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Abstract

A classical picture of threshold resonances in diffractive systems is provided in the light of a new classical singularity recently
predicted for atom surface scattering, the skipping singularity. As an illustration of these dynamics, application to the scattering of
He atoms by the stepped Cu(115) surface is presented using both a hard corrugated one-dimensional wall and a corrugated Morse
potential. It is also emphasized that these resonances are observable for highly corrugated surfaces or for surfaces with weak
corrugation but at incident conditions where multiple scattering is important. © 1997 Elsevier Science B.V. All rights reserved.
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crystal surfaces

Threshold resonances (TR) or emerging beam
resonances are a very general feature of diffractive
systems and should be observed whenever the
initial conditions of incidence for the scattering
particle are such that a new diffraction beam just
becomes visible [1]. Due to the sum rule (unitary
condition), this resonance behavior is manifest in
the intensity of all diffracted peaks although the
effect may be very weak. However it is expected to
be experimentally detectable for highly corrugated
surfaces [2] and has been observed for rotational
diffraction [3]. As a result, the appearance or
disappearance of a beam is always accompanied
by a divergence in the slope of any diffracted beam
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with respect to one of the initial values (k;, 6;, ¢;)
determining the scattering geometry. Often in the
experimental configurations the diffracted inten-
sities are measured as a function of the incident
polar angle with the incident energy and azimuthal
angle held constant. Moreover, the angle between
the source and the detector (fgp = 0; -+ 8;) is often
fixed at n/2 or greater. In atomic and molecular
surface scattering, TR are expected to provide
additional information about the long range part
of the interaction potential.

In a recent paper [4], we have reported a new
type of classical singularity occurring only for
diffractive systems and when the deflection or final
angle of the particles is equal to +m/2. It is called
the skipping singularity since a classical image of
this singular behavior can be given by the skipping
of stones on the surface of a river. In order to skip
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a stone on a river it is necessary not only to get
the correct incident angle but also to strike specific
impact points on ripples of the water surface.
At the same time, the onset of classical trapping,
that is classical chaos, takes place when a sur-
face rainbow angle simultaneously reaches +7m/2
[5-7]. This condition implies that the scattering
particle is travelling parallel to the surface and will
probably encounter the surface more than once.
Within the framework of the hard wall approxi-
mation, for any incident energy the surface rainbow
angles are dependent on the incident scattering
angle, and occur at certain impact parameters b
(or impact points on the surface) which correspond
to the inflection points of the surface. However,
above a given threshold value of the incident angle,
not only do the inflection points of the surface
lead to this classical trapping but also additional
impact parameters contribute to this trapping. If
plots of 8; versus b are analyzed, the region of
these impact parameters is delimited by the two
branches of a concave curve in such a way that
the area inside this curve corresponds to multiple
scattering events and the outer area to single
scattering events. In other words, the rainbow
singularity bifurcates into the two branches of
a curve which define the skipping singularity
(bifurcation diagram) and its minimum gives the
threshold value of the incident angle for chaos.
This temporary (vibrational) trapping has been
conjectured to be associated with selective adsorp-
tion resonances leading to a classical picture of
such resonances. Obviously, not all trapped or
chaotic trajectories contribute to a given resonance
process but this discussion will be postponed for a
future work [87]. In a certain sense this singularity
could be the counterpart of the very well known
orbiting singularity in the scattering of two particles
by a central field. This singularity corresponds
physically to the mutual capture of the colliding
particles for a finite time after forming a rotating
system.

In this Letter, our main goal is to relate TR
with the skipping and rainbow singularities.
Althought the denomination TR is somewhat
misleading, since we are not dealing with true
resonances or quasi-bound states, as we will show
later, this ‘standard terminology coming from

diffraction physics becomes more apparent in a
classical framework. For this purpose, two func-
tions are introduced. The first one is the classical
deflection (CD) function which is defined as the
variation of the final or outgoing angle of the
scattering particles as a function of b. The second
one, originally introduced by Masel et al. [9] in
this context, is called the diffraction order (DO)
function which gives the parallel momentum
transfer in the scattering process also as a function
of b. When the skipping singularity takes place,
the DO function also bifurcates as we have recently
shown [4].

