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Abstract

We consider the inelastic interaction of a neutral atomic projectile scattering from a solid surface. Several computational
models are developed to analyze the diffuse multiphonon component in the scattered intensity. Through extensive numerical
calculations we determine the validity ranges of these approximations. Comparisons with experimental data for He scattering
from LiF(001) and KCN(001) provide examples of the applicability of these theoretical approximations.

1. Introduction

Atom-—surface scattering at thermal energies has proven
to be an extremely sensitive and useful method of surface
analysis [1,2]. The multiphonon contribution to the scatter-
ing process is observed as a diffuse inelastic background
upon which the elastic and single phonon peaks appear.
We present in this paper several computational models
developed to describe the multiphonon intensity. One im-
portant reason for studying the multiphonon contribution is
to better understand how to subtract the diffuse inelastic
background in order to obtain accurate elastic and single
phonon intensities. The single phonon intensity depends
very strongly on the details of the phonon spectral density,
whereas the multiphonon contribution does not since ex-
change of several quanta of energy tends to average over
details of the phonon spectral density. This insensitivity to
details in the phonon dynamics means that, through the use
of simple phonon models, the information on the atom-
surface interaction potential (i.e., the form factor for in-
elastic scattering), can be extracted.

The theory described here is quantum mechanical, and
thus capable of treating the case of scattering of small
mass particles such as He. We also consider the semiclas-
sical limit which is valid for higher surface temperatures,
higher incident energy particles and larger mass particles.
Through extensive computational work we determine the
ranges of validity for the approximations developed. We
make comparisons with recent data for the scattering of He
by LiF(001) which is a highly ordered surface, and by
KCN(001) which appears to have significant disorder. In
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both cases good agreement is obtained between theory and
the measured diffuse inelastic background.

2. Theory

We briefly review the important features of the quan-
tum mechanical theory that has been developed previously
[3,4] to analyze the multiphonon background. The interac-
tion between the atomic projectile and the surface can be
described by a Hamiltonian of the form
H=HP+H®+V, 1)
where HP is the Hamiltonian of the free particle, H® is
the Hamiltonian of the unperturbed crystal which includes
the phonon vibrational states and V is the interaction
coupling the projectile and crystal.

The experimentally measured quantity is the three-di-
mensional differential reflection coefficient, dR/d f); dE;
which gives the fraction of the incident particles that are
scattered into final solid angle d{2; and energy interval
dE;. It is related to the tramsition rate for scattering
w(k;, k;) from projectile state k; to state kg, upon divid-
ing by the incident flux and multiplying by the density of
available final particle states:

L AL WO @
= w(k;, k).

d0dE  Qui)k,
The standard approach is to start with the quantum me-
chanical probability density for the projectile to gain an
amount of energy E, or to start from the generalized
golden rule for the transition rate for scattering, which is
given by

2
wlke, k) = 5 (T (8= )0, ®
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where Ty is the transition matrix element, &, denotes the
energy of the total system (projectile plus crystal), the
summation X, is over the final vibrational states of the
crystal and the double brackets {{)) imply an average
over the initial states of the crystal. The transition rate is
proportional to the time derivative of the probability den-
sity, and both contain the same information. Using the
interaction picture, the time dependence of operators is
expressed in terms of the unperturbed crystal Hamiltonian:

f(l‘) - eib’%/ﬁ}'—v‘ e—iH°t/ﬁ. (4)

It has been demonstrated that within the approxima-
tions discussed below, a satisfactory starting point is to
make the following simple and straightforward approxima-
tion to the matrix elements of the transition operator taken
with respect to particle eigenstates:

Tk () = (kflf(t) | ki) = Ze_ik.[rl-'-ul(t)]ka,ki’ (3)
!

where k =k;—k;, r, is the equilibrium position vector of
the Ith unit cell and u,(#) is its vibrational displacement.
The summation is over unit cells of the surface, i.c., the
only dependence on the crystal displacements is in the
phase arising from the optical path, then the transition rate
resulting from Eq. (3) is

