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We investigate the diffuse elastic scattering of thermal-energy helium atoms from step defects on
close-packed metal surfaces. A semiclassical approximation is developed and applied to hard-wall
step profiles to model the broad oscillations observed in experiments. The observed fine structure is
investigated with lattice-gas models together with a minimum distance between steps caused by the
repulsive step-step interaction. The effects of an attractive adsorption well and kink defects along
the steps are considered. The fine structure appears to be well explained by a lattice-gas model.

I. INTRODUCTION

The surface properties of solids can be quite different
from those of the bulk. The topmost layers of a solid can
exhibit reconstruction and relaxation phenomena, surface
vibrational modes, and a variety of phase transitions.
These surface properties can be sensitive to the presence
of defects such as steps, kinks, and adsorbed species. It is
important, therefore, to be able to characterize the type,
distribution, and behavior of surface defects. Rare-gas-
atom scattering provides a useful tool for such characteri-
zation.!

Much information has been obtained on the distribu-
tion and dynamics of defects and adsorbates through ob-
servations of their total cross sections on the surface.’
The total cross section is readily determined through
measurements of the decrease in intensity of the
diffraction peaks as a function of coverage.® Recently, it
has been demonstrated that the differential cross section
of a defect or adsorbate on a surface can be measured by
observing the diffuse elastic background.*® Specific ex-
periments involve the observation of single steps on a
clean Pt(111) surface,* and very low coverages of ad-
sorbed CO on flat Pt(111).> The cross section is usually
measured as a function of scattering angle or of parallel
momentum transfer, and the characteristic signature is a
series of broad oscillations in intensity. The origin of
these oscillations is attributed to interference between
scattering from different sections of the hard-core profile,
and to interference with multiple scattering between de-
fect and the flat surface. These oscillations give directly
the dimension of the hard-core profile of the step or ad-
sorbate, and more detailed comparison with models can
give specific information on the shape of the profile.®’

In this paper we use a Green-function formalism of
scattering theory to develop a semiclassical approxima-
tion for the diffuse intensity scattered from the hard-core
profile of an adsorbate or defect. This is applied to
several hard-wall step profiles in order to model the
broad oscillations observed in the diffuse He scattering
experiments. The possibility of an attractive well in the
vicinity of a step edge is incorporated in the model with a
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simple refraction transformation. Best-fit models for the
available data are obtained and compared with earlier
work.5’

The experiments on diffuse elastic scattering by steps
on the Pt(111) surface exhibited, in addition to the broad
oscillations, several instances of fine structure in the in-
tensity which usually appeared in the vicinity of a
diffraction peak position. We attribute this fine structure
to diffraction from the step defects distributed on lattice
sites. We consider a number of lattice-gas models which
include the roles of multiple terrace levels, the ABC
stacking symmetry of the fcc (111) surface, and the
minimum cutoff distance between adjacent steps due to
their mutual repulsive interaction. Good agreement with
the scattering data is obtained.

II. SCATTERING MODEL

The initial experiments on the large-angle diffuse elas-
tic scattering from low densities of surface defects inter-
preted the observations as due to reflections from isolated
defects.*® The broad intensity oscillations are caused by
interference between the amplitude directly scattered
from the defect and the amplitude doubly scattered with
a backreflection from the surface; or depending on the
surface profile of the defect, there can be strong interfer-
ence between amplitudes scattered from two separated re-
gions of the profile (this latter possibility is the semiclassi-
cal supernumerary rainbow). In either case, as compared
to the problem of scattering from isolated defects in a
vacuum, the major role of the flat surface is to give a mir-
ror reflection to the amplitude that would have been for-
ward scattered and cause it to interfere with the ampli-
tude backscattered from the defects. This situation can
be viewed as the amplitude scattered from an isolated de-
fect interfering with a phase-shifted amplitude coming
from an image of the defect beneath the surface which is
illuminated by a beam incident symmetrically from
below. Because of the analogy of this situation with the
symmetry oscillations observed in the scattering of identi-
cal elementary particles, the observed intensity pattern
has been called “reflection-symmetry oscillations.”*

