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Abstract

We present a fully quantum mechanical model of atom-surface scattering which can be extended through the
correspondence principle to the classical limit. Calculations for comparison with recent He atom scattering experiments on
the Cu(001) surface show excellent agreement with the observed diffuse inelastic backgrounds. The temperature dependence
of the scattering in the classical regime demonstrates conclusively that the He atoms exchange energy with a vibrating
continuum interaction potential due to the surface electron density and not directly with a lattice of surface atomic cores.

1. Introduction

The subject of this paper is a theoretical description of
the diffuse inelastic intensity observed in atom-surface
scattering experiments at thermal energies. For small mass,
low energy atomic projectiles and low surface tempera-
tures, the dominant features resolved in the time-of-flight
experimental measurements are sharp intensity features
arising from diffraction, diffuse elastic scattering from
impurities, and sharp single phonon inelastic peaks due to
the exchange of surface localized phonon modes. This is
the quantum scattering regime.

At higher projectile energies and large surface tempera-
tures these sharp quantum features are suppressed and only
broad inelastic features are observed. This is the character-
istic of the classical scattering regime.

We give a brief review of the theory of multiphonon
scattering in the quantum regime and then extend this
theory into the classical regime, where the result for the
scattered intensities can be expressed in terms of simple
closed-form expressions. Calculations based on a simple
but fully quantum mechanical model of the atom—surface
interaction give excellent agreement with recent experi-
ments [1].

The diffuse inelastic background consists of two parts,
incoherent inelastic scattering from defects [2] and the
coherent multiphonon contribution. For clean, well ordered
surfaces the multiphonon contribution usually dominates,
and although diffuse, it is not featureless. Structure appears
in the multiphonon contribution and peaks can occur which
resemble single phonon features [3], thus for this reason
alone it is important to have a good understanding of these
processes. A good knowledge of the form and shape of the
diffuse inelastic signal is essential for background subtrac-
tion in order to obtain the true values of the elastic and
single surface phonon peaks. However, the inelastic back-

ground contains far more interesting physical information
than simply that necessary for background subtraction. We
will show that it provides important information on the
interaction potential which couples the projectile to the
surface, and the large range of experimental conditions
currently available provide excellent examples of the tran-
sition from the quantum mechanical regime to the classical
scattering regime.

The scattering of small mass and low energy neutral
atoms has for many years been of interest as a method of
obtaining information about fundamental physical pro-
cesses occurring at surfaces. Interest in this field of study
was initially sparked by the seminal experiments of Stern
and coworkers [4-7] who used a thermal beam of He
atoms diffracting from a cleaved LiF(001) surface to verify
the De Broglie hypothesis for the wavelike nature of a
particle. This work very quickly stimulated a large degree
of theoretical interest [8—17], virtually all of which was
carried out within the framework of what is now known as
the distorted wave Born approximation.

In the late 1960s and early 1970s advances in vacuum
technology, and especially the development of extremely
monoenergetic molecular jet beams of thermal energy
particles, stimulated a new round of experimental activity
[18-22] which has continued unabated to the present time.
These experiments were quickly followed by remewed
theoretical interest [23—25]. More recent experimental and
theoretical developments have been discussed in a number
of excellent review articles in the last few years [26-33].

The characteristic features of the scattered intensity can
be roughly grouped into four components: elastic diffrac-
tion peaks arising as a result of the underlying periodicity
of the crystal substrate, the diffuse elastic intensity caused
by defects, single surface phonon peaks, and the diffuse
inelastic background. The elastic diffraction peaks are the
easiest to interpret as their positions are determined by the
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Jperiodicity of the crystal surface. The intensities of these
diffraction peaks relative to the incident beam, when com-
pared with calculations, give the corrugation of the surface
potential as observed by the scattering projectiles. Broad-
ening and shifts in position of the diffraction peaks indi-
cate deviations from perfect periodicity in the surface. The
diffuse elastic peak appears at all scattering angles and is
due to symmetry-breaking impurities and imperfections on
the surface. Its origins are less well understood than the
diffraction, although it has been shown to yield important
information about the differential cross section of defects
[34-36] or adsorbates [37] on the surface. The single
phonon peaks arise from single quantum inelastic interac-
tions with phonon modes which are localized in the sur-
face region. These include surface modes associated with a
perfect crystal, such as Rayleigh phonons, and also other
excitations such as modes due to surface adsorbates. These
single phonon intensities are relatively well understood
[32] and tractable calculations can be readily carried out
[38].

