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The field and current distribution for a fluxon penetrating two thin parallel films is obtained. This
result is used to calculate the coupling force for an isnlated fluxon extending through the two films.
The calculation is valid for arbitrary separation between the films when d, < A, d, € A,, and the
fluxon core radii are much less than A. Here d, and d, are the film thicknesses and A, and A, are
the penetration depths. The conditions of validity of a previous calculation for zero separation between
the films are established and the comparison with recent experimental work is discussed.

The superconducting dc transformer® operates
because of the coupling force between fluxons in
adjacent thin superconducting films. In a previous
paper one of the authors? has calculated this cou-
pling force in the limit that the two films are not
separated, using the Pearl model for isolated
fluxons®; i.e., both coherence length and film
thickness are small compared to the penetration
depth. The purpose of this paper is to calculate
in general the field and current distribution of a
fluxon penetrating a dual thin-film system and to
extend the work of Ref. 2 to include the situation
where the films are separated by an insulating lay-
er of arbitrary thickness. The present results
strongly restrict the range of validity of the re-
sults of Ref. 2.

The coupling force which tends to align a fluxon
in adjacent films is the negative derivative of the
Helmholtz free energy with respect to the lateral
distance between fluxon cores.?® The Helmholtz
free energy is given by

=§f3°xd'r+ (3ugr?) szd'r, (1)

where J and A are the current density and vector
potential, respectively, and the second term is

the kinetic energy of the superconducting electrons.

For the problem at hand the current and vector po-
tential correspond to the situation shown in Fig.

1, where the fluxon cores are displaced by a dis-
tance R parallel to the films. To obtain J and A
we make use of superposition of fluxons, which is
valid as long as the normal cores are too small

to interfere with the free flow of currents. We
write

A =R (Fy, 2)+ Ry (T, 2), J =3, (7, 2) + 3, (Tp, 2)
(2)

where Ki (r1, 2) is the vector potential of an iso-
lated fluxon located at ;=0 in the film at z=a,
with its corresponding screening currents in the
f11m at 2=0, Inthe thin-film approximation both
J and A are uniform through the film thickness.
If the film at z=a has a penetration depth A, and
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thickness d;, and the film at z =0 has parameters
Az d,, then the differential equation obeyed by

Ai (ry, 2) is obtained from the fluxoid quantum con-
ditions:

o] 31 (t;, a)= ‘51 (po/2m7,) - K1 (;1, a,
Ho}\g 31 (;1, 0)= - K1 (;n 0); (3)
VX(VX Ay) = o dy:
ViA (Fy, 2)=(2/ o) [~ G (9o/2mm) + K, (7, 2)]

x8 (2 —a)+(2/ @) &, (T, 2) 6 (2), (2
where o, 2= Zkl 2/dy,5 and ¢q is the flux quantum.
Similarly, A2 (T,, 2) is the vector potential for an

isolated fluxon located at 7,=0 in the film at 2=0,
and is given by the differential equation

vi Kz (;z, 2)=(2/ay) K2 (Tp, 2) 6(2~a)

+(2/a,)[ - ¢z ¢o/27’7’z) +Aa(rz’ z)]6(z).
(5)

Kl and Kz are azimuthally symmetric about their
respectwe origins, and the correspondmg current
density J1 is obtained from Eqgs. (3) and Jz is ob-
tained from similar equations. The interaction
energy of the two fluxons U, is obtained from Eq.
(1) with the help of Eqgs. (2) and (3) and can be
written in the form

Uos /‘ da, ¢1 A, (F,, a)
12 277#00‘1 7y

_ % f day$,« A, (r,0)

2mpo 0 ¥y
¢o e bo
= —— A, 7 ar, —

Lo j}; 2(ra, a)dr, 1o &

x [~ Aylry,0)dry.
[l ©

The force of attraction is then given by ~dU,,/dR,
Fo== Pod; (R, a) _ $a4y (R, 0)
¢ Mo & Mo @2 ’

Later it will be seen that the above two terms are

(M)
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FIG. 1. Fluxon penetratmg two parallel thin films

separated by an insulating layer of thickness a with a
lateral separation R between the two cores. Jj is the
current density of an isolated vortex centered at »; =0 in
the film at z=q, with its corresponding screening cur-
rent inthe film at 2=0. Similarly, J, is the current
density for an isolated vortex centered at 7, =0 in the film
at z=0, with screening currents in the film at z =a.

equal and with the use of Eqgs. (3) one can cast

Eq. (7) into a form which is very similar to the
repulsive force between two fluxons in a single
film; i.e., the force is proportional to the screen-
ing currents of one vortex evaluated at the core of
‘the other,

F,=0od; J5(R,a)=¢od, J; (R,0) . (8)

However, in this case the current is proportional
to the vector potential, leading to a 1/R asymptotic
dependence as opposed to the 1/R?2 dependence ob-
tained for two fluxons in a single film.

