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Multiphonon scattering from surfaces: comparison of approximations

Srilal M. Weera and J. R. Manson *

Department of Physics and Astronomy,

Clemson University, Clemson, SC 29634, U. S. A.

We consider the inelastic interaction of a neutral atomic projectile scattering from a solid surface and develop
several theoretical models appropriate for describing the diffuse multiphonon contribution to the scattered in-
tensity. Through extensive numerical calculations and comparisons with experiment, we determine the limits of
validity of some of the various approximations and the scattering regimes in which each is applicable.

1. INTRODUCTION

In energy resolved experiments of atom-surface
scattering a diffuse background is observed even
under conditions for which quantum mechanical
features such as diffraction and single phonon
peaks should dominate the backscattered inten-
sity [1, 2]. This diffuse intensity is in part due to
incoherent scattering from defects and impurities
on the surface, but for clean surfaces it is mostly
due to the coherent process of multiphonon ex-
changes. The sharp quantum mechanical peaks
in the intensity contain information on the struc-
ture and dynamics of the surface, but in order to
correctly interpret these peaks it is necessary to
have a good understanding of the diffuse inelastic
intensity in order to performn a proper background
subtraction. The theory describing this inelas-
tic background must also be capable of spanning
the range from purely quantum mechanical condi-
tions to extreme semiclassical and classical scat-
tering conditions. Even in the case of thermal en-
ergy He atom scattering from surfaces, where the
He atom is usually considered as a quantum me-
chanical projectile, one can readily find examples
of situations in which the scattering distribution
is very nearly classical.

We have recently developed a theory of multi-
quantum atom-surface scattering which satisfies
the above conditions, but which is still suffi-
ciently tractable for carrying out numerical cal-

*The authors would like to thank the Max Planck Institut
fiir Stromungsforschung for support and hospitality dur-
ing the course of this work. This work was supported by
SURA/ORAU and by the NSF under grant No. DMR
9114015.

culations [3]. The theoretical model is fundamen-
tally quantum mechanical in its treatment of the
projectile motion, and phonon effects are treated
exactly within the model of a linear coupling of
the projectile to a harmonic crystal. The main
approximation is the assumption of a quick scat-
tering collision in which the scattering time is
shorter than that of the small frequency and long
wavelength phonons which are the major contrib-
utors to multiquantum exchanges for low mass
thermal energy atomic projectiles. The theory
admits to several distinct degrees of approxima-
tion. Starting from an exact numerical solution
of the model, we present a first order semiclassi-
cal approximation and an extreme semiclassical
approximation, and each of these cases has forms
appropriate to low and high surface temperatures.
The object of this work is to define the range of
validity of each of the regimes of approximation
through numerical calculations and comparisons
with experiment. In the next section we give a
brief development of the theory and its various
approximate forms. In Sec. 3 we present the re-
sults of calculations and consider general condi-
tions as to the range of validity of these approxi-
mations. A few conclusions are drawn in Sec. 4.

2. THEORY

The interaction between the atomic projectile
and the surface can be described by a Hamilto-
nian of the form

H=HP +H +V (1)

where HP is the Hamiltonian of the free particle,
H°¢ is the Hamiltonian of the unperturbed crys-
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tal, and V is the interaction coupling the projec-
tile and crystal. It is convenient to divide the
interaction potential into two parts

Vv=v'4+v! (2)

where the “strong” part V¢ contains the terms
which backscatter the projectile and prevent it
from penetrating appreciably into the bulk, and
the remainder V! contains the major terms de-
scribing interactions with the lattice vibrations.

