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We consider the relationship between several different formalisms for treating the multiphonon inelas-
tic scattering of atomic projectiles from surfaces. Starting from general principles of formal scattering
theory, the trajectory approximation to the scattering intensity is obtained. From the trajectory approxi-
mation, the conditions leading to the fast-collision approximation for multiquantum inelastic scattering

are systematically derived.

I. INTRODUCTION

With the advent of atom-surface scattering, and partic-
ularly He-surface scattering, as a standard experimental
method for measuring surface phonon-dispersion rela-
tions,! it becomes important to understand all features
which can appear in the experimental time-of-flight data.
These features can be roughly grouped into four com-
ponents: elastic diffraction peaks arising as a result of the
underlying periodicity of the crystal substrate, the diffuse
elastic intensity caused by defects, single surface phonon
peaks, and the diffuse inelastic background. The
diffraction intensities’ and the single phonon excitation
intensities® are relatively well understood and tractable
calculations are readily carried out.* Less well under-
stood are the origins of the diffuse elastic peak, although
recently it has been shown to yield important information
about the differential cross sections of defects® 7 or ad-
sorbates® on the surface. The object of this paper is the
diffuse inelastic background which is a strong component
observed in the time-of-flight intensities, and which must
be properly subtracted in order to correctly interpret the
intensities of the single phonon peaks. The diffuse inelas-
tic background consists of two parts, incoherent inelastic
scattering from defects’ and the coherent multiphonon
contribution. For clean, well-ordered surfaces the multi-
phonon contribution usually dominates, and although
diffuse, it is not featureless. Structure appears in the mul-
tiphonon contribution and peaks can occur which resem-
ble single phonon features, ° thus it is important to have
a good understanding of these processes.

There have been a number of general approaches to the
inelastic surface scattering problem that are capable, in
principle, of describing the complete picture of multi-
quantum exchanges upon collision, ' 2! or at least within
the confines of the trajectory approximation.?>?3 Re-
cently, two of these approaches by the present authors
have proven to be quite successful in quantitatively ex-
plaining the shapes, as well as the temperature and ener-
gy dependence, of the multiphonon intensities observed
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in He-surface scattering experiments.'%?* Although
these two different approaches appear quite disparate,
they are fundamentally very similar. The object of this
paper is to show how the two approaches can be drawn
from a common theoretical basis, to compare them to
other formalisms, and then to clarify their similarities
and differences.

II. FORMALISM OF LEVI AND BORTOLANI

In a very comprehensive and excellent review of the
theory of atom-surface scattering, Levi and Bortolani
present a general multiphonon formalism based on the
time-evolution operator approach to solutions of the
many-body Schrodinger equation.?” Consider the total
system to be described by a Hamiltonian of the form

H“Y'=H+H‘+V, (1)

where H is the Hamiltonian of the free particle, H¢ is the
Hamiltonian of the unperturbed crystal, and ¥V is the in-
teraction coupling the projectile and crystal. A standard
approach is to start from the probability density of the
particle to lose an amount of energy A given by

A)={(k;|ST8(H —E;+A)S|k,)) , )

where the symbol {( )) defines an ensemble average over
the initial crystal states |n; ), and the scattering operators
S are defined by

S=limU(+t,—1), (3)

t— oo

where U (s,,s,) is the time-evolution operator. For con-
siderations of parallel momentum exchange, a standard
approach, following Brako and Newns'* is to start from
the probability density of the particle to lose an amount
A of energy and an amount #K of parallel momentum.

N(K,A) = {[k;|ST8(H —E;+A)
x8(P/#i—K,;—K)ISk;}) , @)
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where P is the momentum operator for the projectile.
The differential reflection coefficient, which is usually
compared to the experimentally measured intensities, is
related to (4) by a simple density of states:

dR

et = 5
g =k N(K,A) ()

where 7ik; is the final projectile momentum and ik, is

its component in the direction normal to the surface.
Using the global energy conservation between the pro-
jectile and the surface, Ef —E{+E;—E; =0, the energy 8
function in Eq. (4) can be converted to one involving the
J

dR _ kfkfz
dAdQ  (27)L?
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crystal Hamiltonian, §( H°—Ef—A). The 8 functions are
rewritten as integral representations in the transforma-
tion usually ascribed to Glauber?® and Van Hove,?’ and
after defining time-dependent operators in a somewhat
more generalized interaction picture according to

