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Thermal attenuation in atom-surface scattering: A useful approximation
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The calculation of the specular beam intensity in atom-surface scattering as a function of crystal
temperature can be achieved with good accuracy using a simple procedure presented here. This as-
sumes the calculation of the T-matrix element for single-phonon virtual exchange and an approxi-
mate but analytical resummation allows one to include the multiphonon events. Thus the extrac-
tion of physical quantities from experimental data becomes easier, and for this purpose two simple

procedures are proposed.

I. INTRODUCTION

The scattering of thermal energy atoms, particularly
He atoms, is an important tool for studying surface struc-
ture and surface dynamical properties.'! We consider
here the thermal attenuation of the diffracted beam inten-
sities which are observed when a monoenergetic atomic
beam is scattered by a periodic surface. Correction for
this thermal attenuation, or Debye-Waller effect, is a key
question in the interpretation of experimental results. In
several recent publications we have developed a calcula-
tion method and presented numerical results.>~° The ex-
pression obtained for the T-matrix element is a perturba-
tion expansion where in each term one can make an ex-
pansion corresponding to the virtual exchange of 1,
2,...,n phonons. In this way, the calculation can be
made as exact as desired if one calculates a sufficient
number of partial 7T-matrix elements, this number de-
pending on the crystal temperature and the potential in-
teraction. In practice, this procedure is impractical.
Thus the terms corresponding to one-phonon (Refs. 2-4)
and two-phonon (Ref. 5) events have been calculated ex-
actly and a resummation procedure has been proposed® in
order to recover the effects of the multiphonon virtual ex-
change.

The numerical calculations have been performed using
a potential model valid for a flat surface. The anharmon-
icity has been introduced through the quasiharmonic ap-
proximation. The fit to the experimental data in the
scattering of helium, molecular hydrogen, and neon is ex-
cellent. Using helium data we have shown that the
anharmonicity on the (100) face of copper is certainly
higher than in the bulk.’

However, the use of this calculation method to inter-
pret experimental data is not easy. In order to facilitate
this operation, several approximations have been pro-
posed.®® As we are able to compare their validity, taking
as reference the results yielded by the resummation pro-
cedure, we intend in this paper to present the best ap-
proximation and to suggest a simple procedure allowing
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one to extract from the experimental data the relevant
mean-square surface displacement and the surface anhar-
monicity strength.

II. POTENTIAL MODEL

The potential has been described in previous publica-
tions. It is written as

V=D{exp[ —2X(z —u)—2X> {u*N]—2exp(—Xz)} .
(1

The repulsive part is thermally displaced in a direction
normal to the surface by the displacement operator u. Its
thermal average (notation {( ))) yields a Morse potential
which has been chosen as the distorted potential for writ-
ing the T-matrix equation.

Its ability to model the real interaction between the
particle and the surface has been fully discussed in
preceding papers. The most important deficiency is prob-
ably the lack of exchange of momentum parallel to the
surface between the particle and the surface vibrations.
In fact, in the thermal attenuation of the scattered beam
the phonons of low frequency are the most efficient; that
is to say, those of low parallel momentum. Thus the total
exchange of this quantity will be small and the potential
used in this calculation can yield results which are close
to results produced by a more sophisticated potential
where the exchange of parallel momentum is allowed.
This fact has been confirmed recently.'®

III. THE BEST APPROXIMATION

The dimensionless T-matrix element which accounts
for the total virtual exchange of one phonon can be writ-
5
ten as

F,=4(A4D) [fo‘” ofp G, T) ,f, dp

+2Pilb G(Cb,T)pri , (2)
b
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where g takes on the values p and b for continuum and
bound states, respectively, with c¢,=p?—p? and
¢y =p}+Q,. T labels the crystal temperature contained
in the Bose-Einstein factor ({n(Q))»; m and M are, re-
spectively, the incident-particle mass and the crystal-
atom mass, p({)) the spectral density of atoms belonging
to the surface unit cell, and Q,, is the maximum crystal
frequency [p(Q)=p(—Q)]. All the quantities are written
in dimensionless form with the help of the factor
A?=2m /#iX%. One has Q= A0, Q,=A4?|e, |, with
e, the bound-state energy and p; the reduced normal
incident-particle momentum k7?/X. f and [/ are the fol-
lowing matrix elements:

p,-fp=<¢p1 lexp(—2Xz)|¢,) ,
P,-Ib=<¢l’.~ | exp(—2Xz)| ¢, ) ,

in which ¢, and ¢, are, respectively, the eigenstates for
continuum and bound states of the distorted potential.
The isopotential displacement of our potential in Eq. (1)
is equal to 2u for small values of V. In order to compen-
sate for this effect, which is due to the subtraction of the
static attractive part of the potential, the real spectral
density should be multiplied by a factor a=1.