There have been a number of general approaches to the
inelastic surface scattering problem that are capable in
principle of describing the complete picture of multiquan-
tum exchanges upon collision [39-56], most of which
involve semiclassical approximations or at least invoke
some form of the trajectory approximation [57~59]. Actual
quantitative calculations of the multiquantum scattered in-
tensities for direct comparison with experiment have gen-
erally proven to be difficult and cumbersome to carry out.

In this paper we review the formally exact treatment of
the general surface scattering problem. We then sequen-
tially apply the trajectory approximation and the semiclas-
sical approximation in order to make the connection with
several of the previous theoretical treatments. We show
that under conditions in which the multiphonon intensity is
dominated by interactions with quanta whose energies and
wave vectors are small, conditions which are very broadly
applicable, a quick collision approximation can be applied
which leads to expressions which are readily calculated.
Finally, we show a number of comparisons with recent
experiments illustrating the usefulness of this approach.

2. Formal development

The interaction between the atomic projectile and the
surface can be described by a Hamiltonian of the form

H=HP+H+V, (1)

where HP is the Hamiltonian of the free particle, H® is
the Hamiltonian of the unperturbed crystal, and V is the
interaction coupling the projectile and crystal.

Following the approach of Brako and Newns [43,44]
and of Bortolani and Levi [28], it is convenient for consid-
erations of parallel momentum exchange to consider the
probability density of exchanging, between particle and

crystal, both an amount E of energy and an amount #K of
parallel momentum. Such a probability density is defined

by
P(K, E)= 1/ﬁ-2<<(ni, k| ST8(H®~Ef ~E)
X8(R ~K°+K)S|k;, m)), @

where #K° is the momentum operator for the crystal. The
differential reflection coefficient, which is usually com-
pared to the experimentally measured intensities, is related
to Eq. (2) by a simple density of states:

=32 -

a0, 4, = h’keke, P(K, E), 3)
where fik; is the final projectile momentum and ik, is its
component in the direction normal to the surface. The delta
functions in Eq. (2) are rewritten as integral representa-
tions [60] in the transformation usually ascribed to Glauber
[61,62] and Van Hove [63], and after defining time depen-
dent operators in a generalized interaction picture accord-
ing to

S(R} t)=e-i(R'I€°_HC{/ﬁ)S ei(R'Iec-Hcl/fl)’ (4)

the differential reflection coefficient appears in the general
form

dR kfkf oo
= z de dR'
d0; dE;  (2m)*hL? f-m /dR/

Xei[K'(R"R')'E‘/M«("i; k| ST(R, 0)] kf)

X (ke S(R', )l Ky, 1)), ©)

Eq. (5) is formally without approximation, and is a
quite general expression for describing the scattering,
However, in order to make progress towards tractable
calculations, approximations must be applied. The scatter-
ing operator S(«) can be represented in several forms, but
perhaps the most convenient for the later introduction of
approximations is the time dependent exponential in the
interaction picture [64]

S(a) = lim e i/BfI V@i (6)
[l

where o= (R, t) signifies the supplementary variables of
the driving operators as in Eq. (4) and 9 is the time
ordering operator. When Eq. (6) is inserted into Eq. (5),
even very severe approximations applied to the many-body
potential V will often give a final result for the scattering
probability which still obeys the condition of unitarity.
This will be the starting point for further development.

3. Trajectory approximation

The trajectory approximation consists of assuming that
the projectile follows a classical trajectory from its initial
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state characterized by momentum #k; to its final state fik;.
An alternative way of arriving at the trajectory approxima-
tion is to set up the scattering problem in the Feynman
path integral formalism, and then limit the number of paths
to those which are classically allowed. Although the parti-
cle moves along a classical trajectory, it is still possible to
consider its further interactions with the crystal, in particu-
lar the inelastic exchange of quanta, in a completely
quantum mechanical manner. Another useful approxima-
tion that has often been applied to inelastic scattering is the
semiclassical approximation. The semiclassical approxima-
tion has several different forms but usually it consists of
imposing the further restriction that the final and initial
energies of the projectile are not appreciably different, as
expressed by the relation ;= k;.

We will develop the trajectory approximation directly
from Bq. (5). We first need to discuss the interaction
potential V= V(r, {u}) where {u} symbolizes the set of
displacement variables of the crystal. Since the atomic
projectiles do not scatter directly from the crystal atoms,
rather they are scattered by the weak electron cloud in
front of the surface, it may be much more useful to divide
the unit cell up into divisions other than those usually
associated directly with the atomic cores, and this will
become particularly useful when we consider the contin-
uum potential model below.

