in eq. (19) are shown in graphs of fig. 1b. They are,
in order, the touching bubble and then a symmetric pair of diagrams.

The higher order terms in the perturbation series can now essentially be
written down by extension. The fourth order term involves the following
thermal average

<(e“(“’1+"'2+7'3) _ UO)(C“(72+T3) — L’O)(eu(h) - UQ)(eu(O) - UO)>/US

= Q("'l)Q(”'3) + Q(’rz)Q(Tl +"'2+’"3) + Q("'l +"'2)Q("'2+’"3)' (20)
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The first order development again is quadratic in Q which implies that it is
involved with two phonon virtual transfers. The first non-vanishing contribu-
tion to the fourth order term now appears as

<F(4’2)(Pi)>

- +(al-i)3/0°°qu/Owdquowd%fowdﬁf:d72f0°°d73

Xexp[i( pi—qgi+ ie)'rl] exp[i(pi?' -g+ ie)'rz]

xexpli( pf — g3 +ie)m] f(pis V)91, 02)f (a2, 45)f (a5 p1)

x[Q(m)Q(7) + Q(n)Q(m + m+ 1) + Q1+ 1) Q( 7, + ). (21)
The three contributions are shown in fig. 1c and are, in order, the bubble
diagram, the direct term and the exchange term.

Higher order terms in the perturbation series will be of interest when we
discuss the infinite summation of selected classes of diagrams in section 7, but
we need go no further at this point. We mention only that for a potential of
the form of eq. (11) with U chosen as the thermal average that the next or fifth
order in perturbation theory will involve at least three phonon exchange. In
general, the minimum number of virtual phonons exchanged at each order in
the perturbation series is n/2 if the order n is even, or (n+1)/2 if n is odd.

We now briefly review the essentials of what we describe as the “simple
approximation” to atom-surface scattering. These approximations eliminate
the cumbersome integrals involved in obtaining the transition matrix, yet all of
the important and salient features of the thermal attenuation process are
retained. The approximation consists of the following steps:

(1) Replace all time dependent phonon correlation functions by the mean
square amplitude, i.e.

Q(7) = 4Cu(r)u(0)) — 4¢u*(0)) = 0(0).
(It will also be convenient to use a Debye phonon spectral density for
evaluating Q(0).)

(2) In all integrals over intermediate perpendicular momenta, we retain
only the imaginary or 8-function, energy conserving contribution.

(3) Ignore the contributions of bound states in the intermediate sums. (This
is quite justified except at very low incident energies or very grazing incident
angles [1,2] or in cases of elastic bound state resonance.)

We illustrate by example. Consider the lowest order contribution in the
perturbation theory, the second order term of eq. (13). With Q(¢) in eq. (14)
replaced by Q(0) and neglecting the bound state contributions we have

(F3(p))) = 42 —1) /()“dq.f_M

. 22
pi—q*+ic (22)
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Retaining only the imaginary contribution to the integral over normal momenta
leaves us with

(F*(p;)) = (—im/8p;)(e2® = 1) f*(pipi) (23)

and the term for exchange of m phonons is obtained by expanding the
exponential

<F(2’m)(Pi)> = ("i'”/SPi)fz(Pn pi)Q”'(O)/m!. (24)

The intensity of the specular beam is obtained from eq. (10)

Io=[1—%(—Z—)z(————f(p".pi))z(Q(O)+ 222—;(,—0))}2 (25)

pi

It is interesting at this point to make a comparison with standard Debye-Waller
theory. In spite of the fact that the thermal average (u*(0)) appears in the
exponential of eq. (23) this is not at all a Debye-Waller factor (in fact the
exponential in (23) in an increasing, rather than a decreasing function). The
higher order virtual phonon transfers appear in the summation in eq. (25), and
as we will show in the next section, they are totally negligible except for very
high temperatures.