N += ) )
w(k, ki)=ﬁ[ de e™H /A g |2 KR
—c0 1

% o= 2Wk) o(Ck- up(O)k- u(t))) (6)

where K and R, are the component of k and r; parallel to
the surface, E = E; — E, is the difference between the final
and initial particle energy (i.e., the energy gain of the
particle), N is the number of surface unit cells and 74 is
the form factor of a unit cell. It can be shown that 75 is
the contribution from a unit cell of the off-energy-shell
transition matrix [4]. The important underlying assumption
here is the quick collision approximation, which implies
that for a fast incident particle the scattering time is short
compared to a phonon vibrational period. Note that the
quick collision approximation does not imply a hard wall
collision, it implies simply that the time during which the
particle is near the surface is short compared to that of the
periods of the phonons which will be exchanged during the
collision. This is a valid assumption for the low frequency
and long wavelength phonons that mainly comprise the
multiphonon part of the spectrum. The displacement corre-
lation function appearing in the exponential of Eq. (6) is
the time dependent correlation function of an element of
the surface and can be expressed in terms of the normal
modes of the crystal. The Debye—Waller exponent can be
expressed in the standard form involving the mean square
displacement:

2W(R, k) = [k u, (R, )]*)). (7)
The Debye—Waller factor, exp(—2W), is seen to multiply

all contributions to the scattering, either elastic or inelastic.
Formally, as indicated by its dependence on the mean
square vibrational amplitude as shown in Eq. (7), it can be
explained in terms of multiple scattering of virtual phonons
[9]. It can also be described as a consequence of unitarity,
or the conservation of the number of scattered particles. As
more and more inelastic channels open up with increasing
temperature and incident energy, the existing channels
must decrease in intensity in order to conserve the total
number of particles scattered into all possible final states.

Eq. (6) provides the total scaitered intensity, from
which zero and single phonon components need to be
subtracted to obtain the multiphonon contribution. All
numbers of multiple phonon exchange are contained in the
exponentiated displacement correlation function. The
method to obtain different phonon contributions is to
expand the exponential of the displacement correlation
function in Eq. (6). Upon expanding the exponential to
zero or first order in the displacement correlation function,
the elastic and single phonon contributions are obtained.
The remaining terms of the expansion is the multiphonon
part.

2.1. Exact method

To facilitate numerical computation, various approxi-
mations to the theory need to be considered. Starting with
the exact form of the theory, the multiphonon contribution
according to Eq. (6) is

dR
40, dE;
m2|kf| 2 +o . s
T 8mihk,, I7a " wa_m dre’ lEt/ﬁXz:e o
X [exp({(k- uO(O)‘k' w(6)))

"(<<k‘uo(0)k' u,(t)>>) "1]' (®)

The displacement correlation function appearing in the
above equation can be evaluated assuming a three-dimen-
sional isotropic Debye model. The frequency distribution
in this case, is

p(w)=3w2/w3D, )
where wp is the Debye frequency of the crystal.

The resulting expression for the displacement correla-
tion function is

e g (O) k- 1y (£) | )

[ R,
_Sﬁlklzfldwsm T
C 2Mop N w (w_Rz)

' U

x{[2n(w) + 1] cos( wt) — i sin( wt)}, (10)

where n(w) is the Bose—Einstein function.
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Eq. (8) will be referred to as the Exact Discrete Method,
since it contains a summation over the lattice sites. This
formula could be used to analyze surfaces containing
discrete scattering centers. We have applied it to the case
of alkali halides, and were able to obtain good agreement
with the data. But for metals like copper, which has a free
electronic distribution, a different formula is required. In
this case, the sum over lattice sites appearing in Eq. (8)
needs to be replaced by an integral in the continuum limit
[10].

For the form factor |75 |* appearing in Eg. (8), we
have adopted expressions obtained from the distorted wave
Born approximation which have proven to be very useful
in treatments of single phonon scattering [11-13]. The
form factor was expressed as a product of a Mott—Jackson
matrix element for perpendicular motion and a cut-off
factor for parallel motion:

|70 12 =75/ %08 (e, Bi)- (11)

The Mott—Jackson factor vy,_; is the matrix element of
the one-dimensional potential v(z) = exp{ — Bz} taken with
respect to its own distorted eigen-states. The cut-off factor
in Eq. (11) has a Gaussian form in K, and the Mott-Jack-
son factor behaves roughly as an exponential decay in the
normal momentum difference |k¢,|—|k;,| when this
quantity is sufficiently large.