We write the interaction potential as the sum of two
parts

V=vo+V1, (7)

where the “‘strong’’ part VO contains the terms which
backscatter the projectile and prevent it from penetrating
appreciably into the bulk, and the remainder V! contains
the major terms describing interactions with the lattice
vibrations. If the potential is expanded in a Taylor series in
the lattice vibrations, then

V= V(l‘, {uj,:(})luj,,FO + Zuj,x' Vj,KV(r’ {uj,K})|uj,»<=0
JiK

+ oo (8)
where V; . is the gradient operator with respect to the
(j, k) displacement. We use a notation for the set of
indices (j,x), in which j is a two-dimensional variable
that counts unit cells of the surface and « is three-dimen-
sional and counts elements of the basis set within the unit
cell including those in all the layers below the surface.
Usually « counts the crystal atoms making up the basis set
of the unit cell, but we note that this does not necessarily
need to be the case. The logical choice is to associate V°
with the leading term of Eq. (8) which is now independent
of the displacement and let V! be the first order term in
the expansion in vibrational displacements. Higher order
terms in the expansion of the potential (8) have been
shown to be unimportant in the case of atom-surface
scattering [65].

Within the above potential model and for a crystal in

the harmonic approximation the thermal average in Eq. (5)
can now be carried out. For operators linear in the har-
monic displacements the commutations are handled with
the relation e“e? = ¢4 Bel4BV2  and ((e?)) =
e{{4*/2)) The result is

dR pkem®L* e

= Y. | dt[dR|dR
dQdE;  (27)’1%k,, G.[_w f f
Xei[(K+G)-(R—R’)—E:/ﬁ]|Tﬁlzz
I

K el Ri o= W(R,E) e—W(R’,k) e2W'l(R,R’,t) (9)

where p is the density of surface unit cells. |r;|* is the
form factor in which to lowest order approximation the
scattering amplitude 7 is the off-energy-shell transmis-
sion matrix for scattering by a unit cell of the zero order
potential V° [66,67].

The function 7°,(R, R', t) is a generalized correlation
function which only depends on the relative distance [
between unit cells. The Debye—Waller exponent is given
by the correlation function evaluated at equal positions and
times W(R, k) =%,_(R, R, t=0).

Eq. (9) is a quite general expression in which the only
major approximations, aside from the harmonic approxi-
mation, are the expansion of the interaction potential
through linear terms only and the application of the trajec-
tory approximation. The G =0 term of Eq. (9) is essen-
tially identical to the result presented by Bortolani and
Levi [28] with two exceptions, we have accounted for the
periodicity of the lattice which is recovered after averaging
over the initial states of the crystal, and the scattering
amplitude 7; does not depend on the variable R. This
latter difference is simply due to the choice of separation
of the interaction potential into the parts V and V%
making a different choice in which V° contains displace-
ments of the basis elements which distort the unit cell will
lead to

|7sl” = Ti(R)7s(R'), (10)
after making a reasonable set of simplifying assumptions
[66].

We note here that the spatial integrals over R and R’ in
the differential reflection coefficient of Eq. (9) can be
replaced by integrals over a single unit cell. Translation
through a lattice vector such as in the operation R = R +
R, simply changes the phase of the displacement vector.
The correlation function %,(R,R',t) depends only on the
phase difference, and this phase difference is summed over
in Eq. (9). Thus the reduction of the spatial integrals to
integrals over single unit cells merely multiplies Eq. (9) by
a constant equal to the corresponding density of states.

General theories of inelastic surface scattering based on
the powerful S-matrix formalism have been developed
earlier by Brenig [50] and by Brako and Newns [43] and
even much earlier by Beeby [39]. Eq. (9) is more general
than these earlier theories in two aspects, interference in
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multiphonon scattering arising from contributions from
different surface unit cells is accounted for in the summa-
tion over lattice sites, and there is a multiplicative form
factor Ifrﬁl2 which shows that the scattering from a single
unit cell provides an envelope for the overall scattering
distribution. For example, the theory of Brako and Newns
in the form as developed by Celli and Himes [3,68] is
recovered exactly if in Eq. (9) only the term /=0 and
G =0 is retained and if Ifrﬁ{2 is set equal to unity.