S(R,t)=exp{—i[R-P—H_t]/#}
XS exp{i[R-P—H_t]/#} , (6)

the differential reflection coefficient appears in the gen-
eral form

[ "7ar [dR [dR exp(i[K-(R—R')—tA/A]}

X ((k;|ST(R,008 (R, 1)[k,))) . R

Equation (7) is formally without approximation, and is a quite general expression for describing the scattering. How-
ever, in order to make progress towards tractable calculations, approximations must be applied.

The inelastic eikonal formula of Levi and Bortolani can be obtained if we assume that the spatial matrix elements of
the generalized scattering operator can be writtin in the simple form

<n,|(ijS(R)|k,.>In,->=—%de'exp[i(K,.—Kj)-R']<n,.|b(R+R')exp[m(R+R')]|n,.>8ka,a , ®)

where b(R) is the source function, which reduces to
Vk,/ k;, in the simple eikonal approximation, and a is
the magnitude of the perpendicular wave vector con-
sistent with energy conservation between the projectile
and the crystal. The phase 7(R,?) can be developed in a
series in terms of the vibrational displacements u;(#) of
the atoms making up the crystal.

(R, 1)=ng(R)+38,(R,1)
=7]0(R)—%2 f:owds f;(R,s)u;(s +1), 9
j

where the series has been truncated at the linear term in

u;, and the force f; is the negative gradient of the in-

teraction potential with respect to the small displacement

[

pends linearly on the displacements u;, and that the dis-

placements are harmonic and appear only in the % term,
then the average over crystal states in (7) is readily evalu-
ated.

{( exp{ —idn(R,0)} exp{idn(R’,1)} )

where W(R,R/,t) is the generalized time-dependent dis-
placement correlation function

W(R,R’,1)=1{(87(R,0)87(R’,1))) (11

and W(R) is the generalized Debye-Waller exponent,
with the relation W(R)=W(R,R,0). Then, in the tra-

u;. jectory approximation, the differential reflection
Under the assumption that the phase 7 of Eq. (9) de-  coefficient appears in the form
J
dR___ Kk JdR [dR'b(R")b*(R) exp{iK-(R—R')+i7(R)—iny(R)}
dAdQ  (27)%L2 p Mo o
X exp{—W(R)—W (R} [ “dt exp( —itA/#) exp{2W(R,R’, 1)} . (12)

Within the confines of the eikonal approximation and the harmonic approximation, Eq. (12) describes the complete
elastic and inelastic scattering by the interaction potential ¥. The elastic and single phonon inelastic contributions are
obtained upon expanding the displacement correlation phase function exp{2W(R,R’,?)} to zeroth and first order in its
argument, respectively. The form of Eq. (12), particularly the fact that it is expressed as a double integral over the sur-
face, is especially useful for application to the corrugated hard wall potential. 28

The differential reflection coefficient of Eq. (12) has been averaged over this thermal motion, hence it must reflect the
perfect periodicity of the lattice. This periodicity is expressed, for example, in the relation

with similar relations valid for b (R) and for W(R). In Eq. (13) R, is a lattice vector along the surface, with the index /
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labeling surface unit cells, and for simplicity in notation we have made the (unnecessary) assumption that the crystal is a
Bravais lattice with only one atom per surface unit cell (uc). Similarly, the displacement correlation function obeys the

relation
WR+R,R'"+R;,t)=W(R,R',1) . (14)

The translational symmetry allows us to rewrite the differential reflection coefficient (12) as an integral over a single unit

cell together with a summation over all lattice vectors

dR _ kfkfz
dAdQ  (27)AL?