8156



41 DIFFUSE ELASTIC SCATTERING OF ATOMS FROM SURFACE STEPS

The theory of diffuse elastic and inelastic scattering by
isolated surface defects has been examined recently, and
in the case of a dilute distribution with no multiple
scattering between defects the scattered intensity can be
expressed in the standard manner of a form factor multi-
plying a structure factor which depends only on the dis-
tribution of defects.® Briefly, the scattered intensity is
proportional to the transition rate w(k,,k;) for the
scattering from initial state k; to final state k:

wlky k)= 2T, P8, ~E,)) (1)
where T/, is the transition matrix, E, and E; are the ini-
tial and final total energies, and the angular brackets sig-
nify an average over crystal vibrations as well as the aver-
age over defect distributions. The Van Hove transforma-
tion® can be used to write this in terms of the Fourier
transform of a time-ordered correlation function

kf’ 2f dte

where €, are particle energies and the time dependence
of the T operator is dictated by the crystal Hamiltonian
H_ in the interacting picture according to

uef—e,n/ﬁ< Tif(O)Tﬁ(t)> s

T([):e’HC’/ﬁTe—lHC’/ﬁ . (3)

The assumption of identical, nondeformable, independent
scatterers allows one to separate out the time dependence
of the transition matrix as

T, (0)=rlk,k ze’“ : )

where r;(#) is the position of the jth defect. We are in-

terested in elastic scattering from stationary defects so
that r; is independent of time. Then Eq. (4) becomes

_ 27
w(k,k, >—T}r(kf,k, )|2<ze

Jn

ke(r,—1,)
T >8(ef—£,~).
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Equation (5) shows the decomposition of the transition
rate into the product of the form factor F =|r(k,k, Ik
and structure factor S (k) with k=k ,—k; given by

S(k)=<2e1k(r1 r”)> , 6)
Ln

where the angular brackets now signify an average over

defect positions.

The remainder of this paper is concerned with the cal-
culation of both the form factor and structure factor for
helium atoms scattered by step defects on an otherwise
flat surface substrate. It is important to recognize that
the diffuse scattering can be divided into two distinct re-
gimes: the region of small parallel momentum transfer
scattered at small angles from the specular direction, and
that of large angles or large momentum transfer. The
small-angle scatering intensity is very large and is dom-
inated by the contributions from the soft, long-ranged
Van der Waals part of the interaction potential. The
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large-range scattering, of interest here, is several orders
of magnitude smaller in intensity and is primarily due to
interactions with the hard-core part of the interaction po-
tential. Consequently, for calculating the form factor for
the large-angle diffuse scattering we will use a hard repul-
sive wall potential with the possibility of an attractive
well in front. In the next section we develop a Green-
function method for calculating the form factor, and Sec.
IV presents the results of model calculations together
with the comparison with experiment and other recent
theories. In Sec. V we take up the question of the struc-
ture factor.

III. THE FORM FACTOR

The first approach to calculating the form factor for
the diffuse scattering of helium from a distribution of
steps on a Pt(111) surface adopted a very simple model,*
that of a half cylinder on top of a flat mirror. In spite of
the lack of sophistication of this model, a reasonable fit to
the data was achieved and a good estimate of the size of
the hard-core potential of the step was obtained.

Drolshagen and Vollmer used the semiclassical wave-
packet method, with an exponentially repulsive ‘“‘soft-
wall” potential and no attractive well. The step profile
used was somewhat more realistic, the two terraces on ei-
ther side of the step were joined by a smoothly varying
fifth-order polynomial. A reasonable fit to the experi-
mental data was obtained and the size of the hard-core
estimated in Ref. 4 was verified.%'°

An even better agreement with experiment for the
reflection symmetry oscillations has been obtained by
Hinch”!! using a hard-wall profile in the eikonal approxi-
mation of Garibaldi et al.'* The profile used by Hinch is
a simple inclined plane, rounded off at each end with seg-
ments of circles. With it one can vary independently the
width of the step, the height, and the slope of the incline.
More recently, using a modified version of the sudden ap-
proximation, Hinch has investigated the role of the at-
tractive adsorption well in front of the step.'® The best fit
with experiment was with a well having a depth that
varied across the face of the step.