4, Quick scattering limit

We now come to the question of extraction the quick
collision result out of the more general trajectory approxi-
mation of Eq. (9). The quick collision approximation is the
assumption that the collision is rapid compared to a typical
phonon vibration period. In general, this is not a good
assumption, but the multiphonon scattering is expected to
be dominated by small frequency and long wavelength
vibrational modes, and for these a quick collision is a
reasonable assumption. The end result is to produce a
correlation function of the simple and well known form

Z (R, R, t)=k-uy(R, 0)k-u,(R, 1)), (11)

i.e., the time dependent displacement correlation function.
Inserting the approximate form of Eq. (11) into the
differential reflection coefficient of Eq. (9) above gives

dR kem®L? +oo
- 2 Y[ 4] ar[ dr
de dEf (211-) ﬁskiz G '~ u.c. u.c.

Xei[(K+ G)(R-R'y—-Et/#]

Xl'rﬁlzz eiK Ry o= W(RK) o= W(R',K)
1

X (K uo(R Ok u(R'0)) (12)

with the Debye—Waller exponent taking on the classic
form

W (k) =3k, (O] (13)

At this point we have spelled out a complete set of
approximations necessary to obtain the relatively simple
and straightforward form of the differential reflection coef-
ficient Eq. (12) in the quick collision limit. Finally, we
note that the reduction of the full trajectory approximation
of Eq. (9) to the fast collision approximation of Eq. (12)
provides, in the intervening steps, a hierarchy of different
stages of approximation which may prove to be useful in
special cases.

A particularly useful and simple model for the surface
scattering is for a surface which is flat and continuous,
rather than made up of a summation of discrete scattering
cores. In fact this is the behavior expected for smooth,
close-packed metal surfaces. With such surfaces the repul-
sive part of the atom—surface potential, which contributes
most strongly to the inelastic scattering, is due to the Pauli

exchange forces between the incoming atomic cloud and
the surface electron density. The Smolokowsky smoothing
of the decaying tail of the conduction electrons would be
expected to provide a very continuous surface potential.

For a continuous, flat surface the Debye—~Waller expo-
nent W(R, k) in Eq. (12) no longer depends on the
position coordinate R and the correlation function depends
only on the difference between its position arguments.
Consequently, the spatial integrals can be reduced to a
single integral over the surface and the differential reflec-
tion coefficient becomes

dR _ kfmz " [2 -
A0 dE; 2a)h%,.S,.

xf’mdtde QUK R=Et/ ] o((k-u@0)k u(R,1))
—te

(14)

Eq. (14) embodies the continuum model of the atom~
surface interaction. Although approximate, Eq. (14) is a
complete quantum-mechanical description of the scattering
process. Expansion of exp[{{k - u(0, 0k - u(R, 1)))] pro-
duces an ordered series in terms of numbers of exchanged
phonons with the zero order term being the elastic diffrac-
tion contribution. In order to obtain the multiphonon part

the elastic and single phonon contributions are subtracted
from Eq. (14).

5. Classical limit

The classical limit occurs for high temperatures and
large energies (or more precisely, large k). Under classical
scattering conditions the Debye~Waller factor is so small
that elastic and single phonon peaks are completely sup-
pressed, and only multiple phonon exchanges occur. There
have been several recent and interesting treatments of
semiclassical and classical trajectory approximations to the
multiphonon scattering of atomic and molecular particles
at surfaces which have considered the classical limit
[3,44,50,52,53]. It is of interest to consider the present
theory in this limit as it leads to closed form expressions
for the scattering intensities, and gives specific criteria for
the validity of the classical limit,

For a lattice of discrete scattering centers in the classi-
cal limit the time Fourier transform in Eq. (12) can be
evaluated by the method of steepest descents, The scatter-
ing becomes completely uncorrelated and only the term
[=0 in the sum over latice sites contributes. The final
result is the following differential reflection coefficient:

dR mk) [ A\
ITﬁl

d0; dE, 8wk, wokyl
(E +fiwg)?
X ———,
exP{ 4kpThag (13)
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The Debye—Waller factor no longer appears explicitly in
this expression. The scattering intensity is a Gaussian-like
function in the energy exchange E, but shifted to the
energy loss side by the energy shift 7 w, given by

flw,=h%k?/2M, (16)

where M is the mass of a crystal atom. However, we note
that Eq. (15) is not a true Gaussian function because w, is
a function of k. The intensity is limited on the energy loss
side by the fact that the projectile may loose no more
energy than it had initially, and it is skewed towards the
energy gain side by the energy dependence of w,. The
width of the differential reflection coefficient in energy
exchange is roughly 2+/kzTh w, in energy units, and the
peak amplitude decays with increasing temperature as
(kgTh wy)/?. This behavior of the width and peak inten-
sity of the differential reflection coefficient is understand-
able in terms of the unitarity condition, which guarantees
the equality of the number of scattered particles to the
number of incident particles. At higher temperatures the
intensity spreads over a larger range of E, consequently in
order to preserve the number of particles, the peak inten-
sity must decrease accordingly.