J dR [ dR'b(R)b*(R)exp{iK-(R'—R)+imo(R") —i(R)~W(R)~

W(R')}

X 33 exp(iK-(R,—R,)} [~ “dt exp| —itA/#i} exp2W (R+R,R'+R;,0)} . (15)
1 r —*®

With the use of Egs. (13) and (14) the double summation in (15) reduces to a single summation, and letting p be the sur-
face density of unit cells, the differential reflection coefficient becomes

dR kfksz
dAdQ  (27)#

X Zexp{tK Rn}f

The major simplification which permits the relatively
tractable expression (16) for the differential reflection
coefficient is the trajectory approximation. Crudely
speaking, the trajectory approximation has the property
of treating the particle operators semiclassically while
treating the crystal degrees of freedom quantum mechan-
ically.

III. FAST-COLLISION LIMIT

One of the authors has developed a theory of multiple
phonon scattering based on the transition rate w(k,k;)
for scattering from a projectile state of momentum #ik; to
a state of momentum #k £ which is essentially the time
derivative of the probability density of Eq. (4).

w(kf,k,-)=27"<<z |Tf,.|25(5f—5,.>>> : a7
"f

where T'; is the transition matrix, &, is the total energy
of the system, and the summation is over the final states
of the crystal. Upon making a transformation to the in-
teraction picture in which the time evolution of the tran-
sition operator is defined according to

T(t)= exp{iH,t /%) T exp{ —iH,t /#) (18)

and for a periodic surface it is natural to write the matrix
elements of (18) taken with respect to particle eigenstates
as follows:

J

Tdt exp{ —itA/H} I (7§

n k «'

w(ky,k; zf

X expf

J dR [ dR'b(R)B*(R)exp([iK-(R'~R)+ing(R')—ig(R)— W (R)—

f, exp{ —iK-R,} exp{ik-(r,—r,

W(R')}

“dt exp{ —itA /%) exp{2W(R,R’'+R,,, 1)} . (16)

(k| T(0)|k,)=3 exp{ —ik-[r), +u, (O]}, (19)

N3

where r, , is the equilibrium position of the kth element of
the Ith unit cell and #k is the momentum exchange,
k=k,—k;,=(K,k;, +k;). Note that the index « is not
necessarily associated specifically with atoms making up
the unit cell; because atomic projectiles scatter from the
electron cloud and not directly from the crystal atomic
cores, it may be convenient to divide the unit cell into ar-
bitrary subunits which we refer to as elements. In order
to make further progress, a major approximation is made
in which it is assumed that the scattering amplitude 7%; is
independent of the crystal displacements u, ,(¢), and con-
sequently independent of time. Such an approximation
can only be valid if the local environment of each unit
cell is identical at all times, which implies that the coher-
ence region for scattering associated with the neighbor-
hood of each unit cell is vibrating rigidly, with no distor-
tion that might arise from short vibrational wavelengths.
This approximation is basically a fast-collision assump-
tion of the sort that has been used very successfully in the
scattering of x rays and neutrons. It is argued that such
an approximation should be good for a description of
multiphonon atom-surface scattering, since the energy
and momentum exchanges involved will be dominated by
low-energy and long-wavelength phonons.

Once the approximation of (19) is made, the transition
rate (17) can be readily evaluated leading to the following
expression in terms of the displacement correlation func-
tion.

)} exp{ — W ,(k)}

— W (k)} exp{{k-uy, (0)k-u, ()N} . (20)
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The Debye-Waller factor appearing in (20) is of the clas-
sic form, depending on the time-independent self-
correlation function:

W (k) =1 [k, () . 1)

Using simple models for the displacement correlation
function, the transition rate of Eq. (20) has demonstrated
its ability to describe quantitatively the shape, energy
dependence, and temperature dependence of a rather
large range of He-surface scattering systems.?>*° How-
ever, a basic derivation of the approximation embodied in
Eq. (19), together with a justification of its applicability is
lacking. We now show that Eq. (19) arises naturally from
the Levi-Bortolani form of Eq. (16) above in the limit of
small frequency and long-wavelength vibrational dis-
placements.