In this paper we wish to consider a different approach
to the problem of calculating the form factor based on
Green-function methods for a hard-wall profile. The step
is treated as an isolated defect and the scattering ampli-
tude is first calculated as if it were an atomic scattering
problem with a highly nonsymmetric scattering center.
The effect of the surface is then taken into account by
adding to the direct scattering amplitude the amplitude
from the image beneath the surface, with the correct
phase difference of 7.*!* The use of images is not strictly
correct because the surface in the presence of an isolated
step is not flat, but has two different terrace levels. How
ever, because of the configuration of the experiment
(mainly because of the fixed angle maintained between in-
cident beam and detector) the overwhelming majority of
the backreflected amplitude is reflected by only one of the
terraces, and the contribution of the other terrace can be
neglected. This point was carefully checked and found to



8158

be true for all incident angles and energies used in the ex-
periment.

Scattering from a hard wall involves solving the free-
particle Schrodinger equation with the boundary condi-
tion that the wave function vanishes of the surface S. We
write the wave function as ¥=1,+ 5 with ¢, the incom-
ing wave and ¥ the outgoing scattered wave. Then the
Green-function solution can be written as'’

J— 1 o ’ ’
'ﬁ_‘”ﬁﬁf ds f-[¥VG(r|r)—G(r|r)Vy, ], ©)

where G is the Green function and f is the unit vector
outward normal to the surface. In the semiclassical limit,
where the wavelength is smaller than the smallest charac-
teristic feature on the surface, it is a good approximation
to break up the surface into illuminated and shadow re-
gions. The illuminated hard-wall surface acts like a local-
ly flat mirror, so the normal gradients of the reflected and
incoming waves are equal:

A-Vy, =V, . 8)

In the shadow region, both the wave function and its nor-
mal gradient vanish on the surface S:

ﬁ-V¢;s|S= *ﬁ'v%ls ,
Uls= _¢o|s .

The shadow, or Fraunhofer, part is strongly projected
in the forward direction and is dependent on the end
points or border line of the shadow region, and otherwise
independent of the shape of the object in the region. The
presence of the surface reflects the forward amplitude in
the specular direction, so the shadow contribution is
strongly peaked about the specular direction. The il-
luminated face contribution dominates the large-angle
scattering. Combining Egs. (8) and (9), the scattered
wave function is

1

47 Y illuminated
face
1

417 Y shadow

9)

1/}5: dSﬁ[¢0VnG+GVn¢0]

ds 7-[¥,V,G — GV, ¥] . (10)

After choosing a profile we carry out the surface integral
numerically, using the Green function for two- or three-
dimensional geometry, whichever is appropriate. We
note that Eq. (10) is a type of eikonal or Kirchhoff ap-
proximation, but it has an advantage over the method of
Garibaldi et al.'? in that it is good for all scattering an-
gles, rather than being restricted to near specular scatter-
ing. This is an important characteristic for calculating
the large-angle scattering from defects.

For most profiles Eq. (10) can also be integrated analyt-
ically using the stationary phase approximation. This is
often called the primitive semiclassical approximation.'®
A major disadvantage of the stationary phase approxima-
tion is that it fails at an inflection point of the profile, and
an infection point is very important because it dictates
the rainbow scattering. Furthermore, the stationary
phase approximation is valid only in the extreme semi-
classical limit of very short wavelengths. The numerical
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integration eliminates all problems associated with
inflection points, and appears to considerably extend the
range of validity to larger wavelengths. We have checked
the case of the profile of a half cylinder on a flat surface
where the stationary phase solution is particularly simple.
The two methods of solution agree only when a /A > 20,
where a is the radius of the cylinder.

