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Abstract

We present an alternative approach to the self-energy formalism for the
interaction of a projectile with a many-body target. We illustrate the method
with examples of charges or atoms interacting with a surface, and with
charges or atoms interacting with order atoms. Further applications are
briefly discussed.

1. Introduction

The inherent problem in the study of many-particle systems
is the large number of degrees of freedom that must be
considered. Consequently, one has to look for ways to reduce
the complexity of the problem, usually by a reduction of the
number of degrees of freedom. In this paper we wish to
review our approach to one of these methods, the self-energy
approach.

The typical many-particle system we wish to consider here
can be thought of as a projectile interacting with a many-
body target. In general, the projectile may be of the same or
of different nature from those making up the target and all
particles including the projectile may have internal degrees of
freedom. In the absence of any interactions between target
and projectile the wave function of the system is of the form

> = &l fOHn} (H

where ¢,(r) is a spatial wave function in the relative coor-
dinate r between projectile and target, | ;> is the ket for the
internal state of the projectile, and |{n,}) is the ket for the
many-body state of the target. The label {»,} indicates a set
of occupation numbers. The simplest form of the interaction
would be a pairwise sum of interactions between all com-
ponents of the projectile and target,

Z v(r,r) + ... ¥
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and in general the potential will include the interactions with
collective modes of the system. The examples discussed below
will be strongly oriented towards the interaction of atoms and
charges with surfaces, so the collective modes would be
phonons, plasmons, optical phonon modes, etc.

One approach which has historically been particularly
useful for projectiles which retain somewhat of an identity as
single particles is to convert the many-body wave equation
into an effective single particle problem in the relative coor-
dinate. This is often expressed in terms of the nonlocal,
complex, and energy dependent self-energy X(r, v, E)

as [1, 2]
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- v+ o} 8.0) + [dr 0. ¥, Edo )
= E¢,r) (3)

Here v(r) is the external potential plus any average potential
due to the target. This equation can be further forced into the
form of a single-body Schrodinger equation by defining the
local self-energy projection Z,(r) according to

L) = [drIe, v, E)p(r) @)
which leads to

no_,
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This is basically a quasiparticle equation and X (r) is often
called the exchange and correlation potential. The usual pre-
scription for determining the above self-energy involves
many-body Green functions [1] and is often a lengthy
process.

2. Formalism

We would like to present here an alternative approach for
obtaining a self-energy [3]. This is a straightforward and
simple approach which avoids all direct reference to many-
body Green functions, although of course, they are implicitly
always contained in the formalism.

One of the most important physical quantities that can be
measured is the energy shift of the projectile as it interacts
with the many-particle target. If the form of the potential of
eq. (2) is known, this energy shift is given by the many-body
Rayleigh-Schrédinger perturbation series using the non-
interacting states of eq. (1).
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where we have ignored the first order term since it usually
vanishes, or else can be included in the average potential.
Also not appearing in eq. (6) are some additional higher order
terms [4]. Recall that the many-body matrix elements are of
the form

GVID = [dr g2 @SRV IR DD (D)

with / the collective quantum index for the set (k,, f;, {n,}) and - -
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the unperturbed energies will be
E, = E, + & + E({n)}), (8)

the sum of the translation energy of the projectile E,,, the
internal excitation energy of the projectile &,, and the
collective energy of the target system E°({n,}).

We can rewrite the perturbation series in mixed repre-
sentation

AE = fdr
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where we have also inverted the usual sequence of sum-
mations and integrations.

We assert that this same energy shift AE may be written as
the integral of the spatially dependent self-energy Z,(r),
weighted by the probability density of the projectile in its
original state.

AE, = [drérr) Y (N(r)

(10)

The self-energy is identified by equating integrands in the two
expressions for AE.
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This is certainly not a unique choice (a characteristic of any
approach for obtaining a self-energy) but it is certainly a
reasonable, and in a certain sense, a sufficient choice since it
reproduces exactly the energy shift. Although we have
exhibited only a few terms, the process can obviously be
extended to all orders in perturbation theory. Hence as long
as the perturbation series converges so will our choice of
self-energy. In the cases which we have examined, this
approach reproduces the self-energy obtained from the usual
definitions of the correlation and exchange potential.