The steepest descent evaluation of Eq. (15) also implies
a criterion for the validity of the semiclassical result which
is

2W(k)/6> 1. (17)

This is a very stringent criterion, and is in fact rarely
satisfied in typical He-scattering experiments, and often
not satisfied even when the projectile is a heavier atom
such as Ne or Ar. The average number of phonons ex-
changed in a collision process is approximately equal to
2W, thus Eq. (17) implies that for the classical approxima-
tion to be valid, a truly large number of quanta must be
exchanged. In practice it is found that for 2W <6 the
differential reflection coefficient differs strongly from
Gaussian form and is an increasing, rather than decreasing,
function of 7. For values of 2W > 6 the Gaussian-like
form of Eq. (15) is a reasonable approximation.

Eq. (15) is the classical limit for a point particle
scattering from a lattice of scattering centers in the limit in
which the projectile scatters from a single surface atom.
There is a second classical limit for the case of an incident
projectile which interacts with many surface atoms, and
the surface can be treated as a continuum. This is the limit
that should be applicable in the completely classical case
of a projectile that is large compared to the interatomic
lattice spacing. This is also expected to be the situation in
the case of He scattering from metals because the He
atoms are repelled by the electron density which extends
outside of the surface and this electron density would
appear as a continuum. The continuum classical limit is
obtained from Eq. (14) upon evaluating the time and
spatial Fourier transforms by the method of steepest de-

scents. The final result is a differential reflection coeffi-
cient of the following form:

dR m?| kel 02 im
00, dE,  4m'%k,Sp. ™ R\ wokaT

{ (E+hwy) +28203K? }
X expy — )

4kgThw,
(18)

where vy is a characteristic velocity, or weighted average
of surface phonon velocities parallel to the surface [43].
There is a clear difference between the two classical limits
in Egs. (15) and (18). In the latter, the temperature depen-
dence of the peak in the inelastic intensity varies as
1/T%?* as opposed to 1/T'/2, and there is the extra
Gaussian behavior in parallel momentum exchange.

Eq. (18) with the form factor | 741 taken to be constant
is essentially the expression developed by Brako and Newns
[44] and can be arrived at by purely classical thermody-
namical treatments of scattering from an isotropic contin-
uum surface [49]. The present treatment produces a spe-
cific expression for the energy shift @, given by Eq. (16),
whereas in classical or semiclassical treatments [44,49] it is
often chosen to be the Baule expression derived from
binary particle collisions, modified by the presence of the
attractive well:

4
—#—)Z(EiCOSZOi +D), (19)

Wa =
e

where p=m/M is the ratio of the projectile to surface
atom mass, E; is the incident energy, and D is the depth
of the attractive potential well in front of the surface. Eq.
(16), evaluated in the semiclassical limit where k¢, = k;,

and k = 2k;,, is very close to Eq. (19), namely
4hk7
fiwg = A 4uE;cos™;, (20)

differing from the Baule expression only in the absence of
the denominator of the factor (1 + u)? We could readily
include the well depth D in our treatment by using the
same arguments inherent in Eq. (19), that the attractive
part of the particle surface potential is rigid (and conse-
quently does not contribute to inelastic exchange) and is
sufficiently smoothly varying that it also does not elasti-
cally backscatter an appreciable fraction of the incident
particle amplitude [69-71].

An interesting special application of the classical limit
is the case of the approach to an equilibrium distribution of
a scattered gas arising from a very low energy beam of
atoms incident on a very hot surface [72]. In the limit
E, < E; we have for the energy exchange and energy shift

E=E;—E—E,, (21)
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and

2

2 m
fwg = (ke = ki) RivZ2s (22)

The differential reflection coefficient of Eq. (18) then takes
the form

dR

—_— 2
40, dE; (23)

—E(1+m/M)?
o« T™3/% exp ;(_/_) )
4kpTm/M

Due to the momentum dependence of the energy shift
fiw, the Gaussian-like function of the energy exchange is
skewed to the point where it becomes an exponential in the
final energy of the scattered particle. This can be related to
the final energy & of a crystal atom through the well
known expression for the energy exchanged in a two
particle collision

m/M
E=48——, (24)
(1 +m/M)
leaving the scattered intensity in the form
dR
_C(T_3/2 —g’/kBT' 25
40, dE, © (25)

The differential reflection coefficients of Eq. (25) or (23)
clearly indicate not only that the incident low energy beam
of particles has gained energy in the surface collision, but
in addition show that the particles leave the surface with
an energy distribution having the exponential dependence
of the Maxwell-Boltzmann distribution function.