A standard approach is to start from the prob-
ability density of the particle to exchange an
amount of energy AE and an amount AK of par-
allel momentum upon colliding with the surface.
Such a probability is defined by

P(K.AE) =
G
x << (ni, k;|STO(H® — Ef — AE)
x §(K -~ K +K+G)Ski.n) >>  (3)

where AK€ is the momentum operator for the
crystal, and the sum over reciprocal lattice vec-
tors G appears because momentum is not con-
served in the collision. The symbol << >>
defines an ensemble average over the initial crys-
tal states. The differential reflection coefficient,
which is usually compared to the experimentally
measured intensities, is related to Eq. (3) by a
simple density of states:

dR

where hik; is the final projectile momentum and
hky, is its component in the direction normal to
the surface. :

The scattering operator S appearing in Eq.(3)
can be represented in several forms, but perhaps
the most convenient is the time dependent expo-
nential in the interaction picture

(-i/n)'[’“‘) Vo) +vi()]dt

o |

S=7T lim ¢
to—roo
where 7T is the time ordering operator.
In order to make further progress toward read-
ily calculable expressions we make the trajectory
approximation. The trajectory approximation

consists in assuming that the projectile follows a
classical trajectory from its initial state character-
ized by momentum hk; to its final state fik . This
approximation effectively decouples the two po-
tentials appearing in Eq.(5) and leads to a greatly
simplified expression for the differential reflection
coefficient. We write it here in its simplest form
for the case of a surface of Bravais unit cells [4. 5]:

dR _ m2ky a2 /+°° &
a0, dE; | itk )
% e—iAEt/hze—ik'rle—'zW(k) 2wi(kit) (6)
1

where m is the projectile mass, k = ks — k; and
the scattering amplitude is identified as

+

(—i/h *vOis)ds
op = (ks Te /m JIIV Ay (7)

which is the unit cell (u.c.) contribution to the
off-energy-shell transition matrix of the elastic
part of the potential VO taken with respect to
the initial and final states of the projectile. The
function W, (k; t) is a somewhat complicated cor-
relation function involving the inelastic part of
the potential V! and the displacement operators
of the crystal. The Debye-Waller exponent is
W(k) = Wi=o(k; t = 0).

The trajectory approximation is equivalent to
application of the Feynman path integral ap-
proach, but limited to a single classically allowed
path. Choosing and then calculating the appro-
priate classically allowed path for the situation
at hand is not a simple matter in general. How-
ever, there is one case in which the choice becomes
quite simple indeed, and this is the quick col-
lision approximation in which the collision time
of the particle is assumed short compared to a
typical vibration time of the surface. For many
purposes the quick collision approximation would
not be appropriate for atom-surface scattering be-
cause typical collision times are comparable to the
higher frequency phonon periods. In the case of
multiphonon exchange, however, the energy ex-
change is due mainly to transfers of large numbers
of small energy and long wavelength quanta and
the quick collision approximation appears quite
reasonable in many instances. In this approxima-
tion the classically allowed path is characterized
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only by the initial and final momentum states of
the projectile, and the correlation function be-
comes the displacement correlation function:

Wi (k: ) =<< k- ug(0) k- w(t) >> )

Equation (6), with the above quick collision ap-
proximation is in a form that can be calculated
directly when the displacement correlation func-
tion of (8) is expressed in its well known form for
a harmonic crystal.

Although Eq. (6) can be treated directly, it is a
cumbersome and lengthy form to handle for nu-
merical calculations, and it can be well approx-
imated by several expressions which are much
more convenient. In keeping with the assumption
that only long wavelength and small frequency
phonons contribute strongly to the multiphonon
part of the inelastic intensity, a further important
simplification is possible. This consists of making
an expansion in small wave vectors for the the dis-
placement correlation function of (8). Again for
case of a Bravais surface unit cell, and including
terms through third order in Q-R,; where R, is a
surface lattice vector and Q is the parallel wave
vector of the phonon, leads to a form for the dif-
ferential reflection coefficient which is expressed
quite simply as

dR  pmPks 2 —2w(k)
dﬂf dEf - (2#)3h5kiz |sz‘ [

S(K,AE) I(K.AE) (9)
where p is the surface density of unit cells and
S(K,AE) =3 e KR F (10)

1
with
3 .
Q- Ry)?
F = ko ko —_
=2 g: AN Mw,(Q)
wea( @) e (2) r@+n @y

where M is the mass of a crystal atom, e, is
the phonon polarization vector, and n(w,(Q)) is
the Bose-Einstein function for the phonon of fre-
quency w,(Q). The final factor in Eq. (9) is
+no

dt e OE/R

I(K.AE) = /

—
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e<<],(.u;,<o) kou,t)>> (12)

X

The transition rate of Eq.(9) is the product of a
form factor |75;|%, a Debye-Waller factor. a struc-
ture factor S(K.AE) arising from the periodic
distribution of surface atoms. and an energy ex-
change factor I(K.AE). At high temperatures
and large momentum transfers the structure fac-
tor is a rapidly convergent sum over lattice sites,
since Eq.(11) shows that F varies as R7.