IV. FORM-FACTOR CALCULATIONS

Before calculating the form factor it is necessary to
choose a hard-wall profile for the step. In order to facili-
tate this study we set a number of criteria to be obeyed by
the profile; it should be smoothly and monotonically
varying between the two terrace levels, the slope should
vanish at the endpoints to match that of the terraces, and
the height, width, and maximum slope should be in-
dependently variable parameters within reasonable limits.
A step profile which meets all these criteria is

(h/2)[1—(2x/w)"], O0<x <w/2

=/ =2x /w0y —hr2, w/a<x<w 13

(x)

(11b)
with

r=(w/h)tan(0,,) . (11c)

We take a notation in which z is the normal direction
away from the surface and x is the axis parallel to the
surface and perpendicular to the steps. Then in Eq. (11),
h is the height difference between terraces, w is the width
of the step, and 6,, is the maximum slope.

A number of calculations were carried out in a parame-
ter fitting process in order to find the profile which best
fits the experimental data. Choices of parameters in the
ranges of 8,, =30°-37°, w =6.4-6.8 A, and with & the
bulk value of 2.27 A for Pt(111), all give an equally good
fit. However, the fit was not particularly satisfactory.
The large oscillations appear in the same positions as in
the experimental data, but the amplitude of the oscilla-
tions at smaller values of parallel momentum transfer AK
are too small, while some peaks at larger AK are too large
and broad. Similar problems were noted in previous cal-
culations.®’ There is reason not to place undue faith in
the best-fit profile abstracted from simple hard-wall mod-
els. There models neglect the presence of an attractive
well associated with the surface and there is evidence that
this well is distorted by the step face.!* The well depth of
clean Pt(111) has been estimated at between 5 and 12
meV.!7 We chose to model the well by a simple refrac-
tion of the incoming and outgoing beam.'® That is to say,
the energy of the particle in the well is increased by the
well depth D, while momentum is conserved parallel to
the well edge. The well edge above the terraces is parallel
to the surface, while over the step profile it is taken to be
a straight line tilted at an angle 6, which is roughly
parallel to the maximum slope of the step. This refrac-
tion correction applies only to the illuminated face con-
tributions. The shadow or Fraunhofer terms are not re-
fracted by the well since they do not depend on the par-
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ticulars of the shape of the illuminated face, but arise
from the removal of intensity from the specular beam.
The treatment of the shadow term is not critical in these
calculations, since its contribution appears predominant-
ly in the specular direction and the specular regime is
dominated by scattering from the terraces in actual ex-
periments.

Best fits of this model are compared to experiment in
Figs. 1 and 2. For both graphs the values of the parame-
ters are 6,, =36°, w =6.6 A, h =2.27 A, 6,=35°, and a
well depth of 9 meV. Figure 1 is for an incident wave
vector of 7.9 A and Fig. 2 for 9.7 A. In both figures the
positions and widths of the broad oscillations are in good
agreement with experiment. We note that the profile
inflection angle 6,, is in agreement with the observations
of Lapujoulade et al. for the diffraction of He from or-
dered stepped surfaces of Cu, where the same angle cor-
responded to the rainbow position in the diffraction peak
intensities.!” There is considerable fine structure in the
data that is not, and cannot, be explained by scattering
from a single smooth profile model such as that used
here. This fine structure is due to collective effects of the
distribution of steps and we consider this in the next sec-
tion where we look at the structure factor. We should
also note that there are additional effects that can occur
in the form factor that are outside of the scope of a hard-
core model. A soft repulsive potential together with a
long-range attractive well can give rise to additional rain-
bow and glory features, and a discussion of some of these
possibilities is given by Yinnon et al.?°