6. Comparisons with experiment

Experiments on He scattering by crystal surfaces pro-
vide many pertinent examples of the application of the
multiphonon theory developed in this review. Typical ex-
periments use He energies in the thermal range of 5-100
meV, where the de Broglie wavelength is of the order
0.1-1 1&, and hence the motion of the He projectiles is
quantum mechanical. With surface temperatures ranging
from T substantially less than the surface Debye tempera-
ture O, to several times @y, the inelastic background is
characterized by an average number of exchanged quanta
2W(k) which ranges from less than unity (the quantum
regime) to values of 10 or greater (which, according to Eg.
(17) is well into the classical regime).

In order to make quantitative comparisons with experi-
ment, the scattering amplitude 75, or more precisely the
form factor la-ﬁl2 must be specified. This has been studied
in previous work explaining the intensities of single phonon
inelastic peaks. Harten et al. [73] have found, through a
careful consideration of pairwise summation potentials for
the He-surface interaction potential V, that |7;|* can be
expressed as the product of a cutoff function in parallel

momentum K and the Mott-Jackson matrix element in the
perpendicular momentum:

-2K? 2
!7ﬁ|2=° 2K /QCUT%(—J(kfz? kiz). (26)

The Mott-Jackson factor vy_y is the matrix element of
the one-dimensional potential ¢(z) = exp{— Bz} taken with
respect to its own distorted eigenstates [74]. The form
factor of Eq. (26) has exponential decay in K2, and the
Mott-Jackson factor' behaves roughly as an exponential
decay in the normal momentum difference | kg,|—|k;,).
The two parameters g, and S are best known for metal
surfaces where, on the basis of comparisons with single
phonon scattering intensities, it is found that the cutoff
momentum Q. is around 1 1-?\", while the range parame-
ter B is usually somewhat larger than 2 A~!, The remain-
ing point to be specified is the model of surface vibrations,
For all calculations reported here we have used a Debye
phonon distribution.

Of the many laboratories carrying out energy resolved
He atom scattering experiments, several have specifically
investigated the physical propertics of the diffuse inelastic
or multiphonon contributions to the scattered distributions.
These include the group of Skofronick and Safron at
Florida State University [75-78], Comsa et al. at Jiilich
[79], and several collaborators in the laboratory of Toen-
nies at Gottingen [1,80], Of these the most extensive and
carefully controlled is a series of experiments for He on
the Cu(001) surface at energies E;> 100 meV. In these
experiments the jet beam of He has an angular resolution
of better than 2° and at the incident energies of order 100
meV the energy resolution is AL;/E; <7%. A major
constraint on the apparatus is that the detector is at a fixed
angle of 95.8° relative to the incident beam, thus for each
incident angle the energy distribution of scattered particles
can be measured at only a single scattering angle. How-
ever, the energy resolution is better than 0.1 meV. The
Cu(001) single crystal target is free of adsorbates and
defects to better than 1% relative to the number of atoms
in the surface layer, and steps on the surface are separated
by distances larger than 200 nm. The temperature of the
crystal can be varied from 40 to 1200 K.

Fig. 1 shows the total intensity scan (i.e., the total
scattered infensity without energy resolution) as a function
of the angular deviation A§ away from the specular
position, with negative A6 corresponding to incident an-
gles closer to normal incidence than the specular angle at
6;=47.9° and an incident energy E,= 113 meV. The
different scans are for a range of surface temperatures
from 203 to 1002 K. At the lowest temperatures the major
experimental feature is a sharp peak at the specular posi-
tion which sits on top of a small but much broader
background peak. This sharp peak is the elastic specular
peak and is a quantum mechanical feature, the zero order
diffraction peak. As the temperature is increased the elastic
quantum peak does not broaden but becomes smaller while
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the background increases substantially. At the highest tem-
perature the quantum peak has completely disappeared and
there is nothing but the broad background. The highest
temperature is an example of diffuse inelastic scattering in
the classical limit, and this is supported by the value of the
Debye—Waller exponent 2W = 10.8 which is larger than
the classical condition of 2W> 6 discussed above. The
calculations shown in the dashed curves are based on the
quantum mechanical theory for a continuum potential of
Eq. (14), although at the highest temperature the classical
theory of Eq. (18) gives the same results. Importantly, the
theory agrees with the diffuse background at all tempera-