The corresponding diagram is represented in Fig. 1(a),
where the vertex represents the matrix element f or / and
the straight lines are the dressed Green’s operators.

The specular intensity, or more precisely, the reflection
coefficient, is given by
. 2
i
8p;

R1= 1*‘ Fl

At this stage it contains only the one-phonon effect and
the result will be useful in the low-crystal-temperature

G. ARMAND AND J. R. MANSON 37

13

b/ .

N\

/
N
N

.

A
N
T
N

+

(b]

FIG. 1. (a) Diagrammatic representation of one-phonon vir-
tual exchange. (b) Diagrams which are summed up and give ex-
pression (3).

domain where the two- and higher-phonon events are
negligible. In order to extend the range of validity of
such an expression, we sum up the contribution of bubble
diagrams; that is to say, those depicting a succession of
single-phonon bubbles, each of them separated by a free
propagator [Fig. 1(b)]. Then if we neglect the principal
value in the free propagators, the series to sum up is of a
geometrical type and we get

F,
imr

8p;

F=

1+ -2 F,

The reflection coefficient is now given by

. 2 2 )
i s T
-7 F 1— — | ImF + (ReF,)?
R s | l 8, | 1™ ] 64p? !
1+ F T TR ’ (3)
P —_ 2
gp, ! 1+ 3, [ ImF, | | + l‘Z(ReF,)

where Re and Im indicate, respectively, the real and
imaginary parts of F,. In the harmonic approximation
where Q,, is independent of T, the matrix element F is
proportional to T in the medium- and high-temperature
ranges. Then,

R— (1—aT)?+bT? _
(14+aT)*+bT?

with a and b being constants.
Obviously this approximation neglects the contribution

of many diagrams. But it happens that if F, is calculated
exactly, the reflection coefficient obtained in this way is
equal within a few percent to those calculated with the
complete resummation procedure. This has been numeri-
cally checked in the case of He and H, scattered by flat
copper (100) surfaces in the temperature range 0-1300 K
for He and 0-800 K for H,, if p; remains less than about
7. An example of such a calculation is given in Fig. 2.
The parameter p; is the only one which accounts for the
incident conditions of the particle (energy and incident
angle). As p; increases beyond the value of approximate-
ly 7, the agreement between the two calculated R values
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FIG. 2. Comparison of calculated intensities, with the resum-
mation procedure (RS) and formula (3) (R). For completeness
the intensity curves in case of single- and single-plus-double

virtual-phonon eexc}llange are given. p; =6.52 corresponding to
He with k;=11 A™ and 6,=51.55a=1.

is less and less good in the high-temperature domain.
This is signaled by the appearance of a minimum on the
R (T) curves, which indicates that the multiphonon pro-
cesses have not been taken into account properly (5). The
calculated intensity remains good only for crystal temper-
atures lower than that of the minimum. For instance,
with an incident helium beam of k;=11 A~! and in-
cident angle 6, =19° (p; =9.905) the approximation gives
correct results up to T'=400 K, a temperature greater
than those for which the two-phonon events become
non-negligible (Fig. 3).

It is not clear why this approximation gives such good
results. This could be considered as an empirical rule
valid for the particular potential chosen and probably
also valid for other potentials. It could be used to calcu-
late intensities of helium beams scattered by crystals oth-
er than copper. For most metals the well depth and X
values remain close to those of the helium-copper system.
The spectral density shape for a noncorrugated face does
not change drastically. However, for metals the Debye
temperature ®, and the atom mass M will be different
from those of copper (®, =350 K for Cu). A reduction
of the former quantity is accounted for by a contraction
of the frequency scale and produces a decrease of R
values. An augmentation in the latter quantity yields the
reverse effect. Thus one can expect that the approxima-
tion proposed here will be good in the same p; range as
for copper, and in any case for crystal temperatures well
below the eventual intensity minimum.

Some details about the numerical calculation of F, are
given in Appendix A. This supposes knowledge of the
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FIG. 3. Same as Fig. 2, but for p;, =9.905.

spectral density relative to atoms belonging to a unit cell;
that is to say, the spectral density of one atom and the
correlated spectral density between nearest neighbors,
next-nearest neighbors, etc., depending on the surface
unit-cell shape. This calculation can be achieved by cal-
culating the spectral density for a given point in the Bril-
louin zone and performing the summation with appropri-
ate weighting factors over special points of this zone.'!
The generating coefficient method seems to be the most
powerful method, but others can be used.