For any elastic scattering process, the con-
servation rules of energy and paralle]l momentum
result in the following expression:

lg =l — (K+ G, (1)

where the incident particle wave vector is
k;=(K;, k,) and the final one is written as
ko= (K;+ G, kg,), G being a reciprocal lattice
vector. Here by IV will be denoted the reciprocal
lattice vector associated with an emerging beam
(k% — 0).

Now let us consider the classical in-plane
diffracted intensity as formulated in Ref. [9] for a
one-dimensional corrugation surface to be

dJ(bJ; ki? 01)
db

-1
ISCHAEDY , (2)

i

where 0; is the incident scattering angle and b the
normalized impact parameter defined by b= x/a
along the x direction with «a being the surface unit
cell length in that direction. The sum is over all
values of the impact parameter b; that contribute
to a given integer value, J, of the DO function
J(b; I, 6,). This function arises as an alternative
way to express the diffraction condition as

J(b: k;, 6) = %ki [sin 6,(b) —sin 0,], (3)

where 6;(b) is the well-known CD function defined
[4] by
9f(b) = 91 i 2 [tan

(4)

-1£0)
a |’

where the - sign is used when the tan™! function
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gives negative angles and the — sign otherwise;
&(x) is the corrugation or shape function and £/(x)
its first derivative with respect to b. For simplicity
in the exposition we prefer to use a 1D formulation
here, but this theory can be readily extended to
2D corrugated surfaces.

Classically, Eq.(2) gives the envelope of the
diffraction pattern. In order to obtain the intensity
in each of the diffraction channels or Bragg
directions one evaluates this function for integer
values of the diffraction order, J. The classical
diffracted intensity will present singularities when-
ever the derivative of the DO function with respect
to the impact parameter is zero:

Aok, 8)\
(). <5>

J
Using the chain rule and assuming an experiment

done at constant energy, this condition can be
rewritten as:

dJ(6; ki, 6;) do;(b) _
< a6; >< ab >‘° ®)

Clearly if either of these two factors (or both) is

equal to zero they give rise to singularities in the

scattering intensity. Zero values of the first factor
give rise to the classical skipping singularity [4]
and zero values of the second factor correspond to
the well-known surface rainbows. Now the zero
values of the first factor can be obtained by
differentiating Eq. (3), yielding

dJ(Bg; ki, 6; a
<(—;0£—)> = E;ki cos B, (7
and the skipping singularity occurs when the
deflection angle is equal to +n/2 (classical trapping).
Prior to the onset of classical trapping or chaos
this singularity does not occur. As has been shown
in Ref [4], the threshold value of the incident
angle where the skipping begins to appear makes
both factors of Eq.(6) simultaneously zero. The
skipping condition can also be expressed in a very
useful way in terms of a relation between 6; and b
by substituting Eq. (4) into Eq. (7) as

1 —[&'byal? ‘

G0 = £ ey

(8)

In Fig. 1 we plot this function for the scattering of
He atoms from a hard wall model of the Cu(115)
surface obtained previously in Ref. [107]. The con-
cave curve presents a minimum at b= h* =022,
the inflection point of the surface. At an incident
angle of 68.73°, the rainbow singularity begins to
bifurcate. The region inside the two branches of the
curve gives the region of multiple scattering events,
or classical trapping which we have demostrated
to be an example of deterministic chaotic scatter-
ing, in Refs. [5-7]. Outside that region we have
only single scattering events. This threshold value
of 0 =68.73° gives the onset of chaos using a
hard corrugated wall. According to Egq.(8) no
explicit dependence on k; appears. On the contrary,
when a soft potential [ 10] (a similarly corrugated
Morse potential of well depth 6.35 meV and range
parameter 1.05 A1) is used, this value decreases
to 53.2° for k; = 10.98 A~1. Thus, for soft potentials
the onset of chaos depends on the incident wave
vector.