At high temperatures for which the Bose-
Einstein function can be expanded in terms of
small arguments, Eq.(9) remains valid but the
terms become simpler. Writing explicitly for the
case of a Debye phonon model, the energy ex-
change factor becomes

+x
dt F——i(’AE/h+_u0)t

I{K.AFE) =/
x e'ZW(k')s.in(wai’)/t (13)
and Eq.(11) simplifies to

_ UJ()k'BTR?

Fi= 2hv% (14)

where wp is the Debye frequency and vgp is a
weighted average of parallel phonon velocities.
The Debye-Waller exponent takes the familiar
form

, 3k*kpT
oW (k) = T (15)
and the energy shift is given by
hk?
wo = m (16)

This energy shift has its origins in the zero-point
motion of the lattice. It is interesting that even
though the zero-point motion is usually consid-
ered a low-temperature effect, here it has an im-
portant manifestation in the semiclassical limit of
high temperature and incident energy.
Equations (9) through (12) represent the first
order semiclassical approximation in its full tem-
perature form which we will refer to as FT. We
denote by HT the form using the simpler high
temperature expressions of Egs.(13) through (16).
We now consider the extreme semiclassical
limit of very high energies which we denote by
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CL. Under such near classical and classical scat-
tering conditions the Debye-Waller factor is so
small that elastic and single phonon peaks are
completely suppressed, and only multiple phonon
exchanges occur. It is of interest to consider
the present theory in this limit as it leads to
closed form expressions for the scattering intensi-
ties, and gives specific criteria for the validity of
the classical limit.

For scattering of a point projectile with a lat-
tice of discrete atomic centers, the differential re-
fection coefficient of Eq. (6) can be evaluated by
the method of steepest descents. The result is in-
dependent of the phonon frequency distribution
because in this limit the initial energy exchange
is simply through the recoil of the surface atoms
upon impact:

dR m? k| le4|2< hr )1/‘2

A, dE; 819k wok BT
(AE + fwo)?
X exp{ k5 Thay (17

The Debye-Waller factor no longer appears ex-
plicitly in this expression because it has been can-
celed by a term arising from the energy exchange
factor. We have also assumed the high temper-
ature limit, but it is straightforward to obtain a
similar expression that is valid for low tempera-
tures.

The scattering intensity of (17) is a Gaussian-
like function in the energy exchange AE, but
shifted to the energy loss side by the energy shift
Fwo of Eq.(16). However, we note that this func-
tion is not a true Gaussian because wo is a func-
tion of k. The intensity is limited on the energy
loss side by the fact that the projectile may lose
no more energy than it had initially, and it is
skewed towards the energy gain side by the en-
ergy dependence of wo. The width of the differ-
ential reflection coefficient in energy exchange is
roughly 2v/ksThwo in energy units, and the peak
amplitude decays with increasing temperature as
(kgThwo) /2. This behavior of the width and
peak intensity of the differential reflection coefli-
cient is understandable in terms of the unitarity
condition, which guarantees the equality of the
number of scattered particles to the number of

incident particles. At higher temperatures the
intensity spreads over a larger range of AE, con
sequently in order to preserve the number of par
ticles, the peak intensity must decrease accord
ingly.

The steepest descent evaluation of Eq.(17) im:
plies a criterion for the validity of the semiclassi
cal result which is

2W (k) /6 > 1 (18

This is a very stringent criterion, and is in fact
rarely satisfied in typical He-scattering experi
ments, and often not satisfied even when the pro
jectile is a heavier atom such as Ne or Ar. The
average number of phonons exchanged in a colli
sion process is approximately equal to 2W, thu:
(18) implies that for the classical approximatior
to be valid, a truly large number of quanta must
be exchanged.