2.2, FT method

We can simplify the expressions derived in the above
section in the first-order semiclassical limit. Assuming
only the long wavelength or small frequency phonons
contribute strongly to the multiphonon intensity, the dis-
placement correlation function can be simplified in terms
of a small wave vector expansion. The details of this
procedure can be found in Ref. [4]. A simplified result is
obtained for the case of a Bravais unit cell. The differential
reflection coefficient now assumes the following form

dR m? | k|
d0; dE;  8w%5k,,

|75 12 ™ 2WOS(K, EYI(K, E).

(12)

This is the product of a form factor |75 |%, a Debye—
Waller factor, a structure factor S(K, E) due to periodicity
of the surface, and an energy exchange factor I(K, E).
The specific expressions for these quantities are given by

S(K,E)= Y e K Rig-Fi (13)
!
with
: #(Q R, .
£i= a,az,‘;lk Z “ 2NMw,(Q) (g)ea(%)
X [2n( wV(Q)) +1] (14)

and

I(X, E) =[~+wdt e-iEr/ﬁ(eQ(l) -Q(1)-1), (15)

with
- AP
o) = “qu b ZZNM Ok eo(9)ex(8)
X ([2n( ©,(Q)) +1] cos( w,(@)1) —i
Xsin( w,(2)1)), (16)

where M is the mass of the surface atom, Q is the parallel
wave vector of the phonon mode, v is a discrete quantum
number for surface modes and continuous for bulk modes,
e, (2) is the polarization vector of the (Q, v) mode and
w,(Q) is the mode frequency, In the limit ¢ — 0, Q(¢) is
just the Debye—Waller exponent of Eq. (7), and F, is a
closely related sum in which the summand is weighted by
the square of the parallel momentum, In Eq. (15) I(K, E)
is the multiphonon contribution after subtracting off the
elastic and single phonon parts,

To evaluate the above formulas, a frequency distribu-
tion is required. This has been done by assuming a 3D
Debye distribution. Eq. (16) now simplifies to

_3ﬁ]kl2 1 2
Q)= v j;dww cos( wt) —-—ex (ﬁwpw)ﬁl +1
P\ ke
—i(sint—tcost) /2 |. 17

The single phonon part can be calculated by expanding
the exponential of the displacement correlation function in
Eq. (6) to the first order, The resultant expression in the
Debye model is

2 2
dR _m | ke | o 2B . ]zéwﬁwlkl
40 dE PO gmrdgSy, 5 2Mop
S 18
% (ﬁwbw) . ’ (18)
exp -
kT

where T is the surface temperature of the crystal. The
above expression is applicable in the range of | w| < wp.
Since the above formulas are applicable throughout the full
temperature range this method will be called the FT
method.

2.3. HT method

Although the FT method described above works from
low to high temperatures, it is still possible to obtain a
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simpler semiclassical formula at high temperatures. This is
cartied out by expanding n(w) for large T and simultane-
ously expanding the imaginary part of @(¢) in small z. We
have evaluated these expressions in the Debye model to

enable comparison with the experiment. The explicit forms

at high temperatures are

— T .—iKR, — wokpTR?
S(K,E)—zi‘,e exp[ 2l | (19)
and
I(K, E)
- [ Tar e e (o) - 00 - 1,
(20)

where vy is a characteristic velocity or weighted average
of surface phonon velocities parallel to the surface and
Q(¢) takes on the simpler form Q(¢) = 2W(k) sinwp)/
wpt. In the HT method, the Debye—Waller exponent takes
the familiar form

2W(k) = M : (21)
Mo}

and the energy shift is given by

fiwg=H*k2/2M. (22)

This approximation, consisting of Egs. (19) and (20) and
applicable at high temperatures, will be called the HT
method. Note that to obtain the multiphonon contribution,
the zero and first order terms must be subtracted as in Eq.
(15) above.

Egs. (15) through (22) have been used in the calcula-
tions to compare with the data. Before applying these
formulas, however, it is necessary to know the conditions
under which they are applicable. To determine these condi-
tions, we have carried out an extensive study for a wide
range of parameters. Our results show that the high tem-
perature approximation to the first-order semiclassical limit
is applicable when the temperature is above half the Debye
temperature of the crystal [14].