We find in this example drawn from second order perturbation theory that
only the diagonal matrix element of the potential is needed, and this result will
hold for all other orders as well. Diagonal matrix elements are often relatively
simple in form and a number of useful general theorems can be demonstrated
[10]. A convenient model which can be evaluated explicitly is to choose U(z)
as a Morse potential

U(z)=D(e % -2e7"%), (26)

which implies that the attractive potential A(z) of eq. (11) is the attractive
exponential of (26). The diagonal matrix elements are

f(Pi! Pi) = (Pi‘e-zxz | Pi)
= (@4/m){ p}+pid Im[y (3 —d+ip))]}, (27)

where d2=2mD /h*?* and ¢(z) is the di-gamma function of complex argu-
ment. In most instances, the imaginary part of the di-gamma function can be
evaluated to sufficient accuracy by using a few terms of its asymptotic series
1 1 1
z2)~In(z)— 5 — + 28
v(2)~In(z) =97 = 7 T 0 (28)
Combining the Morse potential matrix elements of (27) with a Debye phonon
spectrum and the lowest order development of the specular intensity in eq.

(25) leads to excellent agreement with available experimental data at low
surface temperatures [1,2].
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3. Comparison of single and double phonon exchange

This simple model allows us to discuss clearly and simply the relative
importance of the various types of multiphonon events that contribute to
atom-surface scattering. We begin with the two phonon exchange terms which
can be divided into three distinct types according to whether they come from
second order, third order, or fourth order perturbation theory. As explained
above, there are no other two phonon contributions from higher order in the
perturbation expansion. What we are able to demonstrate is that the higher
number phonon processes coming from second order in perturbation theory
are negligible. The most important two phonon contribution comes from
fourth order while that from third order, although not always negligible, is
clearly less important.

We begin with the second order term in the perturbation expansion and its
two phonon contribution is the m = 2 term of (24):

(F®2(p)) = (~in/16p;) f*(pi> pi)Q*(0). (29)

This term is the one illustrated in the diagram of fig. 1d.

Next we look at the third order term from the perturbation series. The two
phonon contribution is obtained by inserting eq. (19) into eq. (17). With the
approximation of replacing all Q(7) by Q(0) the integrals over 7 in (17)
become trivial, and retaining only the d-function contribution to the g-in-
tegrals gives the result

<F(3'2)(Pi)> = _B%(W/Pi)zlﬂ(.pi’ p:)0%(0). (30)

Note that there is a phase difference between egs. (29) and (30), and the
essential difference in their magnitudes is the factor f( p;, p,)/p;, the ratio of
the diagonal matrix element to the perpendicular momentum. We note in
passing that the approximation of replacing all displacement correlation
operators Q(7) by Q(0) eliminates any distinction between the different
diagrams of a given perturbation order. Thus this approximation is surely an
overestimate since usually Q(0) > Q?(r), and furthermore it will overestimate
the relative importance of many diagrams within a given order since it sets
them all equal.

Moving on to fourth order in the perturbation series, we obtain the two
phonon contribution from eq. (21) again by replacing all Q(7) by Q(0). The
result is

(FOD(p))) =is(n/p.)f*(piy p;)Q(0). (31)

Again there is a difference in phase with the other two phonon terms and the
major variation in magnitude is the same factor of f( p,, p,)/p;.
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The relative importance of these three contributions is best expressed by
comparing them to the single phonon contribution from eq. (24)

<F(2'l)([’i)>=(‘i77/8Pi)f2(Pi, p:)0(0). (32)
The three ratios then become, making use of eq. (26):

(F&y _0(0) _,m i T

<F(2,1)> 2 M 2m kB@lz), (33)
<F(3,2)> _ _}_i _ _n}_thz Wf(pi, pl) T

(F&Dy '3 Pif(pi’ r)Q(0) 19M 2m Pi kB@Iz)’ (34)
e 3 (=) o m wi (wf(py )\ T

< (21)> - —1a(—) fz(pi’ Pi)Q(0)=__ﬁ K f(pi, pi) |
(F'"7) Pi 8 M 2m P, P,

(35)