If the collision is fast compared to the vibrational
period, then the trajectory approximation phase of Eq. (9)
becomes

1 +
dn=—— S [ f(s)ds . (22)
J

If, in addition only long-wavelength vibrations are con-
sidered, then all u; are effectively identical over the
coherence area of the scattering event and u ; can be tak-
en out of the sum. The remaining time integral of the
force f;(s) is the momentum imparted to the jth crystal

atom, and we are left with
1 +
n=—>us 3 f_w f;(s)ds =—upk . (23)
J

[Equation (23) can also be obtained from (22) upon as-
suming that all of the momentum of the incoming projec-
tile is imparted to a single crystal atom.] If we apply the
further approximation embodied in (23) to the Levi-
Bortolani differential coefficient of Eq. (16), after first
properly accounting for the translational displacements
in space and time arising from the interaction picture
transformation (6), the result is

dR kfkfzp . . 2
= —2w —iK-R+ing(R
JAd 2V exp{ —2W(k)} “‘ucde(R)exp{ iIK-R+iny(R)}
X ¥ exp{ —iK-R,} fjmdt exp{ —itA/#} exp{ {k-uy(O)k-u, (1))} . (24)

Equation (24) is identical in form to (20) above, in the
case of a Bravais lattice, if we make the following associa-
tion [after first accounting for the appropriate density of
final states to convert the transition rate (20) to a
differential reflection coefficient]:

_ ﬁZ\/kfzkiz
T D,

[ dRb(R)exp{—iK-R+inR)}|.

(25)

The reduced transition matrix 7 is identified as the off-
energy-shell transition-matrix element of the elastic part
of the interaction potential (here taken in the trajectory
approximation).

The summation over unit cells over the surface appear-
ing in (24) as well as in (16) gives rise to coherent effects
that appear even in the multiphonon intensity.?! These
effects appear as broad structure in the coherent multi-
phonon background under quantum-mechanical condi-
tions. At high temperatures and large projectile energies
this coherence structure disappears as only one term in
the summation dominates, signifying that the incoming
projectile is interacting over a coherence region that en-
compasses only one crystal unit cell.

The discussion leading to Eq. (24) provides one
justification of the assumption of the form of the transi-
tion matrix of Eq. (20). Such an assumption, basically a
neutron-scattering approximation, is definitely not good
in the case of low-energy electrons interacting with a sur-
face because the interaction is strong and collisions with
multiple-scattering centers are important. Since atoms
also interact strongly with the surface, it could be argued

that the momentum exchange approximation should fail
in that case also. However, this derivation shows that the
reason why it works successfully for atom-surface scatter-
ing is because the scattering is basically a two-
dimensional process. It will fail when the scattering can
no longer be considered a quick collision, such as when
diffraction is very strong and resonances with the phy-
sisorbtion bound states can occur. We discuss again the
validity of such a model in the section below where we
provide a second justification of Eq. (20) starting from
somewhat more fundamental principles.

IV. RELATIONSHIP TO OTHER THEORIES

We would now like to address once again the results of
the previous section, but this time to derive them in a
more rigorous fashion. We will begin from a general
form for the scattering probability and then systematical-
ly obtain the scattering intensities derived previously by
others. A convenient starting point is the formally exact
expression of Eq. (7). In the interaction picture the
scattering operator (3) can be written as

_—7 t
S(a)=T lim exp {TIf_ot ds Via;s) { , (26)
0

tg—>

where a=(R,?) signifies the supplementary variables of
the driving operators as in Eq. (6) and T is the time-
ordering operator. Before inserting (26) into the general
scattering probability (7) it is of interest to discuss the
form of the interaction potential ¥V =V (r, {u j;KI ), where
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{u;;,] symbolizes the set of displacement variables of the
crystal. Here we use the same notation as in (19) in
which for the set of indices (j;«), j is a two-dimensional
variable that counts unit cells of the surface and « is a
three-dimensional variable that counts elements of the
basis set within the unit cell including those in all the lay-
ers below the surface. We write the interaction as the
sum of two parts

V=V(r{u;}) (u,,,=0] +j2k ViV {u;,})

(v

=0

where V., is the gradient operator with respect to the
(j;x) displacement. The logical choice is to associate ¥°
with the leading term of (28) which is now independent of
the displacement, and let V! be the sum of all higher-
order terms. A great simplification occurs in the case in
which the potential is a summation of pairwise atomic in-
teractions:

V=3vir—r,—r,—u;,), 29)