The energy shift has its origins in the zero-point motion
and is the result of recoil motion of the crystal. It occurs in
the above analysis due to a further approximation of
replacing the sin(w,(@)¢) function in Eq. (16) by its
argument. This approximation is not necessary, but it is
quite accurate in the extreme semiclassical region of large
incident energies where Zw, can be interpreted as the
energy loss to the surface of an energetic incident particle
when % w, << E,;. In general, and particularly for He scat-
tering, fiw, is not small compared to E; and in these
circumstances the average energy loss must be calculated
as an integral over dR/d(2; dE; weighted by the energy
exchange to the particle, £ =E;— E;.

It should be noted that the prefactor | k| /k;, occur-
ring in Eq. (12) is suitable for the standard experimental

configuration. This refers to the case when the detector
acceptance angle covers the entire illuminated spot made
by the incident beam. For other configurations different
prefactors would apply. Our data analysis has shown the
importance of using the correct prefactor applicable for the
specific configuration of the scattering apparatus.

2.4. CL method

We now consider the classical limit, which we denote
by the CL method. This occurs under conditions when the
temperature and incident energy are high. Under such
near-classical and classical scattering conditions the De-
bye—Waller factor is so small that elastic and single phonon
peaks are completely suppressed, and only multiphonon
exchanges occur. It is of interest to consider the present
theory in this limit as it leads to closed form expressions
for the scattering intensities, and provides specific criteria
for the validity of the classical limit. We consider the case
of scattering of a point projectile with a lattice of discrete
atomic centers. Under these conditions, the energy ex-
change factor appearing in Eq. (12) can be evaluated using
the method of steepest descents [3], upon expanding the
Q(2) of Eq. (16) to order ¢2. The final result is

dR m? | kel [ Bm 172
ITﬁI

40, dE, 8w'n'k, woksT
(E+ ﬁw0)2
Xexp| — ———— } 2
exp { 4k T wg (23)

The structure factor of Eq. (13) is equal to one, imply-
ing that the structure effects are negligible in the classical
limit, The Debye—-Waller factor no longer appears explic-
itly in this expression because it has been canceled by a
term arising from the energy exchange factor.

The steepest descent evaluation of Eq. (12) implies a
criterion for the validity of the semiclassical result, which
is

2W(k)/6> 1. (24)

This is a very stringent criterion since 2W is approxi-
mately equal to the average number of phonons exchanged
in a collision. This condition is rarely satisfied in helium
scattering, but often achieved with large mass atomic
probes such as Kr, Xe and Ar.

It is pertinent to mention here that the theory provides
another classical limit that is applicable for continuum
surfaces. Eq. (23) is the classical limit for a point particle
scattering from a lattice of scattering centers in the limit in
which the projectile scatters from a single surface atom.
There is a second classical limit for the case of an incident
projectile which interacts with many surface atoms, and
the surface can be treated as a continuum. This is the limit
that should be applicable for example in the completely
classical case of a projectile that is large compared to the

1. SURFACE PLASMONS
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interatomic lattice spacing. In this limit, the structure
factor in Eq. (13) does not approach a constant, rather it
has a Gaussian behavior in parallel momentum. This ex-
pression is obtained by replacing the summation over
lattice sites in Eq. (13) by an integral. The final result is a
differential reflection coefficient of the following form:

dR m? | k| r Pod A \¥?
40, dE;,  4nhk,S,, &' "R wokgl

{ (E+ﬁw0)2+2ﬁ2v§1<2}
X exp{ — ’

4kgThw,
(25)

where vy is the same characteristic velocity of Eq. (19).
There is a clear difference between the two classical limits
of Egs. (23) and (25). In the latter, the temperature depen-
dence of the peak in the inelastic intensity varies as
1/T%? as opposed to 1/T%/?, and there is the extra
Gaussian behavior in parallel momentum exchange.

3. Validity ranges of the approximations

The primary purpose of deriving these approximations
was to develop computational tools that could be used to
analyze the experimental data. Hence, it is important to
know the applicable ranges of validity for the approxima-
tions. Although the HT method is generally applicable at
high temperatures and the CL method under classical
conditions, a comprehensive study needs to be carried out
to ascertain precisely what these conditions are. Each
method needs to be tested under a variety of conditions
and compared with the calculated results based on other
methods. In our study the experimentally variable input
parameters: i.e., the incident energy of the particle (E,),
mass of the particle (m), mass of the crystal atom (3/) and
the Debye temperature of the surface (@p) were varied
over a wide range. For each value of the variables listed
above, the differential reflection coefficient (which is pro-
portional to the measured intensity, ) vs the particle
energy exchange, AE was plotted for a given final angle
and for the entire range of the temperatures investigated.
From the large number of plots thus generated, the peak
height (1,,,), full-width-at-half-maximum (FWHM) and
the Debye—Waller exponent (2W) at zero energy exchange
(AE =0) were extracted. The same procedure was re-
peated for each run of the FT, HT and CL methods. Then,
I..., FWHM and 2W were plotted against the range of
temperatures for each value of the parameters. A sample
plot is shown in Fig. 1, which illustrates the behavior of
the HT and FT methods over the temperature range. The
calculations were produced assuming He scattering from
an NaCl(001) surface in the {110) direction.