80g LCU(007) <110 ]
Eiz113meV
800+ .
L00F Ts=203K 4
200+ J 2Ws 2.2
; “
-+ 200r T, = 403K
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Fig. 1. Total intensity angular scans as a function of the angle of
deviation A6 from the specular position for a range of surface
temperatures and an incident energy of 113 meV. The experimen-
tal data is shown as a histogram [1] and the theoretical calculation
as a dashed line. The experimental apparatus has a fixed angle of
95.8° between incident beam and detector. Elastic and single
phonon scattering are not included in the calculation. The values
given for 2W are evaluated at AK =0 and AE=0.
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Fig. 2. A series of TOF scans converted to energy transfer for
different surface temperatures, with A = —3° and E; =82 meV
[1]. The continuum model theory is the dashed line. The values of
2W are evaluated for AE = 0.

tures, and agrees very well in the classical regime at the
highest temperature. A single set of parameters was used
for all calculations reported here, 8=5.7 A‘l, 0.=24
AL ©p =280 K, and vy = 3000 m/s. These are close to
the values B=3 A™Y, Q.=1 A~! and @,=267 K
obtained from an extensive study of the energy, parallel
momentum and temperature dependence of the single
phonon intensities from the Cu(001) surface [1]. The value
of vy is slightly larger than the Rayleigh wave velocity for
Cu(001).

A more detailed picture of the quantum-to-classical
transition emerges in Fig. 2 which shows, as a function of
surface temperature, the energy resolved intensity at an
incident angle 8; = 44.9° (6; = 50.9°) and an incident en-
ergy of 82 meV. At this angle the scattering is mainly
diffuse inelastic with very little indication of sharp quan-
tum mechanical features even for the lowest temperatures.
The continuum model calculations, shown by the dashed
curves, agree rather well with the measured data, but at the
highest temperatures where the scattering is well within
the classical regime, the calculations agree nearly perfectly
with experiment.
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Fig. 3 shows the angular dependence of the scattered
intensity in the classical regime. With the surface tempera-
ture in the 800 K range and an incident energy of 113
meV, energy resolved scans are shown for a range of
incident angles from Af= +3°to A§= —12° The theo-
retical calculations are again the dashed lines. We note
that, although the angular range of the experimental obser-
vations is not large, the intensity varies over a range of
three orders of magnitude. The good agreement between
theory and experiment over this large range of intensities
indicates that the continuum theory does an excellent job
of predicting the angular and energy dependence of the
intensity of the scattered lobes.

The final example of the validity of our theoretical
model is in Fig. 4 which shows not only the transition into
the classical scattering regime, but also demonstrates un-
equivocally that the atom~surface scattering potential must
be regarded as a continuum barrier and not as a collection
of atomic core scattering centers. Plotted in Fig. 4, as a
function of surface temperature, is the maximum peak
intensity of the curve for A= —3° in Fig. 3. The experi-
mental points show that at low temperatures the diffuse
inelastic intensity grows with increasing temperature, but
eventually reaches a maximum after which it decreases
with further increase in temperature. The point at which
the intensities begin to decrease with further increase of

temperature is the beginning of the classical scattering

regime. The theoretical calculation based on Eq. (14)

shown in the solid curve has the same qualitative form of

the experimental points in the low temperature quantum
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regime, but in the classical regime at T>600 K the
agreement with experiment is very good. An extremely
interesting result is shown in the dashed curve and the
dash-dot curve which show the results of the two purely
classical calculations based on Eqs. (15) and (18) respec-
tively. The dashed curve is the T~%/% envelope from Eg.
(18) for a continuum surface potential and agrees quite
well with the experimental data for 7> 600 K. The dash-
dot curve is the theoretical result for a surface lattice of
scattering centers having a 7~'/? temperature dependence
as in Eq. (15), and this clearly disagrees with experiment.
Thus this figure shows not only that the continuum model
theory works well, but it also demonstrates conclusively
that the metal surface acts as a continuous vibrating bar-

rier.