Jik

where the position of the (j;«) element in the lattice as a
function of time is written as r;,,(¢)=r; +r,+u;, () with
r; and r, the equilibrium positions of the jth unit cell and
the xth element within the cell, respectively:

V=3vlr—r—r)=V, Jvlr—r;—r)u;+
Jix Jik

= V0+2 it s

TH

(30

dAdQ  (2m)*AL?

k; [T exp

“((

X ks |Texp

#

i too 0 .. L +oo 1.
%-f_wdsV(a,s)-i-ﬁfvwdsV (a,s)’
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V=vo+v!, 27
where the “strong” part V° contains the terms which
backscatter the projectile and prevent it from penetrating
appreciably into the bulk, and the remainder V' contains
the major terms describing interactions with the lattice
vibrations. A logical assignment is provided by expand-
ing in a Taylor series in the lattice vibrations:

(28)

where we have made the further association, as in Eq. (9)
above, that f;, =—Vv(r—r;—r,) is the classical force
on the projectile due to the (j;«) crystal atom fixed in the
crystal.

However, separation of the form of (28) or (30) is cer-
tainly not unique, and for certain purposes it may be
more convenient to make the distinction between dis-
placements of the unit cell taken as a whole and the addi-
tional displacements of the elements of the basis. For ex-
ample, writing rj;K(t)=rj+rK+uj(t)+u};K(t) the poten-
tial can be expanded in the {u;(¢)} only, according to

V=3 v(r—r;—r,+uj,)

A

=V, Jvlr—r;—r+uj,)u;+ - (31)
Jik
which may be convenient when one wishes to examine
the internal distortions of the unit cell due to vibrations.
Taking account of the expansion of the interaction po-
tential in (27) and the form of the scattering operator
(26), the differential reflection coefficient (7) becomes

[ 7dt [dR [ dR’ exp(i[K-(R—R')—1A/#])

k,

+

—_—if+mds’V°(a’;s’)+—_%£f “ds'Via';s' ”k,- ‘>> , (32)

where the additional driving parameters are a=(R,0) and a’=(R’,#). In spite of the complicated appearance of Eq.
(32), the effect of the average over initial crystal states will be to produce an operator which is periodic with the symme-
try of the static lattice. This means that in the matrix elements, the spatial integrals can be reduced to integrals over
single unit cells, together with discrete summation over all unit cells. Using the expansion (28) for the interaction po-

tential, the differential reflection coefficient then becomes
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dR — kfkfz
dAdQ  (27)AL2

[ 7dt [dR [dR’ exp(i[K-(R—R)—1A/H]}

X I-ZI,CXP{I'K'[RII_RI]}

i + 0
x(( k; |Texp {Zf_wds VOs)
i +
T B Zenndass) |k,
JiKk uc
X |ks |T exp —;—lfj:ds'Vo(s')

+_Tlf_+°:°ds, 2 fj’;x"“j’+1’;x’(a’;sl) | 'k, ] >> .
s uc

(33)

In order to make further progress toward explicit calculations with (32) it is necessary to deal with the commutation
of the various terms of the potential in the exponentials. A convenient way of treating this is through the trajectory ap-
proximation in which the force is evaluated along a single classical trajectory of the potential ¥° characterized by the
time-dependent path r(s).!%2* With the trajectory approximation the potential ¥'' depends only on the crystal displace-
ments, while by choice ¥° depends only on the particle coordinates, and the two terms commute. The differential
reflection coefficient simplifies to

dR - kfkfz
dAdQ  (27)’AL?

[ 77dt [dR [dR’ exp(i[K-(R—R')—tA/A])
X 3 exp{iK:[R;—R;]}|o ;|?
nLr

L

X<<exp {ﬁ f_+°°ds > fidr(s)] ;4 lass) ]
© ik

X exp

%fjwds' 2 Finelr(s) 1wy pela’ss’) }» ’ (34)
=] j’;K’

where o ; is defined below in Eq. (36).
The thermal average in (34) can now be carried out, for operators linear in the harmonic displacements the commuta-
tions are handled with the relation e 4e®=¢ 4 *8e[481/2 and ((e4)) = exp({ 42/2))). The result is

dR -—pkfkfz +oo ’ . D'\
dAdQ  (2n)# f_w dt [dR [dR’ exp{i[K-(R—R')—tA/%])