In order to write the above ratios explicitly in terms of the surface tempera-
ture, we have made use of the Debye model for the phonon spectrum as
follows. From eq. (15) with p(w) = 3w?/wi, we have for sufficiently high
temperatures such that n(w) = kg7/w,

12 mkyg [vo m T
0)=— dw=24— , 36
2(0) w3D M f_wD M k,;@f) (36)

where kg =2mkyg/h*k%.

Representative values of f( p;, p;)/p;, for typical He/ metal systems are in
the neighborhood of 10 or larger, therefore clearly the fourth order two
phonon contribution is the largest while the contribution from second order is
negligible. In the case of the scattering of H, from the surface the well depth
is typically a factor of five larger and this can substantially increase the value
of f/p;, and consequently make the difference in the above two phonon
contributions even larger. On the other hand, if the scattering potential is
purely a repulsive exponential with no attractive well then f(p;, p;) =4 pi/m
and f/p; = 4p,/m, which is usually larger than unity, but not necessarily large.
The importance of the n-phonon contribution coming from the 2n-order of
perturbation theory has been recognized previously [11,12]. However, in some
older calculations erroneous conclusions have been drawn about the relative
importance of single to double phonon processes when the most important
process was thought to be that coming from second order perturbation [13,14].

Another interesting observation is that the ratio for the second order two
phonon contribution of eq. (33) is independent of the mass or velocity of the
incoming particle, and depends only on the parameters of the crystal and the
interaction potential.
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The parameter involving the most important contribution, that of eq. (3%)
can be put into an interesting form upon recognizing that

hz K2 h2( ki* )2

5 (7 (s pi)/Pi) =16 ———

where E* can be considered as the energy associated with normal particle
motion corrected for the well depth. Then eq. (35) becomes

F@2( p
{F(p) 21(p')>=—1831~ 2T (38)
<F( . )(Pi)> M kg®, 64

=16E*, (37)

Apart from the numerical factor, the right hand side of (38) is the well known
Weare criterion [6] for the importance of two phonon terms. However, it
appears here with a correction for the depth of the adsorption well coming
from the appearance of the diagonal matrix element in eq. (37). For example,
with the Morse potential matrix elements of eq. (27)

kit = (nf(pi, p)/4p)" = k{1 + (D/E) Im[y (= d+ip)]},  (39)

where E; is the energy associated with normal motion far from the surface.
This well depth correction is considerably stronger than the usual correction
[1] of simply assuming that the well merely refracts the particles as expressed
by

k*¥*=kL(1+D/E)). (40)

It is interesting to note that the Weare criterion is not simply a gauge for
the importance of two phonon processes but essentially the same expression is
obtained for all phonon contributions. For example, the specular intensity as
expressed in eq. (10) shows that the ratio of single phonon scattering to the
elastic intensity is given by the parameter

(—im/4p)(F®V(p,)) = — % (w/p;) f2(pis p;)0(0), (41)

which, again apart from a small difference in numerical factor, is the same
parameter as eqs. (35) or (37). Thus the Weare parameter is essentially a
quantity which can be used to gauge when inelastic scattering of any type is
important.

A significant and very interesting observation appears when we compare
the single phonon transition matrix (32) directly to the most important two
phonon contribution of eq. (31). The two are of opposite sign, which means
that the two phonon contribution subtracts from the single phonon contri-
bution consequently enhancing the elastic intensity. This result is not surpris-
ing as a similar property appears when the thermal attenuation is described by
a Debye—Waller factor as in eq. (1) or (30).