There is an alternative method of arriving at the same
definition of eq. (11) if the initial single particle states ¢,(r) are
plane waves, and this is through Fourier transformation of
the transition matrix. The two terms exhibited in eq. (9) or (6)
are also the first two terms in the diagonal elements of the
transition matrix, or the transition matrix for forward scat-
tering. If we make the extension of the transition matrix to
non-diagonal contributions in the particle states, the two
terms of eq. (11) are the Fourier transform with respect to the
exchanged momentum. This same formal exercise can be
carried out for all high order terms in the transition matrix,
and for those terms in AE which do not appear in the tran-
sition matrix.

We note in passing that our definition of the self-energy
can readily be extended to dynamical processes in which the
projectile makes transitions to different states. Such dynami-
cal processes are, in fact, implicit in €q. (11) in the form of
certain imaginary parts as will be discussed below.
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Although we have concentrated on the development of the
local projection of the self-energy, it is immediately apparent
that a nonlocal self-energy such as that appearing in eq. (3)
can be obtained by an immediate extension of these methods.
One simply rewrites the final matrix element in each of the
terms of eq. (11) in a similar mixed form as in eq. (9). The
nonlocal Z(r, r', E)) is obtained by equating integrands
between eq. (4) and eq. (11):

X(r,r', E)
-y LI HV H{m ) <AV 1> ok
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... (12)

Note that the nonlocal self-energy depends on the energy of
the system, but not on the initial state ¢.(r).

We can, furthermore, relate the result of eq. (12) to
previous work (1, 2] by noting that the local self-energy can
be written in the well known G-W form

I(r,r,w) = fdw’G(r, riw — o)W r o) e
with single particle Green function taking the standard form

Gr,r; w) = ; wd’/_(’)g:/ (.:.),'8

and the screened interaction term Wi(r, r'’; w) is given by
Wi, r; w)
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We have also tacitly assumed in this treatment that the
initial state of the target | {n,}) is unique, essentially implying
a process carried out at a temperature T = 0. The case of
nonzero target temperature is, in principle, handled by
averaging the energy shift or self-energy over the appropriate
ensemble of initial target states.

3. General form of the self-energy

The form of Z,(r) as expressed in eq. (11) allows us imm-
ediately to make some statements about its nature. For
example, looking at the first non-vanishing term (second
order in the perturbation series) the self-energy is
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Since it is expressed in terms of summations over inter-
mediate states much can be ascertained by considering the
nature of the pole contributions. The important singularities
are those in the energy denominator and those coming from
the matrix elements of the potential. Clearly Z.(r) will have
both real and imaginary contributions. The real part is
analogous to the ordinary potential in a Schrédinger equation.
The imaginary part can be further subdivided into a conser-
vative contribution and a non-conservative contribution. The
non-conservative imaginary part describes a net real energy
loss or gain of the projectile due to the exchange of real
quanta of energy with the target. The conservative imaginary
part is somewhat more subtle and arises because of the
inherent many-particle nature of the problem. It describes
virtual quantum exchanges with the target but does not give

Z(n =

(13)
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rise to a net energy exchange [5]. To illustrate this discussion,
consider the energy denominator. If initially the projectile
and target are in their ground states and if the energy of
relative motion is insufficient to create a real excitation of
either target or projectile, only virtual excitations are poss-
ible. In the momentum space conjugate to the relative
motion, the poles of the energy denominator lie on the
imaginary axis, but Z,(r) will in general have both real and
imaginary parts, and the imaginary part will be conservative.
On the other hand, if the energy of relative motion is suf-
ficiently high, a real excitation can occur which corresponds
to the pole of the energy denominator shifting down to lie on
the real axis. This exchange of a real quantum will be
described by the resulting non-conservative imaginary part,
but there can also be at the same time imaginary parts which
are conservative.