X|o ;>3 exp{iK-R;} exp{ — W(R;k)} exp{ — W(R';k)} exp{2W,(R,R’,1)} ,
1

(35)

where

os= |k |Texp k; (36)

—i +
7[_00 ds VO(S)]

uc

The displacement correlation function is similar to Eq. (11) and depends only on the relative distance I —1’ between unit
cells

’ 1 *® o ’ ’ ’ ’
WRR0=—5(( [ “as p> £lr(s) ] u;, (a59) [ 7ds 3 £rlels) 1wy rplalss ))) (37)
3K I
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and W (R,k)=W,_y(R,R,t =0).

Equation (35) is a quite general expression in which the
only major approximations, aside from the harmonic ap-
proximation, are the expansion of the interaction poten-
tial through linear terms only and the application of the
trajectory approximation. It is essentially identical to the
result presented by Bortolani and co-workers'>!3»% of
Eq. (12) with two minor exceptions; we have accounted
for the periodicity of the lattice which is recovered after
averaging over the initial states of the crystal and the
scattering amplitude o ;; does not depend on the variable
R. This latter difference is simply due to the choice of
separation of the interaction potential into the parts V°
and V!, a different choice in which ¥° contains displace-
ments of the basis elements which distort the unit cell
such as in Eq. (31), which will lead to

|0 ;2> 0T (R)o ;(R') (38)

after making a reasonable set of simplifying assumptions.
We note here that the spatial integrals over R and R’
in the differential reflection coefficient of (35) can be re-
placed by integrals over a single unit cell. Translation
through a lattice vector such as in the operation
R—R+R; simply changes the phase of the displacement
vector. The correlation function (37) depends only on the
phase difference, and this phase difference is summed
over in (35). Thus the reduction of the spatial integrals to
integrals over single unit cells merely multiplies (35) by a
constant equal to the corresponding density of states.
General theories of inelastic surface scattering based
on the powerful S-matrix formalism have been developed
earlier by Brenig'® and by Brako and Newns'* and even
much earlier by Beebe.!! Equation (35) is more general
than these earlier theories in two aspects; interference in
multiphonon scattering arising from contributions from
different surface unit cells is accounted for in the summa-
tion over lattice sites, and there is a multiplicative form

dR =pkfkfz
dAdQ  (27)*#

J. R. MANSON, V. CELLI, AND D. HIMES 49

factor |o |2 which shows that the scattering from a sin-
gle unit cell provides an envelope for the overall scatter-
ing distribution. For example, the theory of Brako and
Newns in the form as developed by Celli et al.!%%? is
recovered exactly if in Eq. (35) only the term / =0 is re-
tained and if o ;|? is set equal to unity.

The remaining task is to clarify the relation of the
fast-collision approximation presented in Eq. (20) to the
more general result of (35). For this we need only consid-
er the phase generated by the trajectory approximation as
appears in the correlation function of (37):

1

+
I :Zf-w ds ,2 £ [r()]u; . (R,15s) (39)

and assuming that the collision is rapid compared to the
important and dominant vibrational frequencies, this
goes to

1_>% S u R0 [ s £ (5]
ALY
=S U ROk, @0)
ALY

where 7k;., is the momentum exchanged by a classical
projectile with the (/;«) surface atom as in (23) above:

ﬁkj;xz f

+

dsf . [r(s)] . (41)

The next and final assumption is that all atoms in the
neighborhood of the classical point of collision have ap-
proximately the same phase and amplitude of displace-
ment:

I—»u,(R,t)-zkj;K=u,(R,t)-k . (42)
JiK

Inserting the approximate form (42) into the
differential reflection coefficient of (35) above gives

J""ar [ dR [ dR'exp{i[K-(R—R)—1A/%])

Xo’}iaﬁ 3 exp{iK-R,;} exp{ — W (R;k)}

!