In the bottom window the maximum of the scattered
multiphonon intensity is plotted against temperature. At
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Fig. 1. A comparison of the peak intensity, FWHM and Debye~
Waller exponent for FT and HT methods, The solid line is based
on the FT method calculations while the dashed line shows the
behavior of the HT method. The parameters used in the calcula-
tion were; §; = 45°, k;=9.2 A1, @ =215 K, m= 40 amu and
M =355 amu for He scattering from NaCI(001) {110).

low temperatures, understandably the results based on the
HT method are quite different from the FT calculations.
This occurs since the underlying assumption for the HT
approximation is that the temperatures should be suffi-
ciently high. However, the HT method (dashed line)
quickly approaches the FT method (solid line) as the
temperature is raised. In the middle window, the FWHM is
compared for the two methods under the same conditions.
The top window shows the predicted behavior of the
Debye~Waller exponent for the two approximations.

3.1. HT method

Our intent in this study is to determine a criterion that
could be used to predict the applicability of the approxima-
tion. For example, is it the magnitude of the Debye~Waller
exponent (since it plays such a central role in atom-surface
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Fig. 2. Validtemp/®p vs energy of the incident particle (E;).
The calculations were produced for a He /NaCl system at specular
incidence. Assumed values for the Debye temperature and crystal
mass were 215 K and 35.5 amu, respectively.

scattering) or is it the temperature of the crystal, that
determines the applicability of the HT method. To examine
this, we first need to specify a test under which the HT
method is considered to be in agreement with the FT
method. For this purpose, in the / vs AE plot, the point at
which the two calculations based on FT and HT methods
first agree within 10% of each other will be called the 10%
criterion. (A similar criterion is defined for the FWHM vs
AE plot.) Next, the temperature at which the 10% criterion
is- satisfied (validtemp) was noted. Then for every case
studied validtemp/ @, was plotted against the whole range
of parameter values for incident particle energy, particle
mass and crystal mass. The results of this study are shown
in Figs. 2 through 4.

These studies demonstrate that in the whole range of
the parameters studied, the 10% criterion occurs approxi-
mately when T/ > 0.5. As an empirical rule, when the
crystal temperature is above half of the Debye temperature,
the HT method can be assumed to be a good approxima-
tion for the FT method. The above result on the validity of
the HT method is consistent with the applicability of the
high temperature approximation for specific heat calcula-
tions of general materials where it is usually agreed that
the high temperature approximation can be used for T >

0p/2 9]
3.2. CL method

The CL method is applicable for high incident energies
and at high temperatures. Hence, the validity criterion for
the CL method is different from that for the HT method.
At low temperatures, the CL method results diverge from
FT or HT methods. This is to be expected since the CL
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Fig. 3. Validtemp/@y, vs mass of the particle (m). The calcula-
tions were produced for a He/NaCl system with 44.23 meV
particle energy at specular incidence. Assumed value for the
Debye temperature was 215 K.

method is applicable only under classical conditions. As
the temperature is considerably increased, however, the CL
method fast approaches the FT method. The regime of
validity of the CL method has been studied in detail in
Ref. [14]. Suffice it to mention that the results of the study
indicate that, if 2W(k) > 4 over the entire range of AE for
which there is appreciable inelastic intensity, then the CL
method works quite well in predicting the form of the
diffuse inelastic background. We have noticed that under
most conditions it is adequate to test the value of 2W at
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Fig. 4. Validtemp /@y, vs reciprocal of the crystal mass (1/M).
The calculations were produced for a He /NaCl system with 44.23
meV particle energy at specular incidence. Assumed value for the
Debye temperature was 215 K.
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LAE = 0. However, when E, or m/M is small, the value of
2W will vary strongly from small to large energy ex-
change, and its value at AE =0 may need to be substan-
tially larger in order for the CL expression to be valid.