4. Examples
4.1. Charge interacting with a surface

As an example of the application of the self-energy approach,
we begin with the problem of a charge interacting with a
surface. This problem is of interest because knowledge of the
charge-surface interaction potential is important in all
surface experiments using electrons as probes, i.e., LEED,
electron energy loss spectroscopies, and electron tunneling
microscopy. In addition there is renewed interest in experi-
ments involving the interactions of positrons and surfaces.

Outside the surface the forces on a charge are due to
collective surface electronic excitations, e.g., surface plasmons
on metals and surface optical phonons on insulators, and we
can ignore the fields due to bulk excitations except for very
small separations. Far away from a metal surface the self-
energy must approach the classical image potential —¢*/4z
while near the surface it will be strongly altered because of
quantum effects. Among these near surface effects are the
exchange of real quanta (energy loss or gain), finite velocity
saturation, and recoil. The self-energy potential weakens and
eventually saturates due to the velocity of the charge because
the collective electronic excitations of the surface cannot
follow faithfully the motion. Recoil is the kickback due to
conservation of momentum each time the charge exchanges a
real or virtual quantum, and this recoil motion also serves to
weaken the attractive potential.

The interaction potential between a charge and surface can
be written as

V = ®Fr) = « % [ e @H+e-Rgh + a_y) (14)
where R and Q are, respectively, the displacement and
wavevector parallel to the surface, and a}, is the creation
operator for the collective surface excitations. The coupling
constant is l‘é = & nhw/Q and for metals (surface plasmons)
a = |, while for ionic solids where the excitations are surface
optical phonons

g — 1 £, — 1
g + 1 e, + 1

(15)

For the remainder of this section we will specialize to the
case of metal surfaces with a dispersionless surface plasmon
frequency given by w, = w,//2, where w, is the bulk
plasmon frequency. Using plane waves for the unperturbed
states ¢,(r) the second order term for Z,(r) of eq. (13) can be

727

readily evaluated. There are a number of special cases
depending mainly on whether the initial translational energy
is large (sufficiently great so that real surface plasmons are
excited) or small (only virtual plasmon excitations are
possible). We present here several of these interesting results.

In the higher energy case and for large distance z away
from the surface the real and imaginary parts of the self-

energy are
— ez {] vz + - -
4|z| 2w,2°

—— 31}2 + « e
2w, 7

where v is the speed of the charge. These asymptotic series
can be expressed in closed form in terms of exponential
integrals [4]. The correction terms to the classical image force
are energy dependent and become important at electron
energies of the order of w,.

Near the surface, still at high energies, the finite velocity of
the charge causes a saturation of Z,(r) which varies inversely

as
ne’a)s{] N iln [1 V= Zhws/mvz]}
n

Re Z,- (Z) —
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Note that this is only the surface contribution, bulk contri-
butions have been ignored. The saturation value in eq. (18) is
bigger by a factor of two than that found by others [6-9]
because we find an important contribution to recoil.

The question of recoil has very interesting consequences
which are perhaps most easily illustrated at low energies
where finite velocity effects disappear. In the limit v = 0 we
can write the self-energy for all z in terms of tabulated
functions

el

4z
where Q! = 2muw, /h and E,(x) is the associated exponential
integral. Note that the recoil effects decay rapidly away from
the surface with a characteristic length 1/Q,. The form of the
recoil terms depends strongly on retaining its full three-
dimensional nature, and in fact the saturation value of
— € Q,/2 is substantially smaller than that obtained from a
two-dimensional estimate [9, 10].

A typical example of the self-energy is shown in Fig. |
which gives the real and imaginary parts of Z,(z) for a case
where the energy is greater than w,. We note that both the
real and imaginary parts saturate at the surface. Oscillatory
terms appear after the charge penetrates the surface and these
are due to the excitation of real surface plasmons.