V. THE STRUCTURE FACTOR

The stepped Pt(111) data exhibit fine structure at and
about reciprocal lattice vector positions occurring at
values of AK equal to multiples of 2.7 A~'. The fine
structure appears as split peaks, which occur only in the
vicinity of maxima in the broad oscillations. This con-
trasts with the clean Pt(111) surface data, which are
smooth and monotonically decreasing except for very
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FIG. 1. The calculated form factor compared with experi-
mental data for an incident wave vector of 7.9 A . The upper
curve is the calculation and the lower curve is the data.
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weak diffraction peaks. Hinch’ has suggested that the
fine structure is due to scattering from a proposed
Friedel-oscillation-like enhanced corrugation of the ter-
races in the vicinity of a step edge. This is likely only a
partial explanation, however, since the fine structure can
be seen at large AK, and only an extremely large corruga-
tion could give a significant amount of intensity beyond
the first-order diffraction peak. We are suggesting here
that the source of the fine structure is not due to details
in the form factor of a single step. Instead, it is due to
correlations between scattered amplitudes from different
steps.

Since the fine structure is associated with the broad os-
cillations due to scattering from the step edge, since it
occurs at large AK, and both broad and fine structure can
be wiped out by adsorption of CO ( which selectively ad-
sorbs at step sites),* it can be concluded that the fine
structure arises from the interference between steps dis-
tributed on lattice sites in some random fashion. To
model the fine structure we will use a lattice-gas distribu-
tion with a fixed minimum nearest-neighbor distance.
This cutoff distance introduces a new length scale L on
the surface in addition to the lattice spacing a. As the
lattice parameter gives rise to diffraction peaks at
AK =21 /a, the longer distance L introduces smaller AK
oscillations in the intensity of approximate spacing 27 /L.

We have shown in Eq. (5) that the scattering from a
collection of isolated defects on a surface can be written
as a product of an atomic form factor and a dynamical
structure factor. The structure factor, which is shown in
Eq. (6), contains all information about the relative posi-
tions of the defects whose number is Nj,. For a complete-
ly random distribution, S (k) is a constant equal to the
number of defects. For a perfect lattice, it is a sum of §
functions over all reciprocal-lattice vectors G:

S(k)=N} 3 8(k—G) . (12)
G

For a finite lattice of N scattering centers with no vacan-
cies, these 8 functions are broadened by some width pro-
portional to 1/N. For a partially (randomly) filled lattice
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with Ny lattice sites, S(k) will have diffraction peaks
broadened by 1/N; and a constant background propor-
tional to Np,."

In a real scattering experiment there is a finite amount
of angular and energetic spread in the incident and scat-
tered beams, as well as a finite width in the detector open-
ing.2' "2 The main effect of these instrumental limita-
tions is to further broaden features in the scattered inten-
sity over both energy and angles. However, the complete
theoretical description of this broadening has been the
object of considerable discussion over a number of years.
In order to introduce these experimental broadening
effects into a theory calculated for an ideal system, it is
usually adequate to convolute the calculated intensity
with an appropriate sharply peaked function.”?*?* Exam-
ples of such functions are the Lorenzian’ or the Gauss-

ian.2%2>  Explicitly, we simulate the experimental
broadening effects as
Imeas(k)zlideal(k)o Tinstr(k) . (13)

Following the approach of Houston and Park,?* the
pair correlation-function formalism is adopted. Briefly,
the structure factor S (k) is the Fourier transform of the
pair correlation function S (r), where

S(k)= [ dre*TS(r) . (14)
S (r) is then calculated from the sum

S(r)=3 P(r)P(r—r")8(r) , (15)
<

where 1’ goes over all lattice positions, and P(r) is the
density function which is 1 or O for filled or empty lattice
sites, respectively. The convolution with the instrument
function can be done in real space, where the effect is to
multiply S(r) by the Fourier transform of T (k):

Smeas(k)= [ dre™S(n)T(r) . (16)