4, Applications in data analysis

Our first example is a comparison of the theory with
the helium scattering data from LiF(100) (110). LiF was
used in the first gas—crystal surface diffraction experi-
ments conducted in the early 1930s by Stern and cowork-
ers to investigate the wave nature of atoms. Scattering
from well prepared LiF crystals produces strong diffraction
patterns due to the highly corrugated nature of its surface.
The ease of preparation of clean, ordered crystal samples
by cleaving and then annealing in a vacuum makes LiF a
good candidate for surface studies.

Figs. 5 and 6 present scattered intensity versus energy
exchange for an incident beam of nearly 34 meV He atoms
incident on a clean LiF(001) surface in the {110) direction
for several surface temperatures. The He scattering appara-
tus has a fixed angle of 90° between the incident beam and
the detector. The incident angles are 40° and 50°, respec-
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Fig. 5. The intensity vs energy exchange curves for He scattering
from LiF(001) {110 at 40° incidence. The smooth lines are the
theory curves to match with the data curves represented by jagged
lines. The relevant parameters are; E; = 34 meV, Debye tempera-
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Fig. 6. Same as in Fig, 5 except at 50° incidence.

tively. These angles were chosen because they are not
close to conditions for elastic diffraction. The jagged lines
are the experimental time-of-flight data transformed into
energy exchange spectra. The smooth lines are the theoret-
ical calculations to compare with the estimated multi-
phonon backgrounds from the data curves, The tempera-
tures are indicated on the graphs. Our calculations based
on the semiclassical approximation of the theory predicts a
rising multiphonon background with increasing tempera-
ture. The difference between the theory curve and the
estimated multiphonon background from the experimental
data curve at low temperatures can be attributed to the
exchange due to bulk single phonons.

For the next example we present He scattering from
KCN, which has a more disordered surface structure.
Neutron inelastic scattering and Raman scattering made on
KCN indicate that multiphonon effects play an important
role [15]. A high degree of dynamic disorder of the CN~
ion and an unusually large Debye—Waller exponent have
been observed in these studies. In the He scattering stud-
ies, reported here, these facts were confirmed for the case
of surface scattering.

In our analysis of the KCN data we have noticed that at
low temperatures there appears to be a substantial contri-
bution to the inelastic intensity from the single phonons.
For this surface the single phonon intensity would be
expected to have a large incoherent contribution coming
from the surface disorder, The incoherent distribution due
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Fig. 7. The intensity vs energy exchange curves for He scattering
from KCN at 45° incidence. The dotted lines indicate the calcu-
lated multiphonon backgrounds. The dashed lines are the theory
curves (single plus multiphonon contributions) to match with the
data curves represented by solid lines. The relevant parameters
are; E; =30 meV, Debye temperature—123 K, crystal mass =
65.10 amu, B = 55A"! and Qc—75A‘

to small frequency vibrations is well represented by a
Debye model. Consequently, we have calculated the De-
bye model single phonon contribution based on Eq. (18)
and added it to the multiphonon part. Fig. 7 illustrates the
comparisons made with the data for a range of tempera-
tures. The dotted lines indicate the calculated multiphonon
backgrounds whereas the solid lines represent the experi-
mental data. The dashed lines are the theory curves for the
total inelastic background (sum of single and multiphonon
contributions). The temperatures are 334, 251, 200, 155
and 106 K. We have assumed a Debye temperature =123
K, crystal mass = 65.10 amu, 8=15.5 A~! and Q.=175
A'1 Reasonably good agreement is obtained throughout
the temperature range when the contribution due to single
phonon exchange is included in the calculated intensities.
At low temperatures, the difference in the two theoretical
curves clearly indicates the magnitude and importance of
the single phonon contributions. Furthermore, the shape of
the single phonon contribution at low temperatures and in
particular its sharp cut-off at the Debye frequency, gives a
good estimate of the value that should be used for the
surface Debye temperature.