Once the relevant spectral density is available for an
Q,..x value relative to low crystal temperature, the com-
parison between R, and R gives the temperature where
the one-phonon calculation becomes insufficient. Furth-
ermore, the comparison between R and the experimental
data (corrected for the unitarity defect) should exhibit a
discrepancy in the medium- and high-temperature ranges
if anharmonic effects are important. In order to get
quantitative information on the surface anharmonicity,
one can fit the experimental data for each temperature by
a contraction of the frequency scale corresponding to a
lower Q.. value (quasiharmonic approximation). Once
Q,..x is determined the calculation of ((u?)) is straight-
forward [see Eq. (8) below].

IV. A SIMPLER APPROXIMATION

We now examine a method allowing one to extract
from the experimental data the physical quantity ((u?2)),
the mean-square displacement of the operator u in formu-
la (1), which can be considered as the “potential mean-
square displacement.” This method is based on an ap-
proximation which avoids the calculation of the spectral



4366

density and of the real part of the matrix element F,.
Consequently, the results obtained will be less precise
than those yielded by the preceding method.
Neglecting the real part of F, one gets
2

1—8—1;—]ImF,}
Rj=|—— |, @)
14— | ImF
or, conversely,
1—R 1/2
T I
— | ImF, | =—— . (5)
8P,~ I 1 | 1+R11/2

| ImF, | is calculated from expression (2). Performing
first the integration over the p variable, one has

_ . m *% p(Q) 8*pipa)
| ImF, | =amyr [0 " B Cn@»=—==da,
with pn=(p,~2+ﬂ)’/2 and g (p;,po)=4A4Df (p,,pqy), or,
with an obvious transformation,

K g2(p;.p;

T ) 2}y y2
8, 2, «unx?, (6)

ImF, | =a

where ((U?)) is an effective mean-square displacement
equal to

2 2y _m Ty (Q)
(U = f—nm &—Q Un( @NAp,Q)dQ ()

and

2

g°(pispa) pi
Alp,, Q) =520k P
g8°(p;»p;) Pa

The analytic expression for g (p;,p;) is known (Appen-
dix A) and is introduced into expression (6). One gets

T
8p;

I

| ImF, | =aX*p2(U?)

2

AD1/2 .
Imy(— AD'*+1+ip;)| ,

1

X [T+

where ¥ is the digamma function. Its imaginary part can
be calculated easily (Appendix B). It is of interest to
point out that Y?p?=(k?)? and that the factor in large
parentheses is a well-depth correction. Its value is
greater than that of the usual Beeby correction, which is
equivalent in this case to replacing the square of the term
in large parentheses by 1+ 42D /p?.

Now, from (5) and (7) the effective mean-square dis-
placement {{ U?)) could be calculated taking for R, the
actual R value; that is to say, the experimental data. For
a given p; the comparison of its variation with crystal
temperature to a linear relation will give a qualitative es-
timation of the surface anharmonicity. However, { U?))
should vary with p;. That is to say for a given incident
particle and crystal temperature, it will vary with the in-
cident particle parameters. In fact, it is the “potential
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mean-square displacement”
a2y m T p(Q)
eluN =20 [, " Fg-dn@ida, (8)

which should be independent of p; and is obviously the
quantity which has a physical meaning.

It is therefore important to relate the known values of
«U?) to ((u?)). With this as the object we define the
ratio

_«ury
Cu?)

Since the matrix element g (p;,pq) is maximum for pg
very close to p;, the quantities A(p;,€) and, consequent-
ly, A(p;) are less than 1. By definition this ratio is in-
dependent of the masses m or M. It has been calculated
for helium scattered by a flat surface following the above
procedure [from formulas (5), (7), and (8)] using the exact
R value and the spectral density of four atoms belonging
to (100) unit cell. For given p; and (1,, values it varies
slightly with crystal temperature due to the influence of
the real part of F;. However, above 200 K and up to the
vicinity of the temperature where the minimum on R ap-
pears, its variation is limited to within 5%. Thus,
neglecting the real part of F, leads to the introduction of
an error of just a few percent.

This ratio A(p;) is dependent on the potential damping
coefficient X, the well depth D, and the Debye tempera-
ture ®, or, equivalently, the maximum frequency Q,,.
Figures 4 and 5 give its variation for different values of
these physical quantities. Then from experimental data
in an experiment where helium is scattered by a flat sur-
face, the effective mean-square displacement {{ U?)) can
be calculated if one knows the potential parameters D
and X. Then the A ratio and ((u?)) value can be estimat-
ed for different values of ®,. This operation should be
repeated for several incident angles at a given crystal
temperature. The good ®, value is that for which
((u ))? remains independent of the incident conditions.