X exp{ — W (R’;k)} exp{ {{k-uy(R,0)k-u,(R’,1) )} . (43)

The differential reflection coefficient in Eq. (43) is now
remarkably similar to that of Eq. (20). If, in Eq. (20) we
take the limit in which the unit-cell elements denoted by
the index « become small, and replace the summations
over (k,k’) by integrals over a single surface layer, the re-
sult is identical to (43) except that the form factor |o |?
takes on the (R,R’) dependence discussed in Eq. (38).
The final connection between the two results lies in the
relation between scattering amplitudes 7, and o ;;, which
is a special case of (25):

ﬁz\/kfz k;,

'Tf[':

f

At this point we have clearly spelled out a complete set
of approximations necessary to obtain the rather simple
form of the transition rate of Eq. (20) from formal
scattering theory; or in other words, this presents a sys-
tematic justification of the rapid scattering assumption of
Eq. (19) from which (20) is directly obtained. The ap-
proximations made explicit in Egs. (40)-(42) show that
only small-frequency and long-wavelength phonon modes
are considered, and optical modes enter only as a possible
temperature and position dependence of the scattering
amplitude as in (38). The first approximation to the
scattering amplitude 7, is clearly identified in Eq. (36) as
the off-energy-shell transition-matrix element of the elas-
tic part of the interaction potential. Although 7; (or, al-
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ternatively o ;;) is a matrix element taken only over a sin-
gle unit cell, it includes multiple scattering with all neigh-
boring unit cells which can occur via the first-order in-
teraction potential V°.

From the calculational point of view, this justification
is important because of the great calculational simplicity
afforded by the multiphonon scattering intensity of Eq.
(20) as opposed to the full trajectory approximation of
Eq. (35), and this advantage becomes particularly pro-
nounced when Eq. (20) is coupled with simple models for
the vibrational displacements, such as Debye or Einstein
models. The success of this simpler approach in explain-
ing the multiphonon intensities for numerous systems
ranging from the quantum-mechanical regime®*~ ¥ to
nearly classical scattering® shows that these assumptions
have a broad range of practical applicability.

The appearance and clear definition of a scattering am-
plitude 7; (or o ;) in the trajectory approximation of (35)
shows that the neutronlike scattering assumption of (19)
can indeed be applied to atom-surface scattering in the
case of multiple quantum exchanges. Normally such an
approximation is not considered valid for systems in
which there is multiple scattering with different scatter-
ing centers. However, in the atom-surface case, in spite
of its strong and multiple-scattering nature, such an as-
sumption again becomes useful because of the two-
dimensional character of the scattering zone. However,
there are clear limitations to such an approximation. For
example, this approximation is not expected to give a
good description of single surface phonon exchange ex-
cept possibly in the long-wavelength acoustic limit, and it
is not valid when the wave packet of the probe has com-
ponents which reside for long times near the surface such
as in selective adsorption resonances.

Finally, it is noted that the reduction of the full trajec-
tory approximation limit of Eq. (35) to the fast-collision
expression of (41) provides, in the intervening steps, a
hierarchy of different stages of approximation which may
prove to be useful in special cases.
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V. CONCLUSIONS

Starting from the general formalism of surface scatter-
ing in the form popularized by Levi and Bortolani we
have presented a derivation of the quick collision model
for the multiphonon intensities observed in atom-surface
scattering. This model, which is essentially contained in
the statement of Eq. (19), is basically an application of x-
ray or neutron-scattering models to the atom-surface
problem. As suspected, the model is valid under the as-
sumptions that the multiphonon scattering is dominated
by long-wavelength and small-frequency phonon ex-
change processes. This means that the collision must be
fast compared to the dominant vibrational periods and
the scattering coherence length must be short compared
to the dominant phonon wavelengths, conditions which
seem to be satisfied for a large variety of surface systems
measured with He-atom scattering. It appears that the
neutron-scattering type of approximation is reasonably
valid for atom-surface scattering because of the two-
dimensional nature of the scattering process, that is to
say because of the fact that the atomic projectiles scatter
strongly only from the topmost layer of the surface. In
this derivation, the scattering amplitude 7; (or form fac-
tor |7 |2) for scattering from a unit cell is identified, to a
first approximation, as the off-energy-shell transition-
matrix element for scattering by the elastic part of the
atom-surface interaction potential. This justifies approxi-
mations that have been used for 7 and provides ways of
making better theoretical approximations for its func-
tional form.
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