5. Discussion

We have presented the essential features of the theory
of multiphonon inelastic scattering of atomic projectiles by
surfaces. The motion of the particle and the surface are
treated quantum mechanically, and the transition to the
correspondence limit of large numbers of quanta and to the
semiclassical limit for particle motion are straightforward.
This model should work well for multiphonon processes
involving the exchange of low-energy, long-wavelength
phonons. It is noted that the multiphonon background
depends on the atom~surface interaction potential in the
same way as the single phonon intensity. However, the
single phonon intensity depends very strongly on the de-
tails of the phonon spectral density, whereas the multi-
phonon contribution does not since exchange of several
quanta of energy tends to average over details of the
phonon spectral density. This insensitivity to details in the
phonon dynamics means that simple phonon models may
be used to evaluate the multiphonon intensity. By subtract-
ing off the multiphonon background from the total mea-
sured intensity, the single phonon peaks could now be
accurately measured. Our calculations based on the theory
show good agreement with the multiphonon inelastic back-
ground observed in helium scattering experiments. The
theory illustrates the limits to which information on sur-
face vibrational properties can be obtained from analysis
of an experiment, without extensive knowledge of the
specific and detailed nature of the He—surface interaction
potential.

In our theoretical formulation of multiphonon scattering
several approximations were developed which lead to-
straightforward and tractable numerical calculations. Three
of the approximations were examined in detail, the first
order semiclassical in both its full temperature and high
temperature forms (FT and HT methods) and the classical
limit (CL method). In the semiclassical limit the multi-
phonon background can be expressed as the product of a
structure factor arising from the periodic nature of the
surface, an energy exchange factor, a Debye—Waller factor
for thermal attenuation and a form factor depending on the
interaction potential. The structure factor approaches unity
in the classical limit but in the quantum regime is peaked
at momentum values corresponding to the two-dimensional
surface diffraction peak positions, and for complicated
surface unit cells can have additional structure between the
diffraction peaks. The energy exchange function becomes
a Gaussian-like function of the total energy exchanged
between probe and surface with a shift % w, in the direc-
tion of emergy gain by the surface. The Debye—Waller
factor is roughly equal to the average number of real or
virtual phonons exchanged in the collision. The form
factor was expressed as the product of a Mott—Jackson
factor for perpendicular motion and a cutoff factor for
parallel motion.

A large number of numerical calculations have been

II. SURFACE PLASMONS
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carried out in order to establish the regimes of validity of
each approximation. We find that over a very large range
of initial parameters the HT approximation gives a good
representation of the FT results as long as the surface
temperature is greater than half of the Debye temperature
of the surface. The regime of the classical approximation is
somewhat more complicated. Formally, the closed form
classical expressions of Egs. (23) and (25) are valid only if
2W(k) > 6. We found that the CL expression is a reason-
ably good representation of the multiphonon intensity if
the Debye—Waller exponent 2W(k) is greater than 4 over
the entire range of energy exchange for which the scattered
intensity is non-negligible.

We have applied the semiclassical approximation of the
theory to analyze the experimental data obtained for LiF (a
highly ordered surface) and KCN (a more disordered
surface). Our results indicate that over the temperature
range considered, the first-order semiclassical approxima-
tion is a good representation of the theory. By subiracting
off the estimated multiphonon background, the single
phonon contribution could now be accurately evaluated.
The ease of manipulation of the theory by varying just two
parameters, the range parameter of the potential 8 and the
cutoff parameter Q,, is of practical use to the experimen-
talists. The parameter 3 enters through the assumed form
of the repulsive part of the model potential, exp(—fz),
where z is normal to the surface. A large value of B thus
causes the potential to fall off faster, approaching the hard
wall limit. On the other hand a small B8 indicates a softer
potential that falls off gradually from the surface, which is
more characteristic for metals. The cutoff momentum pa-
rameter, Q. is contained in the term exp(—KZ2/Q2).
Hence a small value of Q, would limit the attainable K
values in the momentum space, thereby introducing a
cutoff factor. On the other hand, large values of Q_ render
it possible to exchange large values of parallel momenta
up to the zone edge and even beyond. The computed
values of B and Q, for LiF and KCN are somewhat large
compared with the corresponding values obtained for met-
als. For metals the typical values are in the range B =2
A~land Q. ~1 A*[10]. In the case of LiF and KCN,
the large values estimated for B indicate much stiffer

potentials. Similarly, the large Q. values obtained (which
facilitate scattering to larger parallel momenta) are consis-
tent with the highly corrugated and rough nature of the
surfaces of these materials.
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