This procedure assumes that the spectral densities of
the crystal atoms are equivalent to those of the (100) face
of copper. For the (100) face of other fcc metals this is
probably an acceptable approximation. For a (111) face
the approximation is most severe due to the fact that sur-
face atom spectral densities are mainly dependent on sur-
face phonons. Therefore in this case, and with this pro-
cedure, one can only obtain an estimation of the *“‘poten-
tial mean-square displacement.”

Alp;) )

V. CONCLUSIONS

The variation of specular beam intensity with crystal
temperature contains information about the dynamics of
surface atoms, particularly on the surface anharmonicity.
We have exposed in this paper two methods which allow
one to get this information from the experimental data.

The first one supposes the knowledge of surface atom
spectral densities and the calculation of the T-matrix ele-
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FIG. 4. Variation of the A ratio as a function of p; calculated
with: ®5, =230 K, D =6.35 meV, spectral densities of copper
(100) with a= 1. The curves are labeled by the corresponding X
valuesin A",

ment for the single-phonon virtual exchange. In this way
the errors on the deduced physical quantities are limited
to a few percent.

The second method, derived from the first, avoids the
calculation of spectral densities and T-matrix elements,
but leads to much less precise results. It assumes that the
atomic spectral densities of the surface to be studied have
the same shape as those of atoms belonging to the unit
cell of the (100) face of copper. Consequently, the quanti-
ties obtained are less precise, and for a face such as (111)
can give only an estimation of the relevant physical quan-
tities.

The calculated intensity in the first method, which in-
cludes the multiphonon events, is based on an infinite
resummation of selected classes of terms. Its justification
rests on the comparison of numerical results with a more
elaborate resummation procedure. Thus its use in the
case of a corrugated surface is questionable. We are not
sure that it would give good intensity values even if the
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FIG. 5. Variation of the A ratio as a function of p; calculated
with the spectral density of copper (100), X=2.1 AT, a=}.
Solid lines: D =6.35 meV; the curves are labeled by the corre-
sponding ®, value. Dashed lines: ®, =230 K, but D is taken
to be 8 or 4 meV as marked.

T-matrix element for the one-phonon virtual exchange
has been calculated exactly. It may be possible that it
works correctly for faces having a small corrugation. In
any case, if this empirical expression is used the result
should be interpreted with some care.

Throughout this paper we have assumed that the sur-
face anharmonicity is responsible for the discrepancy be-
tween measured intensities and those calculated in the
harmonic approximation in the high-crystal-temperature
regime. It may happen that the surface undergoes a
roughening transition, in which case the surface defects
contribute to the attenuation of the specular beam inten-
sity as surface anharmonicity does. However, in this case
the influence on the peak widths should be different. In
the presence of surface roughening the peak width should
oscillate as a function of incident angle or incident energy
with the extrema corresponding to in-phase and anti-
phase conditions.

APPENDIX A

The G functions are calculated for different values of the p variable and for each bound-state energy at each tempera-
ture. If the denominator does not vanish, the integration is performed directly. If it vanishes for a Q, value, one has

p( Qo)
00

Am
M

Gle,, T)= {(n(Qe)M | —im+Ln

ﬂm

Qm_QO
__QO

Qm
+J o

p(Q)Kn(@))  pn)n(Q)N
Q Q

1
cq+Q

m},
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where g takes the values p and b as noted after Eq. (2).
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For Q—0, [p(Q)/Q]{n(Q))) =AkT A%, where A is equal to p(Q2) /Q? in the limit of small Q. The integration over p
or the summation over bound states is then performed with the Morse-potential matrix elements:

1 [2psinh(27p)2q sinh(27q)]'"?
T 44D cosh(27p ) —cosh(2mq)

iy

I(—AD'?+14ig)

[(—AD'?+ 1 +ip)

[(p?—¢*)C,+24D'’C,],

C,= +
! [(—AD'2414ip)

I(—4D'?+1+ig)

[(—AD'?+1+iq)

[(—AD'?+ 1 4ip)

172 ;
I(—AD'?+1+ip)
The diagonal element has the special form

= i*;:l[p + AD? Imy(— AD' 1+ 1 4ip)]

and

1 (=1 psinhQ2mp) (24D —2b —1)
PP 44D 7w b! r(24D'2—b)

[(—4D'?+1+iq)

172

|IT(L—AD 2 +ip)|

2

X |T(AD'Y >4+ L 4ip) |2[(AD'*—b—1)24+p*+24D'?],

where I' is the gamma function.

APPENDIX B

In the absence of a more convenient algorithm, one can calculate the imaginary part of the digamma function in the

following way, with z =x +iy,

= 1
Imi(z)=p $ —— |
MU=y 2 iy

or by taking the imaginary part of the asymptotic expansion,

¥(z)~ Ln(z)— - -1 L !

_ +...
2z 1227 120z%  252z¢
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