(19)

() = {1 — e %" 4 0,12 E(Q,)2])}

2. Charge in a bound state near the surface

As the second example of this self-energy formalism we con-
sider a charge bound in a one-dimensional potential at the
surface, a problem directly related to the question of a tunnel-
ing electron [11]. We choose one of the simplest forms for the
potential, an attractive d-function

— W A,md(z). (20)

The complete set of states for this potential consists of reflec-
ted and transmitted plane waves, together with a single

v(z) =
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Fig. 1. The self-energy of an electron near a metal surface. The real and
imaginary parts of Z,(z) are compared to the classical image potential with
o, = 0.5a.u. and v = 2.0a.u.

bound state

$0(2) = Ao exp(—A|z]). @n
With this set of states the relevant matrix elements can be
readily calculated for an evaluation of Z,(z) from the second
order term of eq. (13). We quote here only one result, the
asymptotic correction to the classical image potential:

X,(z);:?—ﬁ{l+%+...} (22)

4z
The higher order correction terms depend on energy similarly
to eq. (16). Equation (22) is essentially the same result
obtained by Jonson [13] for the case of a charge tunneling
through a rectangular potential, except that with his more
approximate method he obtains an imaginary contribution
which is not present here. Many other results have been
calculated, including the energy shifts of the é-function
potential states due to the presence of the surface [12].

3. Atom-surface interaction

A logical extension of this work is to consider the interaction
of an atom with a surface. This problem is important in the
study of chemical reactions, in the interactions of atoms
passing near submicron siructures, and in the field of surface
analysis by thermal energy atom scattering. As opposed to
the charge-surface problem, the atom is a neutral particle and
interacts with the surface through an induced polarization as
it is excited into virtual states. The only major change in the
formalism is that we must consider the internal states of the
atom. The lowest non-vanishing order expression of eq. (11)
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becomes [14]
_ G (r)
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where, as above w, is the surface plasmon (or optical phonon)
frequency and ¢, is the atomic excitation energy measured
from the ground state. The potential is the interaction energy
between the atomic charge distribution and the induced
surface field

Vo= f dr'o(r)®(r + r) (24)

where o(r) is the atomic charge density and ® is the induced
surface field for an isolated charge of eq. (14).

All the necessary sums in €q. (23) can be carried out in a
variety of cases. We present here the asymptotic expansion of
Z,(r) for motion perpendicular to the surface [13, 14
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where Z is the atomic charge number, q; = 2me,/h* and p is
the atomic polarization operator. The leading term in
Re Z,(z) is the well known Liftshitz form of the Van der
Waals potential. The correction terms are energy dependent
and the entire imaginary contribution is multiplied by the
velocity.

A result of particular interest is what happens to the
potential at very small separation distance, because this is
where recoil should play a role. However, since all atoms are
at least three orders of magnitude more massive than an
electron, recoil will play no measurable role whatsoever. On
the other hand, a very light atomic system exists, namely
positronium. Furthermore positronium is becoming increas-
ingly popular as a surface probe due to a series of recent
experiments in which metal surfaces are used as a source of
thermal energy positronium after the crystal is bombarded by
positrons [16].

We find that for positronium recoil effects have an expo-
nential decay away from the surface governed by the range
parameter

@ = /O + q = [2m(ho, + &)h =~ 2A°1, 7N

thus they can extend outward a reasonable distance. Very
close to the surface the recoil causes a saturation of the Van
der Waals potential. This is most easily shown by considering
the atom as a point polarizable dipole in which case the 1;-*
attraction weakens to a 1/z form

50 = 298 LIPIL

Z

(28)

In the general case the surface contribution to the dispersion
potential saturates to a constant 7.
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Fig. 2. Ratio of the real part of the atom-surface self-energy Z.(z) to the
semiclassical Lifshitz term as a function of distance z from the surface,
Shown are two cases of slow positronium moving perpendicularly to a metal
surface. Curve a, 4eV Ps and Al with hw, = 11.2eV, and curve b, 2.eV Ps
and Cs with hw, = 2.5eV.

Figure 2 illustrates the velocity and recoil effects on the
positronium-metal self-energy potential. Shown is the ratio of
Re Z,(z) to the Lifshitz term for slow positronium near an Al
and a Cs surface. The saturation due to recoil is evident near
the surface, while the reduction of the potential due to finite
velocity extends outward to rather large distances.