Equation (17) is the extreme semiclassical limit
for a point particle scattering from a lattice of dis
crete scattering centers. There is a second limit
for the case of an incident projectile which in-
teracts with many surface atoms, and the sur-
face can be treated as a continuum. This is the
limit that should be applicable, for example, ir
the completely classical case of a projectile that
is large compared to the interatomic lattice spac-
ing. This expression is obtained by replacing the
summation over lattice sites in (6) or (10) by ar
integral. The result is a differential reflection co-
efficient of the following form:

dr _ m?lksvk ar %2
dQdE;  4r®h°kisSucc, (WOkBT>
(AE + hwo)? + 2h2v% K2 19
4k gThwo } (19,
There is a clear difference between the two CL
limits (17) and (19). In the latter, the tempera-
ture dependence of the peak in the inelastic in-
tensity varies as 1/T3/% as opposed to 1/T'/?
and there is the extra skewed Gaussian-like be-
havior in parallel momentum exchange. Eq. (19
with the form factor |‘r;,-[2 taken to be constant
is essentially the expression developed by Brake
and Newns [6] and can be arrived at by purely
classical thermodynamical treatments of scatter
ing from an isotropic continuum surface {7}.

2
x |7l exp {—
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3. COMPARISONS

The theoretical expressions presented in the
preceding section have been used to interpret the
multiphonon background observed in a number of
experimental time-of-flight measurements over a
wide range of conditions, especially for the case
of He as the atomic projectile [8, 9]. We wish to
present here some of the results of a large num-
ber of numerical calculations that have been done
in order to test the range of validity, as a func-
tion of experimentally adjustable incident condi-
tions, of all levels of theoretical approximations
from the exact solution of the model through the
first order semiclassical approximation, to the ex-
treme semiclassical expression. For these calcula-
tions we have used a Debye model for the phonon
frequency spectrum in order to calculate the dis-
placement correlation functions of the crystal unit
cells.

We will concentrate here on the comparison
of the first order semiclassical and the extreme
semiclassical approximations. It is found that
these approximations work reasonably well for all
but the very lowest incident projectile energies
and surface temperatures. As discussed above in
Sec. 2, exact numerical solutions for the multi-
ple phonon transfers are quite tractable starting
from Eq.(6) after first subtracting off the singu-
lar elastic lines, and possibly the single phonon
contribution for quicker convergence. However,
such calculations are substantially more lengthy
in computer time than the approximate results,
and discussions of them will be left for a later
paper.

Under typical conditions where the multi-
phonon background can be readily observed in
the energy resolved measurements, it usually
takes the form of a smooth and broad foot upon
which appear the elastic and single phonon quan-
tum peaks. This multiphonon foot usually has
a well defined maximum peak intensity and full
width at half maximum (FWHM). An example of
such a measurement is shown in Fig. 1. This is
the case of He incident at an angle of §; = 60° and
an energy of 30 meV on a mica substrate coated
with a Langmuir-Blodgett film of arachidic acid
and methyl sterate (AAMS, in the molar ratio
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Figure 1. The time-of-flight spectrum converted
to energy gain and loss for a monoenergetic He
atom beam of energy 30 meV scattered from an
AAMS monolayer surface at a temperature of 130
K. The narrow peak shows the energy width of
the incident He beam including all broadening by
the instrument. The solid smooth curve is the
theoretical fit with an effective end group mass of
M =15 amu.

9:1) with a surface temperature of 130 K {10].
In this case there is no specular or other quan-
tum mechanical peak in the scattered intensity,
as evidenced by comparison with the width of the
incident beam profile shown in the insert. Be-
cause of the softness of this ordered layer of long
chain molecules, and because of the small mass of
the methyl end group which terminates the chain,
the scattering is dominated by multiphonon ex-
changes and appears as a very classical intensity.
The solid line is the result of calculations [9] using
the extreme semiclassical expression of Eq. (17)
with an effective crystal mass equal to the 15amu
of the terminating methy! group.