T)=I,e D = [ [1-2W(T) +2W*(T) + ---]. (42)
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In the expansion, the term —2W/(T') is essentially due to single virtual phonon
exchange and subtracts from the elastic contribution. The term in W2(T)
corresponds to double virtual phonon exchange and it enhances the elastic
intensity. Otherwise stated, the principal effect of double virtual phonon
exchange is to subtract from the single phonon contribution to the scattering
amplitude just as the single phonon subtracts from the elastic scattering
amplitude. The net result is to increase the total elastic scattering intensity.

In another paper, we have presented numerous exact calculations for the
one and two phonon contributions arising from all of the diagrams shown in
fig. 1 for several different projectiles and surfaces [4]. These detailed calcula-
tions show that for the systems examined the observations made based on the
very simple model presented here essentially hold true. In general, the two
phonon processes from fourth order perturbation theory are the most im-
portant while those arising from second order are nearly always negligible.
Those contributions coming from third order, while not always as small as
would be indicated by the parameter of eq. (34), are usually considerably
smaller than the fourth order term, the exceptions usually occurring for very
low surface temperatures when multiphonon contributions are relatively small.
The fact observed here that two phonon contributions tend to enhance the
elastic scattering holds true also for the exact calculations except again
sometimes at very low surface temperatures.

4. Multiphonon contributions

At this point it is worthwhile to extend the discussion of the preceding
section with a few comments about multiple phonon contributions in general.
As we will shortly see, it is not reasonable to stretch the simple model being
developed in this paper very much further in terms of numbers of phonons
exchanged, but several interesting points arise.

Within a given order of perturbation theory, we have seen from the
preceding section that all multiphonon effects can be included by simply
retaining all terms of the form exp[Q(0)] resulting from the phonon averaging,
rather than expanding these exponentials to first non-vanishing order. How-
ever, we also saw that this led to negligible additional contributions in second
order as shown in eq. (33) and, since the value of Q(0) is relatively small, this
conclusion holds true for all perturbation orders.

The most important contributions to multiphonon exchange come from
higher orders in perturbation theory. We have seen in section 2 that the higher
order terms can, in principle, be written down in a rather straightforward but
lengthy manner. Our simple approximation allows these expressions to be
evaluated in a closed form.
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Since this evaluation is rather straightforward, again depending only on
letting Q(7) — Q(0) and retaining only the §-function contribution of the
g-integrals, we present the final result:

(FMm(pi))=(=in/8p))" ' f¥( i pi)BYO™(0), (43)

where N is the order of perturbation theory and m is the number of virtual
phonons exchanged. The numerical factor P, is derived in the appendix. Its
value is

N

P=%

k=0

1
mi2"

()0 v =) (v = k=), (44)

PY is the total number of distinct diagrams contributing if the number of
phonons is the minimum for the given perturbation order, i.e. if N is even,
m=N/2 and P}"=Q2m—1!; orif N isodd m=(N+1)/2 and P" = (m
—1)2m — D!, Otherwise P is a number less than the total number of
diagrams for more than the minimum number of phonons transferred at a
given order, since in this case different classes of diagrams enter with different
weights.

Not surprisingly, the perturbation series with each term given by eq. (43)
diverges, even if we retain only the minimum number of phonon transfers at
each order. The reason for this divergence is obvious, our simple model when
applied to the case of minimum numbers of phonons transferred at each order,
treats all diagrams within the order as equal. This number of diagrams
diverges very strongly as the order of perturbation increases. The problem is in
replacing Q(7) by Q(0). As shown for example in eq. (21) or (17), many of the
diagrams for a given perturbation order will be associated with a displacement
correlation operator evaluated at very large times and consequently their
contribution will be very small. The question of the convergence properties of
this phonon exchange series is an interesting point. The series of eq. (43) can
be summed using a Borel transformation, in which case the thermal attenua-
tion is expressed in terms of solutions of Schrédinger’s equation with tempera-
ture dependent, effective potentials [7,15].