7. Conclusions

We have presented a brief review of the inelastic
scattering of neutral atomic particles from surfaces which
is particularly adapted to the description of multiphonon
exchanges during the collision, Starting from very general
principles of many-body scattering theory, we develop a
formal treatment of the scattering problem. However, in
order to have a theory tractable enough for calculations, a
number of approximations must be made. We apply the
trajectory approximation in order to make the connection
with earlier treatments of similar problems. We apply a
further approximation, called the quick collision approxi-
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Fig. 3. A series of TOF scans converted to energy transfer for different incident angles from Af= +3° to Af= —12° for an incident

energy of 113 meV [1]. The temperature at A@= +3° is 800 K and at all other angles it is 837 K. The theory is the dashed line.
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mation, which is particularly useful for carrying out calcu-
lations. The quick collision approximation is based on the
assumption that the multiphonon part of the scattering
intensity is dominated by long wavelength and small fre-
quency phonons.

In order to investigate the correspondence principle
transition from the quantum regime to classical scattering,
we develop a simple model, called the continuum potential
model. In this model the vibrational displacements are
assumed to be continuous functions defined over a smooth,
flat surface such as would be expected for the interaction
of a projectile atom with the exponential tail of conduction
electrons extending outside of a metal. This model is used
to explore the transition from classical to quantum scatter-
ing through comparisons with recent He atom scattering
experiments [1] at 100 meV incident energies and substrate
temperatures from 100 to 1200 K.

There are two classical limits that result from the
theory for large temperatures and high energies, one for
the case of a continuum surface and the other for a surface
made up of discrete scattering centers. Both of these closed

form expressions appear as skewed Gaussian-like func-
tions in the energy exchange with the surface, but they
each have a very clear distinguishing signature. The dis-
crete scattering center expression has a temperature depen-
dence of its maximum intensity which varies as 77 !/?
while the maximum intensity of the continuum surface
model varies as T~%/2, Comparison with the experiments
in the high temperature classical regime shows clearly that
the data agrees.with the continuum surface model and not
at all with the discrete scattering center model.

We have carried out an extensive comparison with
experiment for He scattering from a Cu(001) surface, with
He incident energies in the 80-120 meV range and surface
temperatures of order 100-1200 K. These comparisons
include total angular scans as a function of surface temper-
ature, and time of flight energy-resolved scattered intensi-
ties as a function of both temperature and incident angle.
The agreement is quite good and particularly good in the
classical domain. The good agreement achieved between
theory and experiment shows that the diffuse multiphonon
intensity in atom-surface scattering can be described with

120000

100000 |
s
2 80000 -
.(h
P
[
3
= 60000
z
%]
c
g
S
® 40000 |-
Y
o

20000 |

0 | 1 1 i — 1
0 200 400 800 1000 1200 1400

6
Surface Temperalure (K)

Fig. 4. Maximum peak intensity as a function of surface temperature for the A9 = —3° incident angle and E; = 113 meV shown in Fig. 3.
The two different sets of points are two sets of data taken at different times [1], the solid line is the continuum model theory, the dashed line

is the 7,7°/2 envelope, and the dash-dot line is the 7,"!/2 envelope. The agreement of the experimental data at high T, with the T,

3/2

envelope demonstrates that the He is scattering from a continuum potential and not from a lattice of discrete centers.
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straightforward and tractable calculations. Furthermore, the
comparisons with experiment support the two biggest ap-
proximations made in the calculations, (i) the use of the
quick collision approximation, and (ii) the assumption that
the multiphonon intensity does not depend strongly on the
details of the phonon spectral density.

This study shows that we have arrived at a basic
understanding of the energy exchange process between a
colliding atom and a surface in the region where the
incident energies are larger than the typical phonon ener-
gies but smaller than the energies of typical atomic excita-
tion processes. This work is useful for background subtrac-
tion in order to extract from the data reliable values for the
intensities of the diffraction and single surface phonon
events. The temperature range measured provides a beauti-
ful example of the correspondence transition from the
quantum-mechanical regime to classical physics. However,
this work also shows that important physical information
on the nature of the interaction can be obtained from the
diffuse inelastic intensity alone. In particular, comparisons
with the data in the classical regime provide clear evidence
that the He atoms are scattering from a continuum surface,
and this is in accordance with accepted ideas that the
incoming atomic projectiles scatter from the asymptotic
tail of the electron density extending outward from the last
layer of atoms making up the surface. The interaction of
the He atoms with the surface vibrations is through the
vibrations of the electron density extending outside the
surface, and not directly with the vibrations of the underly-
ing crystal atomic cores.
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