In the process of evaluating the validity of the
various approximations we have carried out many
calculations of the type shown in Fig. 1 and we
find that the easiest manner to make quantita-
tive assessments of different examples is through
comparisons of the maximum of the multiphonon
intensity foot and its FWHM.

An example of the types of comparison that
can be made is given in Fig. 2 which shows the
maximum intensity of the multiphonon foot as
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Figure 2. Maximum of the multiphonon inelas-
tic intensity plotted as a function of surface tem-
perature. The solid curve is the F'T approxima-
tion, the dashed curve is the HT approximation,
and the dash-dot curve is the CL calculation.
The incident parameters are k; = 9.2 A~ (or
E;, = 44.23 meV), m = 4 amu, M = 35.5 amu,
9, = 0; = 45°, and Op = 215 K.

a function of surface temperature for three dif-
ferent approximations, the full temperature first
order semiclassical, the high temperature first or-
der semiclassical, and the high temperature ver-
sion of the extreme semiclassical of Eq. (17).
The various parameters are, incident wave vec-
tor 9.2 A~! (corresponding to an incident energy
of 44.23 meV), projectile mass 4 amu (incident
He beam), crystal mass 35.5 amu, incident and
final angles 6; = 05 = 45°, and Debye tempera-
ture ©p = 215 K. It is clear that the FT curve
is quite well approximated by the HT approxi-
mation starting around T = 100 K, and the two
are nearly identical at temperatures higher than
T ~ 200 K. The extreme semiclassical approx-
imation, however, does not agree with the more
exact FT and HT curves except for temperatures
considerably higher than 300K. At lower temper-
atures the CL approximation strongly overesti-
mates the maximum intensity of the multiphonon

30
3
g 20
s
I Vs
E 10F 7

0 i 1 1

0 100 200 300 400

Ts (K)

Figure 3. The FWHM of the multiphonon in
elastic intensity plotted as a function of surfac
temperature. The order of the curves, and th
parameters are the same as in Fig. 2

contribution.

The type of comparison provided by th
FWHM is shown in Fig. 3 This is for the sam
set of parameters as in 2. Here it is clear tha
the HT calculation does not fully agree with th
FT calculation until the surface temperature i
relatively close to the Debye temperature. Th
CL calculation, just as in Fig. 2, does not be
gin to agree with the F T approximation until the
temperature is over 300K. At temperatures lowe
than this the CL approximation gives a predictio:
of multiphonon intensities which is considerabl:
toO Narrow.

In general we find the conditions for the valid
ity of the HT approximation to the FT calculatio
easiest to characterize. In principle this should br
the case since, in general, the region of high tem
peratures is defined by the validity of the expan
sion of the Bose-Einstein distribution function
n(w) — kpT/hw. We find that for all parameter
studied (E;, m, M, 6;, 8y and Op) that the in
tensities predicted by the HT approximation be
gin to approach the FT values when the surfac
temperature reaches a value of ©p/2. or some
what higher. For T ~ ©p and higher the tw
treatments give quite similar results. This sany
statement holds for the low and high temperatur
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versions of the extreme semiclassical approxima-
tion, they are essentially the same for T > Op.

For the extreme semiclassical CL version to
give dependable results, the conditions are not
so clear as for the high and low temperature
HT and FT approximations. The derivation of
this approximate expression depends rigorously
on the condition for the Debye-Waller exponent
21 (k) >> 6, however, often it is found that
the CL expression works quite satisfactorily if
2W(k) > 4 in the neighborhood of zero energy
exchange AE = 0.