Two interesting results do come out of eq. (42), however. The first is that
for a given multiphonon exchange it is the n-phonon contribution from the
2n-order of perturbation theory which is most important. The second observa-
tion is that these most important contributions alternate in sign as the order of
perturbation increases. This means that the elastic intensity alternately de-
creases and increases as each new even order of perturbation is added to the
series. This is, in fact, a behavior similar to that seen in the Debye—Waller
expansion of eq. (41). Both of the above observations are logical extensions of
the two phonon results obtained in section 3 above. They also appear to be
reasonably well verified by more sophisticated calculations [3].
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5. Summation of bubble diagrams

There are certain classes of diagrams which can be summed to all orders.
The most obvious of these classes are the bubble diagrams, that is to say those
processes for which the corresponding diagrams have non-overlapping phonon
lines. In the case of our simple model the summation can be carried out
readily and the result provides a particularly interesting closed form expres-
sion for the elastic intensity as a function of temperature.

Let us begin by considering the bubble diagrams arising from even orders
of perturbation theory. These are shown in fig. 1a, the first diagrams of fig. 1c
and the corresponding diagrams for higher even orders. This means that for
each even order of the perturbation expansion we are selecting only a single
diagram. The first two terms in the series for the transition matrix are
obtained by adding eq. (32) and one third of eq. (31).

(F(pi))= (“i'”/gpi)fz(Pi’Pi)Q(O) + ("iW/SPi)3f4(Pi’Pi)Q2(O) + o,
(45)
and the general expression can be written down from eq. (43) with P =1 and

N=2m:

(—im/8p)" " f(pi,pi) " Q™(0)

(—im/8p))" ' [(FE(p))]”

L (F)
1+ (i"T/SPi)<F(2'1)(Pi)> ’ (46)

which can also be written in the form
(F(pi))= <F(2'1)(Pi)> + (-iW/SPi)<F(2'1)(Pi)><F(Pi)>a (47)

where we have cast the result ‘in terms of the lowest or second order
contribution of eq. (32). For the specular intensity of eq. (10) this gives the
particularly simple form

(1= Gr/sp)(FE () |
1+ (im/8p ) ( FEV(p)) |

which, since ( F*Y(p,)) is negative imaginary, is of the form of a Padé
approximant in the temperature

(F(pi))=

ﬁ[\’]s %[\’]8

(48)

0

I,=(1—AT) /(1 + AT)". (49)
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There is another series of diagrams which can quite readily be summed and
this is the series of touching bubbles, exemplified by the first diagram in fig.
1b and all corresponding touching bubbles in higher orders. This series can be
developed similarly to the above by starting with the second order term of eq.
(32) and adding to it the third order diagram which is given by one third of eq.
(30), and so on for the higher orders. Alternatively, since there is only one
diagram in each perturbation order in which all the bubbles are touching and
this diagram involves a number of phonons equal to one less than the order,
we can get the result by summing eq. (5) with P =1 and m = N — 1 which
leads to a series which can be expressed as

(F(p))= <F(2'1)(Pi)> = (—im/8p:) f(pi, pi)Q(O)(F( pi)) (50)

<F(2'l)(Pi)>
1+ (i7/8p;)Q(0) f( pi, pi)

The general case including all combinations of touching and separated bubbles
can now readily be written down

(F(p))=(F®(p,))
+(—in/8p)[ Q) f(piv pi) + { FEV(p))CF(p))), (52)

with the solution

(F(p;))= (51)

<F(2‘1)(Pi)>
1+ [iw/8p~.“1/f(1’i, Pi)]<F(2'U(Pi)> ’

and the resummed expression for the intensity (12) is of the form

I, = 1+[—i77/8pi“1/f(17i’ Pi)]<F(2‘l)(Pi)> 2 (54)

1+ [im/8p,— 1/f(pi, POI{F®V(p)) |

Although it is interesting to exhibit the expression in which the touching
bubbles are also summed, it is clear from egs. (51) or (50) that their contri-
bution compared to the separated bubbles from the next higher order is small
by the factor p,/f(p;, pi)- Thus, in general, their contribution will not be
important for the same reasons as discussed above for the two phonon
contributions of egs. (34) and (35). Basically, any diagram with a touching
bubble has at least one vertex involving double phonon exchange, and such
vertices are always small, in our model. being multiplied by a factor of
pi./f(p,, p;,) compared to a vertex having only one phonon line eminating
from it.

