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Abstract. We consider the interaction
in the limit in which large numbers of
the projectile itself may be moving wit

of a neutral atomic projectile colliding with a solid surface
vibrational quanta are exchanged, while at the same time
h momenta corresponding to quantum mechanical motion.

The diffuse multiphonon background observed in energ
is now understood (1,2]. In most He scattering experi

zero-point motion would dominate the
of these cases, simple closed-form expressi
The scattered intensity is proportional

to the transition rate for scattering from the incident
projectile state k; to the final state k¢

given by the generalized golden rule
2r
w(ky, k) = 7« D ITal%8(E; - Eo» (1
ng

where () signifies an average over initial crystal states and the s

T, e, (1) = Zexp(—ik I+ re oy, (t)]}r,‘:'_,q. )
l.x
Equation (2) is a quick-collision approximation j.e. the transition matrix depends on the
surface displacement only through the relative phase arising from the path length. Its
validity for He scattering has been established through a number of calculations [1,2).
In the large-phonon-number limit, when the Debye-Waller exponent 2W(k)/6 > |
where 2W (k) = {1k - w . (1)]%)), the differential reflection coefficient (1) becomes

dR/AQUAE = (m®|kel /870°R5 kip) |75 2 (R faopkp T) /2 exp[—(E +hwo)?/dkgThay)  (3)

where hawy = A2k2/2M with k the total momentum exchange and M the mass of the crystal
atoms. The scattering intensity is Gaussian-like in the energy exchange E, but shifted to
the energy loss side by the amount ficy,. However, this function is not a true Gaussian
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because wp is a function of k. It is limited on the energy loss side by the fact that the
projectile may lose no more energy than it had initially, and it is skewed towards the energy
gain side by the energy dependence of the wp. The width of the differential reflection
coefficient in energy exchange is roughly 2./kg T hag, and the peak amplitude decays with
increasing temperature as (ks Thax)"/2. This behaviour of the width and peak intensity of
the differential reflection coefficient is understandable in terms of the unitarity condition,
which guarantees the equality of the number of scattered particles to the number of incident
particles. At higher T the intensity spreads over a large range of E; consequently in order to
preserve the number of particles, the peak must decrease. Equation (3) is the semiclassical
limit for a point particle scattering from a lattice of centres, in which case the coherence
region shrinks to where the incoming projectile scatters with only a single surface atom.
There is a second classical limit that is applicable in the case of a projectile that is large
compared to the inter-atomic lattice spacing, when the surface can be considered to be a
continuum. This equation is obtained from (1) by replacing the summation by an integral,
which then can be evaluated in the classical limit by the method of steepest descents. The
final result is

dR /A dE = (m2lkel /47 >R kiz Suc) Tl vk (hr /woks T)?
x exp{—[(E + hwg)? + 2a%v} K*)/4ks Thx) (4)

where vg is a weighted average of surface phonon velocities parallel to the surface. There
is a difference between the two classical limits (3) and (4). In the latter the temperature
dependence of the peak in the inelastic intensity varies as 1/T¥? as opposed to 1/T'2,
and the extra Gaussian behaviour appears in parallel momentum exchange.

There is another case in which a semiclassical closed-form expression can be obtained,
i.e. when the particle momentum is so great that 2W (or equivalently, the number of
phonons exchanged) is large, but the surface is at low temperature where zero-point motion
is important. In this case the differential reflection coefficient is again a skewed Gaussian

dR/AQAE = (ke /4w h5k, Suo) | ts 2 vR (87 3wpwn @ (D) P2

x expl[2(E + hawp)? + 4h’ v} K ?)/3A%wowpQ(T)) )
where wp is the Debye frequency and Q(T) = 8fo‘ x3[n(hwpx/ksT) + -li]d.t approaches
unity as T — 0.

We note that the classical limit exhibits the approach to equilibrium for the scattering
of a low-energy beam of particles from a very hot surface [4]. The Gaussian function in
equation (4), in the limit Ef > E,, is an exponential in Ey. Using the energy exchange
equation Ef = 4EmM /(M + m)? for a pairwise collision with the crystal atom of energy €
the scattered intensity becomes

dR/dQdE o T2 exp(—E/kpT). (6)

This shows that the particles leave the surface with an energy distribution having the
exponential dependence of the Maxwell-Boltzmann distribution function.
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