4. Charge-atom interaction

As an example of the versatility of the self-energy approach
we consider the interaction potential between a charge (the
projectile) and a hydrogen-like atom (the target). It is well
known that the virtual excitation of an atom by a nearby
charge gives rise to a polarization force, represented by the
dispersion potential

1 LAY P
Pzl(fl il

Z(R) 7= —
] &

(29)
where R is the separation distance, ¢ is again the atomic
excitation energy and 7 is the z-component of the atomic
polarization operator, and we use atomic units.

The first nonvanishing contribution to the self-energy is
again the second order term of eq. (11). If we choose t, and
7, as the vectors to the atomic nucleus and to the scattering
charge, respectively, and if g, is the vector to the atomic
electron, the perturbing potential is then

1 1

V = — + ,
Ity — 15 le — 7l

(30)

the sum of the potentials between the incident charge and the
atomic nucleus and atomic electron. Since the matrix elements
only involve ¢,(r) and atomic states, the mathematics is
straightforward and we quote some of the results. In the
asymptotic region the self-energy is expanded as [17]

1 KAzl )P i2k,  6kf }
R“; g F+ gR R +
(31

The finite velocity weakens the dispersion term with an
energy dependent 1/R? correction. In addition there is a conser-
vative imaginary part which is proportional to the velocity.
These velocity dependent terms are non-adiabatic correc-
tions. They are a result of the breakdown of the Born-
Oppenheimer approximation or the inability of the electronic
cloud to faithfully follow the external charge.

L(R) =

729

Recoil is another non-adiabatic manifestation and it can
be readily shown that such effects decay with separation
distance as exp(—aR) with

2m + 1
2 (m+ 1)

= — x 2

m+ 2 (32)

with m the nuclear mass. At close distances the recoil alone
can cause a saturation of the self-energy. The recoil motion
effectively spreads out the nuclear and scattering charge into
clouds and the interaction energy of these clouds is finite [19]

5. Atom-atom interaction

An extension of the above example is the attractive interac-
tion between two atoms. The dispersion force is the attractive
Van der Waals interaction arising from mutual polarization.
The calculation follows very closely that for the charge-atom
system so we simply state the most important results. The
simplest case is for two identical hydrogen-like atoms where
the asymptotic expansion is [19]
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where | f;) or |g,> are respectively internal states of the two
atoms with corresponding energies ¢, and ¢;, and m is the
nuclear mass. The leading term is the well known London
expression for the Van der Waals potential, and the correc-
tions are the velocity dependent non-adiabatic terms [21].

As discussed above, this self-energy formalism is par-
ticularly useful for a strudy of non-adiabatic and recoil effects
because the Born-Oppenheimer approximation is not made.
The effects of recoil motion are manifest only at small
separation distances, decaying exponentially as exp (—bR)
with

b= 2ue + ) (35)

where p is the reduced mass of the two atom system. u =
(my + 1){my + 1)/(m;, + m, + 2). Again it is clear that one
of the atoms must be very light (e.g., positronium) for recoil
to be important. At very close distances of approach. the
recoil motion causes the nuclear charges to spread into charge
clouds and the interaction self-energy saturates to a finite
value [19].

V. conclusions

We have in this paper reviewed the method of treating many-
particle problems by means of a self-energy. We have review-
ed our development of an alternative approach for obtaining
the self-energy and applied it to a number of examples involv-
ing particle surface interactions and atomic physics. These
examples illustrate that the self-energy approach is suitable
for a broad range of problems, and is in fact not at all limited
to condensed matter applications. For the atomic physics
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applications we have shown that the present approach is
particularly useful for doing fully quantum mechanical cal-
culations which do not depend on the Born-Oppenheimer
approximation. This is of importance for the interactions of
atoms with particles of small mass such as electrons, posi-
trons or positronium. In these cases nonadiabatic corrections
and recoil at close distances can affect the interaction potential.

Left undiscussed here is a broad range of problems in
inelastic scattering and energy loss. Transition rates and
energy exchanges are contained in the nonconservative
imaginary part of the self energy [22]. Other problems to
which this method has recently been applied are a detailed
treatment of the interaction of a charge with a surface or
metal-insulator interface including the coupling with both
bulk and surface modes [23, 24]; and treatments of precursor
states to chemical reactions such as the hydrated electron [25].
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