It is of interest at this point to look at the above two resummation processes
from a somewhat more formal viewpoint. The resummation of disconnected

(F(pi))= (53)
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bubbles, approximated in eqs. (45) through (47), can be written exactly in
operator form as

(Fy=(F®)+3(FP)G(F), (55)

where G, is the elastic or bare propagator Green function. The simple
geometric series expression of eq. (46) or (47) is obtained by keeping only the
§-function part of G, and neglecting the principal part. However, in general
(55) can be summed to convergence by simply iterating the equation [16].
The resummation equation for all bubbles, both connected and discon-
nected, can be presented by introducing a second Green function into (55):

(Fy=(F®)+ {(FO){(G,+ Gy }(F). (56)

The approximation to the above consistent with the intent of this paper is eq.
(52). The Green function G, is the propagator which links together two
vertices with a virtual phonon exchange. For example, it is precisely the
propagation operator linking the two vertices shown graphically in fig. 1a. Just
as in the case of eq. (55), eq. (56) can be summed to convergence by iteration.
The only added nuance is that all terms linked by G, involve an additional
summation over the phonon quantum numbers [3].

In a recent paper, Celli and Maradudin have developed an alternative
approach to the problem of thermal attenuation [9]. Rather than obtaining the
thermally averaged transition matrix as done here, they replace the many body
problem by a single particle Schrodinger equation with a temperature depen-
dent optical potential, with the imaginary part of this potential simulating the
decrease of elastic intensity due to thermal attenuation. In principle, both
approaches are equivalent. Celli and Maradudin present in their paper a
resummation of phonon bubbles which is equivalent to eq. (48) above.

As an illustration of the usefulness of the expressions found here, we show
in fig. 2 a comparison with the experimental data [17] for the thermal
attenuation of H, at a Cu(100) surface. The incident beam has an energy of
77.2 meV, and shown is the specular intensity for two angles of incidence,
75.5° and 31°. At these energies and incidence angles rotational excitation of
the hydrogen molecules is observed to be a negligible effect [17]. At 8, =75.5°
the energy associated with motion normal to the surface is well below the
j=0—j=2 rotational threshold of 42.5 meV for H,, and that at §,=31°.
The normal energy E, = E; cos’§; =56 meV which is only slightly above
threshold. There is a unitary loss in the experimental points due to scattering
by other mechanisms such as disorder or impurities on the surface. To account
for this the theoretical curves have been shifted downward by a multiplicative
constant. The parameters appropriate to the Morse potential for this system
are a well depth D =21.6 meV and a range k=10 A~ as détermined by
comparison of elastic diffraction calculations with experiment [16]. For each
angle of incidence the theoretical curves show the single phonon contribution
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Fig. 2. Thermal attenuation of the specular beam for the H, /Cu(100) system with energy 77.2

meV and two angles of incidence 8, = 75.5° and §; = 31°. The points are from experiment [7].