Two different methods were employed to calculate the
structure factors for the models studied here. In the first
method, one begins by specifying the defect positions r;
according to a set of rules determined by the distribution.
For example, in the random lattice-gas distribution, the
probability of a site being occupied by a defect is equal to
the density (ratio of number of defects to number of
sites). A random number generator is then used to test
each site for occupancy. These defect positions are then
used to calculate the sum in (6). This ideal structure fac-
tor is then convoluted with a sharp instrument function,
in this work the Gaussian form

T(k)ze—(AK)z/Zbl ) an

A width 5=0.02 A™' is used throughout this work.
This particular value was chosen to be close to the width
of the actual instrument used to obtain the Pt(111) data
presented here. The convolution integral

Smeas(K)= [ dk’' S(k)T(k—k') (18)

is then calculated numerically. Although the method is
very straightforward to implement, it has the disadvan-
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tage that for distributions with low densities of defects a
large amount of computer time is required. This is be-
cause, as the density of defects decreases, a larger size lat-
tice has to be sampled. The sum in (6) becomes a more
rapidly oscillating function in AK, and in order to prop-
erly evaluate the convolution integral (18), one must
evaluate or sample (6) at a rate greater than the fastest
AK oscillation.

A second method which is based on the pair correla-
tion formalism described above exploits the fact that the
instrument function acts as a low-pass filter, which di-
minishes the contributions of the higher frequency and
smaller AK oscillations. One begins by inserting (15) into
(16) which converts the integral into the sum (written
here in one-dimensional form for simplicity)

S(AK)=3 e'**S(x =ma)T (x =ma) . (19)

One need only evaluate S(x =ma) up to the transfer
width of t!le instrument function, which foor our choice of
b=0.02 A~! corresponds to about 300 A. The lattice
spacing of Pt(111) is @ =2.32 A, so the largest m term is
of the order of 100. Even though the lattice positions
must still be evaluated for a large lattice, there is a sub-
stantial savings in computer time. This savings made it
practical to utilize this method for extensive parameter
searches for a large number of model distributions.?®?’

We begin by considering a one-dimensional distribu-
tion of steps, that is to say a system in which all of the
steps lie in the same plane. This sort of distribution is ap-
propriate for the case of a perfectly flat surface with two
terrace levels connected by alternating up and down
steps. We model the repulsive interaction between steps
by assuming a minimum cutoff length or minimum
nearest-neighbor distance between defects. This one-
dimensional distribution is generated by specifying the
probability function P(m), which is the probability of
finding the next defect at lattice position i +m, given a
defect at position i. This type of distribution belongs to
the class known as Markov chains.?® For the random
lattice gas with a minimum cutoff distance L,
P(m) is zero for all m up to L, and then the
probability is the geometric distribution given by 7,
y(1—=7),...,y(1—y)™ L where v is related to the den-
sity of defects p by y =p/(1—Lp).

Figure 3 shows the structure factor for this distribu-
tion. The cutoff parameter is varied while the density is
held constant at a value of p=0.1. The cutoff length
gives rise to the *‘side bands” or satellite peaks which ap-
pear around the diffraction peak positions occurring at
multiples of AK =2.7 A~!. This work is consistent with
the work of Lent and Cohen,?® who studied the
diffraction from terraces with various step distributions.
We have also studied a number of models with a *“soft”
cutoff, in which instead of P(m)=0 for all m <L, P(m)
is allowed to increase from zero at m =0 to join the
geometric distribution at m =L. The effect of all reason-
able soft cutoffs was to wash out the satellite oscillations
away from the diffraction peaks, but the satellites nearest
to the diffraction peaks change very little.
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FIG. 3. The structure factor for different reduced cutoff

lengths L for the one-dimensional distribution. The reduced
density pis 0.1. @, L =0; b, L =3;¢, L =5;and d, L =6.