In order to understand the regime of valid-
ity of the CL expression it is of interest to dis-
cuss the general nature of the multiphonon back-
ground. Under quantum mechanical conditions,
where the sharp quantum diffraction and single
phonon peaks dominate the scattered intensity,
the diffuse multiphonon part forms a very small
background under these peaks. For a given sur-
face and projectile, as the temperature and/or
incident energy are increased, the multiphonon
background grows in intensity and broadens over
a larger and larger range of energy exchange while
at the same time the quantum peaks are reduced
by the Debye-Waller factor. The growth of the in-
elastic background with energy and temperature
continues up to the point where the Debye-Waller
factor becomes so small that the diffraction and
single phonon peaks are negligible, in which case
nearly all of the scattering is in the diffuse in-
elastic background. It is under these conditions
of increasing inelastic background intensity that
the CL approximation is not valid and the FT
or HT (or the exact calculation in the extreme
quantum mechanical limit) must be used. Now
if the temperature and incident energy are fur-
ther increased, the classical regime is approached
for which there is essentially nothing but multiple
quantum inelastic scattering. With still higher
energies and temperatures, more and more inelas-
tic channels of scattering open up over a broader
range of energy exchange. Since the width of the
scattered distribution increases, the maximum in-
tensity must decrease in order to assure that the
total number of scattered particles always equals
the number in the incident beam, i.e., to assure
the unitarity condition. It is only in this latter

713

regime, where the maximum intensity of the mul-
tiphonon background is decreasing, that the CL
approximation begins to become valid.

One would expect that if 2W (k) = 6. in which
case the Debye-Waller factor is of the order 1073,
that the CL case should work rather well, but this
does not tell the whole story. The Debye-Waller
factor is a function of energy exchange through its
momentum dependence, and is generally larger
at small energy exchange than it is at larger en-
ergy exchanges. For very low incident energies,
and especially for small mass ratios /M this
asymmetry can be very pronounced. It is this
same energy dependence appearing in the energy
shift Awgy that makes the Gaussian-like CL ex-
pression (17) very skewed towards positive energy
exchange when the temperature is large and for
small mass ratios.

As a general statement, the results of our cal-
culations indicate that if 2W (k) > 6 over the en-
tire range of AE for which there is appreciable
inelastic intensity, then the CL expression works
quite well in predicting the form of the diffuse
inelastic background. Under most conditions it
is adequate to test the value of 2W at AE = 0.
However, when E; or m/M is small, the value of
2W will vary strongly from small to large energy
exchange, and its value at AE = 0 may need to
be substantially larger than 6 in order for the CL
expression to be valid.

4. CONCLUSIONS

We have presented the essential features of the
theory of multiple phonon inelastic scattering of
atomic projectiles by surfaces. Several approxi-
mations are developed which lead to straightfor-
ward and tractable numerical calculations. Three
of these approximations are examined here, the
first order semiclassical in both its full tempera-
ture and high temperature forms and the extreme
semiclassical limit. A large number of numeri-
cal calculations have been carried out in order to
establish the regimes of validity of each approxi-
mation. We find that over a very large range of
initial parameters the HT approximation gives a
good representation of the F'T' results as long as
the surface temperature is greater than the Debye
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temperature of the surface.

The regime of the extreme semiclassical ap-
proximation is somewhat more complicated. As
suggested by its theorctical development in
Eq.(18), one finds that the CL expression is good
if the Debye-Waller argument 2W (k) is greater
than 6 over the entire range of energy exchange
for which the scattered intensity is non-negligible.
However, a casual test of 2W (k) under elastic
conditions of zero energy exchange is not always
a good test of the validity of the CL model. The
exponent 2W (k) is an increasing function of en-
ergy exchange, and for small incident energies
and particularly for low crystal masses it can be
a strongly varying function. Thus, although the
condition 2W (k) > 6 may be met for some values
of energy exchange, it may not be met at others.

When used with a Debye frequency distribu-
tion for determining the displacement correlation
function, the HT approximation for the multi-
phonon intensity is rather simple, the numerical
calculation involving primarily a Fourier trans-
formation over time. The CL approximation is
even simpler, it is a closed-form expression that
does not even depend on the form of the phonon
spectral density. These two approximations taken
together cover, for many systems, virtually the
entire range for which the multiphonon contribu-
tion to the scattered intensity is significant. Thus
they can be used to estimate the importance of
the multiphonon background in a variety of atom-
surface scattering systems.
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