The solid curves are the single phonon result of eq. (32), and the dashed curves are the summation

of bubbles expression of eq. (48). The Debye temperature for 8, = 75.5° is 242 K and for 6, = 31°
is 217 K.

of eq. (32) and the summation expression of eq. (46). The single phonon curve
matches the experimental points with a surface Debye temperature of 242 K
for §,=75.5° and 217 K for §;=31°. The summation of bubble diagrams
increases the elastic scattering, implying that at high temperatures a single
phonon calculation overestimates the total inelastic scattering. It is interesting
to note that the summation expression (46) gives results that are relatively
close to being linear, as would be expected from the Debye-Waller form, but
they are still somewhat curved. If we presented the one plus two phonon
contribution on fig. 2 the curve would lie above the resummation calculation
at higher temperatures. This is equivalent to keeping only the first two terms
in eq. (45) where it is clear that the two phonon correction subtracts from the
single phonon amplitude and as discussed above in section 3. This leads to an
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underestimate of the total inelastic scattering. Perhaps the most important
conclusion to be drawn from these calculations is that they clearly delineate
the domain where single phonon exchange is dominant and multiple phonon
effects are negligible. Fig. 2 shows that for the H,/Cu(100) system at this
incident energy two phonon exchange is not appreciable until the surface
temperature is above 100 K, while at 200 K and particularly for more normal
incidence there will be an important multiphonon background.

In a separate paper, we consider the question of infinite summation based
on exact calculations of each term in the perturbation series [3]. In general, it
is possible to sum all orders of touching and separated bubbles. However, it is
no longer possible to obtain expressions in closed form but the results are
expressed in terms of a simple integral equation which can be solved to
convergence by iterative methods.

One can go much further with these summation techniques. If any group of
lower order graphs is calculated (either exactly or approximately) this group
can be considered as a sort of “generalized bubble”. This “generalized
bubble” can then be coupled with all other higher order diagrams in which it
repeats, either touching or separated by a bare propagator line, and the
summation operation applied. Within the simple approximation treated in this
paper, the results look formally very similar to eq. (50) or (51) except the
second order transition matrix ( F@V( p,)) is replaced by the corresponding
expression for the “generalized bubble”. This generalized summation proce-
dure has been carried out using as the basis “generalized bubble” all of the
diagrams in fig. 1 calculated exactly with the Morse potential [3].

6. Conclusions

In this paper, we have extended to processes involving multiple virtual
phonon transfers, a straightforward and simple approximation to the general
treatment of thermal attenuation in atom-surface scattering.

We address the question of two phonon exchange in manner which is
applicable to both thermal attenuation and muitiphonon inelastic effects.
There are three types of double phonon processes in a flat surface model
coming from the second, third and fourth order of the perturbation expansion,
respectively. We find parameters expressing the relative importance of each of
these contributions. The most important contribution is that from fourth order
perturbation theory and the associated parameter is the same as that found by
Weare [6] with the addition of our bound state correction on the energy
associated with normal motion of the particle. The interesting distinction
between these three processes appears to be the number of phonons associated
with each interaction vertex. The fourth order contribution has only one
phonon associated with each vertex, as in fig. 1c. The two phonon contribution
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from second order, fig. 1d has two phonons associated with each vertex and
we find these processes to be negligible in atom—surface scattering. The third
order contribution has at least one vertex involving two phonon lines and we
find its contribution is substantially less than the fourth order but not always
negligible. The two phonon contribution tends to enhance the elastic scattering
rather than to decrease it. This is due to the fact that the major effect is to
subtract amplitude from the single phonon scattering which in turn increases
the elastic term. An extension of the discussion to multiphonon contributions
shows that, consistent with the results found for double phonons, the most
important n-phonon scattering amplitude comes from 2n-order in perturba-
tion theory. This statement is based on the elastic transition amplitude. If we
look at the inelastic intensity via the optical theorem, the equivalent statement
would rather be that the most important n-phonon contribution to the total
inelastic intensity comes from n-order perturbation theory. The important
point being that multiphonon scattering amplitudes coming from lower orders
of perturbation will be substantially less important.

As a further treatment of multiphonon effects, we consider the question of
summation of all bubble diagrams in the perturbation series. This produces
some useful closed form expressions for the elastic intensity as a function of
surface temperature which are essentially in the form of Padé approximants.
Furthermore, we discuss how any general group of lower order processes can
be considered a part of an infinite series which can be readily summed to all
orders.