Surface steps are not expected to be perfect, and a real-
istic model must in some way account for the possible
presence of vacancies, kinks, and other imperfections.
Our approach allows us to consider readily the effects
caused by kinks on the step edges. We take a kink to be
the situation in which a portion of the step-edge atoms is
shifted either forward or backward in the x direction by
one lattice spacing. We can ignore the details of the am-
plitude scattered by the immediate vicinity of the kink, as
this will be scattered mainly in directions away from the
plane of incidence and the experiment only measures the
in-plane intensity. The major effects on the in-plane in-
tensity are the phase-shift interferences arising from the
portions of the step edges at different lateral positions.
These phase shifts are readily introduced into the struc-
ture factor (6) together with a weighting factor, depend-
ing on the density and number of kink positions. A typi-
cal calculation is shown in Fig. 4 for p=0.05,L =12 and
each step having alternating forward and backward kinks
and equal lengths of the step edge in each position. As
might be expected, the kinks tend to wash out the struc-
ture far away from the diffraction peaks, while leaving
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FIG. 4. The one-dimensional structure factor for a distribu-
tion with and without kinks. p=0.05 and L =12.

the side bands nearest the diffraction positions relatively
unaffected.

In general, the steps on a surface will be distributed
over a number of different terrace levels. In order to ob-
tain a model which predicts the intensity patterns ob-
served experimentally, we have considered three different
types of step distributions in the two dimensions parallel
and perpendicular to the surface plane. Platinum has a
fcc structure so the terrace atoms on different levels will
have ABC stacking, and this feature must be included in
any model for the Pt data. The three different step distri-
butions are a random height model, a sawtooth distribu-
tion, and a random walk. All three of these models are
constrained to a limited number of terrace levels lying be-
tween a maximum and a minimum height. The random
walk has the steps either up or down in a constrained
random walk within the finite number of levels. The
sawtooth distribution has steps only in one direction (ei-
ther up or down) until the maximum or minimum height
is reached, after which the pattern is started again. This
is a good representation of surface whose steps are the re-
sult of a slight miscut angle with respect to the symmetry
plane, or surfaces in which the steps follow broad undula-
tions of the height about the surface plane. The random
height model chooses randomly both the direction of the
step (up or down) and its height (within the constraint of
maximum and minimum levels). We find that the results
can be extremely sensitive to differences and nuances in
the models, which implies that experiments of this type
can be a powerful tool in distinguishing between different
step distributions. The structure factors calculated with
these two-dimensional models depend on all three com-
ponents of the change in particle wave vector, as opposed
to the one-dimensional models discussed above which de-
pend only on the parallel wave-vector component. This
means that the two-dimensional structure factors will de-
pend on the choice of incident wave vector. Strong
effects can occur depending on the phase or antiphase
conditions for three-dimensional Bragg diffraction. This
fact has recently been exploited in an extensive series of
experiments and analyses by Hinch and Toennies.?

Figure 5 is an example of the sawtooth model and
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FIG. 5. Comparing ABCto AA A and AB A stacking for the
sawtooth structure model. The number of terrace levels is 3,
L =4, and p=0.1. Top curve is 44 A4, middle curve is ABA,
and lower curve is ABC.
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shows the importance of the threefold symmetry of the
fcc surface. A surface with ABC stacking is compared
with an A4 A4 and an 4B A surface. Note the strong
central diffraction peak in the AAA structure factor
which is weaker for the 4B A4 and nearly absent in the
ABC case.

The random height distribution is the least physical of
the three that we have considered. The principal feature
that is noted with this distribution is that as the number
of levels is increased beyond two or three; the fine struc-
ture in the structure factor is rather quickly wiped out.
This is especially true under incident beam and detector
conditions in the neighborhood of antiphase conditions
for three-dimensional Bragg diffraction.