To calculate the force of Eq. (7) it is necessary
to solve Eq. (4) or Eq. (5) for the vector potential
of a pair of parallel films with a fluxon penetrating
one of titem, and, in fact, it is necessary to know
only the vector potential in the film carrying
screening currents. Since this situation has azi-
muthal symmetry, the vector potential has only a
¢ component, and Eq. (5) reduces to

9 2
218 (rA) + —62—A=%A6(z -q)
1

+a32—( ;’T"V +A>6(z),v )

where for convenience we have dropped unneces-
sary subscripts. This equation is separable and
we write the solution as the product of a Fourier
transform in z and a Hankel transform in #, which
leads to a solution of the form

A, =2 [“ap g or) M, 2) ,

where J; is the Bessel function of order unity and

(10)

(1+p 0‘1) e Pzl _ 5 -plz=al

(1+pa) (1+pay) -

When Eq. (10) is evaluated for A, (R, a), it is
found to be equal to the product of a; and a function

M(p,z)= (11)
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symmetric in o, and @,. Similarly, 4, (R, 0) is
equal to @, multiplied by the same symmetric func-
tion. When these results are inserted in Eq. (7),
the factors of o, , cancel, the two terms are clear-
1y seen to be equal, and the force takes the final
form

% f“ dpp e J,(pR)
(1+pay)(1 +pay) — 20

Equation (12) is not readily integrated in terms of
well-known functions and, although it could be
expressed in terms of series expansions, it is per-
haps most easily handled in its present form as an
integral transform. A plot of the force versus
lateral core separation for typical values of the
parameters is shown in Fig. 2. It is seen that the
force starts off linearly in R, rises to a maximum,
and then goes over into a 1/R asymptdtic behavior.

Although Eq. (12) cannot be readily integrated,
we can easily determine some important limiting
cases. If either a;>a or a,>a, we have

20, 1

Mo @+ Qp
where o' =q,a,/(ey + @) and A,.(r, 2) is the vector
potential of an isolated fluxon in a single film of
effective parameter o’ calculated in the Pearl

model:
%o f *
21 Jy b

If in addition one of the films is very nearly dia-
magnetic with respect to the other, i.e., if o
>>a> a, or a,>>a> a;, Eqs. (13) and (14) can be
evaluated to obtain

(12)

(13)

c

Ao" (R, a),

e* J,(p7)

1+a’p (14)

Aa'('r, z):

Fomm o — e (1"@_2%1?7175)' (15)

In the limit that the separation between films is
large, a> a;, «,, the force can be expanded for
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FIG. 2. Coupling force as a function of lateral core
separation. Here — (mpya®/¢3)F, is plotted vs R/a for the

case @y=ay=a and a/@=0.2.
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small R as
L SR(T g B9 )
FC“"nuo a® 8“3)_7 64“5)1L T

(16)
where £(3)=1.20205 and £(5)=1.03693 are Rie-
mann ¢ functions. The asymptotic formof Eq. (12)
is obtained upon expanding the integrand in powers
of a/R and is

2 1 1 a; o

Fo=Yr f7—— = R>» »>-—1-2

¢ g (g +ay+2a) R’ R>a, R Q +a,+2a
(6%))

Of special interest is the case of zero separation
between the films. Setting a=0, the force of Eq.
(12) becomes

Foo-20 1

c o m A, (R,O) s (18)

where A,.(R,0), the solution for the vector poten-
tial of Eq. (14) in the plane of the film, is shown
by Pearl to be

Aa.(R,o)=% {}? -5 [s,(f,)- N, (%,) - %]} .

19
S; and N; are, respectively, the Struve and Neu(- )
mann functions. Equation (18) is the result ob-
tained in Ref. 2 and, although this has the same
asymptotic dependence as Eq. (17), it should be
pointed out that it exhibits unphysical behavior in
the region of small R. For R<a’ Eq. (19) ap-
proaches the finite value ¢o/27a’ (implying an
infinite magnetic field) instead of the linear behav-
ior in R given by the general solution (12) for a #0.
This is a direct result of the assumption of zero
coherence length in the Pearl model and would not
occur if the core were of finite size. In practice
the films are of finite thickness with nonzero co-
herence length and are separated by an insulating
layer, and any one of these properties taken in-
dependently will ensure that the force will have the
type of behavior for small R which is shown in
Fig. 2.

It is the maximum value of the coupling force
which can be determined experimentally.*™® The
force F, of Eq. (12), however, probably overesti-
mates the maximum coupling which can exist in a
transformer, since normally the fluxons are not
isolated and the overlap of their current and field
distributions serves to decrease the coupling.
Equation (12) may represent the transformer cou-
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FIG. 3. Maximum coupling force as a function of film

. parameters for the situation in which @j=ay;=a. The

scaled maximum force — (mpg@?/ ) Fpay is plotted as a
function of a/c.

pling reasonably well in situations where there is
no applied magnetic field, the thin-film approxi-
mation d <X is valid, and the fluxon cores are
small. Clem has recently developed a dynamical
model of coupled fluxon arrays which allows him to
calculate /-V characteristics, which are in good

‘agreement with measurements on a transformer

with a 12-nm separation between granular aluminum
films.* The maximum coupling force calculated
here appears as one of five parameters in his
model.

The maximum value of the calculated coupling
force is shown in Fig. 3 as a function of a/« for
the case @;= a,= @, It is seen that — (mpy a?/¢F)
F,..has a maximum of unity at a/a=0 and falls
off very rapidly for small values of a/a, while for
values of a/ @ of order unity it is a relatively slow-
ly varying function, This large initial value and
extremely sharp decrease is again a direct result
of assuming zero coherence length in the model and
implies that this calculation is not physically sig-
nificant for film separation less than the coherence
length. In general, the calculations indicate that
the coupling should decrease with increasing a,
and for ¢/a ~ 0.1 should also decrease for increas-
ing .,

Measurements showing a decrease in the cou-
pling force with increasing separation ¢ and in-
creasing o have been reported recently for tin
transformers. " These tin films do not, however,
correspond to the thin-film limit discussed here,
because for them the coherence length is always
greater than A and d is sometimes greater than
). The present calculation should be most directly
applicable to thin type-II films in zero magnetic
field.
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