The basic importance of this work is twofold. First, we have demonstrated
that this simple approximation to the general formalism provides simple
closed form expressions for the thermal attenuation which agree quite well
with experiment. Secondly, in spite of its simplicity, this approximation
provides a clear model for describing the salient features and complexities of
thermal attenuation in atom-surface scattering. Particularly, it demonstrates
the contrasts between a highly multiple scattering process such as this and the
usual Debye-Waller factor applicable to neutron or X-ray diffraction. The
Debye-Waller factor is usually obtained from a resummation of virtual
phonon transfers in first order perturbation theory. We show here that the
equivalent processes in atom-surface scattering, that is to say multiple virtual
phonon transfers at a single vertex, are completely negligible. The major
contributions here come from the lowest order phonon exchange in higher
orders of perturbation theory. This major difference is reflected in the fact that
we do not obtain an exponential behavior in surface temperature for the
thermal attenuation, as opposed to the standard Debye—Waller plot. Several
experiments which have been performed over a sufficiently large temperature
range confirm this point [16-18].

The difference in behavior with the Debye-Waller expression becomes even
more apparent in considerations of inelastic scattering. General calculations
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show that the thermal attenuation of a single phonon inelastic peak intensity
can be much stronger than that of an elastic peak [7]. This is in sharp contrast
with Debye-Waller theory, where all intensities, elastic or inelastic, are
multiplied by an attenuation factor of the same functional form.
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Appendix

We wish to derive the numerical factor of P, appearing in eq. (42), where
N is the order of perturbation theory and m is the number of phonons
exchanged. From the development of the multiphonon expressions in section
2, it is clear that the Nth order of perturbation theory will involve the
following time ordered correlation function

Ay = vO"N<e“(’1) —0o) (e = 1) - -+ (e — Uo)>

Jj=1

- < I (e - )> (A1)

where we recall that v, = {(e“). The result of the thermal averaging process can
be expressed in terms of the pair correlation functions of eq. (15)

N (N=kXN—k=1)/2
Ay= kg.o(f}j J(-n* exp( 2 Q(rj)) (A2)

where (¥) is a binomial coefficient.
Our major approximation in this paper consists in replacing Q(z) by Q(0),
which leaves

N

av= T (M)=D* expl (N = k)N =k =1)Q(0)/2]. (A3)

k=0

We develop each order of perturbation theory in a series in numbers of
phonons exchanged by expanding the exponential

“mnm

an— 270 (0) < Y (N>(—1)"’(N—k)’"(N—k-1)’", (A.4)
k=0 k
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where m is now to be considered as the number of exchanged phonons. From
the zero sum relation for the binomial coefficients

ad N k

}:( )(—1) k=0, m<N-1, (A.5)
k=0 k
we see that
AY=0, if m<N/2for N even (A.6)
and
Ay=0, f m<(N+ 1)/2 for N odd. (A.7)

The result expressed in (A.6) and (A.7) holds true even if we do not
approximate Q(¢;) by Q(0), i.e. it also applies if we expand the exponential of
eq. (A.2) directly.

Eq. (A.4) gives directly the numerical factor to be associated with the
N-order, m-phonon transition matrix of eq. (42)

1 N N k m m
zmkgo(k)(-q) (N=k)" (N=k=1)". (A8)

PY =

” m!
When m is the smallest number of phonons that can be exchanged for a given
perturbation order (m = N/2 for N even or m=(N+1)/2 for N odd), eq.
(A.8) gives the total number of distinct diagrams for m-phonon exchange in
order N. If m is greater than the smallest number of phonons that can be
exchanged for the given order N, then P/ is a number smaller than the total
number of distinct (N,m) diagrams because certain diagrams are multiplied
by a relative weighting factor. In particular

PIm=(2m-1)N (A.9)
and

P l=(m-1)C2m-1. (A.10)
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