The most relevant distribution to the Pt experiments is
the random walk. This is because the steps were created
by very low-energy ion bombardment on a smooth
Pt(111) surface which originally had no measurable steps
within the coherence length of greater than 1000 A.* The
average surface remains flat with probably only a few ter-
race levels. The random walk was the only one of the
three models which could be made to agree with the
available data. Figure 6 shows the structure factor for
p=0.075,L =4 as a function of number n of terrace lev-
els ranging between 2 and 6. All of the fine structure be-
tween diffraction peak positions decays away as »n in-
creases except for the sidebands. Very interestingly, the
diffraction peak is also attenuated and completely disap-
pears for n > 3. This agrees nicely with the experimental
observations shown in Fig. 7, where it is seen that in
nearly all cases the fine structure appears as two split
peaks about AK =G, whenever G is near the apex of one
of the broad oscillations, with no peak features precisely
at the diffraction point G. The complete disappearance
of the diffraction peak is a function of incidence condi-
tions, and under in-phase Bragg conditions the central
peak may remain strong.”’

AS T T T T T T T
(/7]
-~ 7—/\A/~'\/~»z\,—/\/\/\/\/\,\/‘\/\/\«vwxf\~
c e
Q 5V d .
S

4'_/\/\—«—«\\/\_/\.%\#\’“’/\/\-/‘%
D= [
E 3t .
2 M/WW\
w 2 ]
e 1 _J\AMV/\'\/\‘/\/\/\/W\MN\‘/\_
£ a

0 1 1 L I | | |

FIG. 6. Varying the number n of levels for the random walk
distribution. p=0.1 and L =4. a, n=2; b, n=3; ¢, n =4; d,
n=>5;and e, n =6.
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FIG. 7. Comparison of calculations with data for He scatter-
ing from a Pt(111) surface contaminated with steps. The dashed
lines are calculations and the solid curves are data. The wave
vectoris 79 A~ .

Figures 7 and 8 show the best fit to the experimental
data for the two incident conditions using the random
walk model. For each incident energy the structure fac-
tor has been multiplied by the appropriate form factor
calculated in Sec. IV and shown in Figs. 1 and 2. The
other parameters are p=0.1 and L =4, and it was
deemed essential to take ABC stacking into account.
This model, without change of parameters, successfully
fits the data taken at the two different choices of incident
energy.

VI. CONCLUSIONS

From this work we can draw the conclusion that the
primary cause of the fine structure in the experimental
data for He backscattered from a dilute distribution of
steps on a surface is the ordering arising from the step
positions on lattice sites. The problem of atom scattering
from a dilute distribution of noninteracting steps on a flat

'surface can be characterized by the product of a form

factor giving the reflected intensity of a single step multi-

)

o
o
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°-1
400 - PY(111) k= 9.7 A

300 | .
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FIG. 8. Same as Fig. 7 except for a wave vector of 9.7 Al
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plied by a structure factor for the distribution of steps.
For the form factor, we have developed a Green-function
method applied to a hard-core profile. Calculations in
the eikonal limit, taking into consideration the attractive
adsorption well in front of the step, describe well the
broad oscillations characteristic of single-step scatering
intensities. The structure factor is calculated using a
number of lattice-gas models, incorporating the repulsive
force between adjacent steps through an imposed
minimum  distance between nearest neighbors.
Numerous calculations have been carried out®*® which
show that the structure factor is quite sensitive to the
statistics of the step distribution, to the density of steps,
and to the number of terrace levels over which they are
distributed. The presence of kinks along the step edges is
shown to rapidly attenuate fine details in the structure
factor, especially for wave-vector values in between
diffraction peak positions.

We examine the data for scattering of He from Pt(111)
surfaces contaminated with steps, and find good agree-
ment between our models and the measured intensities.
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The splitting of the fine structure around diffraction peak
positions indicates the nearest-neighbor distance between
steps, and it is necessary to take into account the 4ABC
stacking symmetry of the (111) surface. The results also
indicate the density of steps and the number of terrace
levels over which they are distributed.

All surfaces, no matter how well prepared, seem to in-
clude a small but irreducible number of defects,*! and one
of the most common defects is steps. Steps can occur on
ordered surfaces,'” as a result of intentional disorder-
ing,** or in the process of crystal growth.*>3* The strong
sensitivity of the diffuse elastic reflected intensity to the
details of the step distribution shows that measurements
of this type should be extremely useful in characterizing
the structure of such surface defects.
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