On the other hand, the TR is usually described
as a divergence in the slope of the diffracted beam
intensity as a function of the incident polar angle
at fixed energy. A classical analytical expression of
this slope can be obtained from Eq. (2). Thus each
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Fig. 1. Bifurcation diagram for the rainbow singularity calcu-
lated for the He-Cu(115) system modeled by a hard wall
potential. The vertical line represents the location of the
rainbow singularity, b*=0.22. At an incident angle of
0F = 68.73° the rainbow singularity bifurcates giving rise to
two new branches of singularities, the skipping singularities.
The region inside the curve corresponds to initial conditions
that give rise to chaotic behavior (multiple scattering).
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term in the summation in that equation contributes
with

di; 275( sin ; ><d9f>‘l

Fyindernl ewe: - 9)

d6;, ak;\ cos® ;)\ db

and therefore the same singularities are present in

this slope as in the intensity, Eq.(2), from a

classical point of view. The only difference now is

that here the first factor goes with the square of
the cosine function instead of the first power. Three
different cases can be envisioned:

(1) At classical rainbow conditions this slope
presents a divergence due to the factor
(d6;/db)~*. However, as shown in Ref [6],
in order for this divergence to be observable
in diffraction intensity versus incident angle
plots it is necessary that this classical rainbow
coincides with an open diffraction channel
(quantum rainbow condition). Moreover, this
divergence cannot be necessarily associated
with a TR condition, since this can occur when
there is no emerging beam. To illustrate this
point we have carried out close-coupling calcu-
lations for the scattering of He atoms from
a Cu(115) surface at the quantum rainbow
condition for the (30) diffraction peak [6]:
incident energy of 63 meV (k; = 10.98 A™1) and
6, = 45.9°. The corrugated Morse potential has
been taken from Ref [107], and the results for
some diffracted peaks versus 6; in the range
between 44° and 47°, are shown in Table 1. As
can be seen, smooth variations of the diffracted
intensities when passing through the value of
45.9° are obtained. The classical rainbow
singularity appearing in Eqs. (2) and (9) is not

Table 1
Close coupling diffracted intensities for He—Cu(115) scattering
at 63 meV

6 () doo Iz Iso

4.5 0.031 0.146 0.137
450 0.039 0.163 0.124
455 0.047 0.178 0.111
459 0.053 0.189 0.099
462 0.059 0.196 0.092
46.5 0.065 0.203 0.086
47.0 0.074 0214 0.074

(2)
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evident in the quantum mechanical diffraction
channel (30) when it fulfills the rainbow condi-
tion. This is a clear demonstration that classical
singularities are not necessarily reflected in
quantum mechanical systems. It is the whole
diffraction pattern which has to be associated
with a rainbow feature.

When we are at TR conditions, that is,
0;= + n/2 is a Bragg direction, we have again
a divergence in Eq.(9) going as cos ™2 6;. An
alternative expression to this equation comes
from Refs. [1] and [2] where the origin of TR
is in the divergence of the Jacobian derivative
of ky, with respect to 6;. Thus we have

dIy dly dky;

46,  dky, d6, (10)
with

dky, ki,

Then if ky, = k; cos 6;=0, or 0= £ m/2, this
derivative also diverges. Note that the factor
cos ™! 0; appearing in Eq. (11) is purely kine-
matical and does not arise from the quantum
mechanical solution of the Schrodinger equation.
The classical intensity of Eq.(9) varies as
cos™2 6, and the extra factor cos™! 6, arises
from the explicit evaluation of the classical
intensity of Eq.(2). But now the important
point is whether the incident angle is less or
greater than that corresponding to the onset
of chaos, 0¥ =1532° at 63meV for the
He-Cu(115) system. In order to illustrate this
point we show in Fig. 2 the classical CD func-
tion at TR conditions prior to (f;=40.91°,
Fig. 2a) and after (6; = 55.83°, Fig. 2b) the onset
of chaos, respectively. Horizontal lines show
some integer values of the DO function corre-
sponding to some diffracted beams (J =4 for
the (40) diffraction channel, etc.). Prior to the
onset of chaos there are no classically allowed
trajectories contributing to the emerging (40)
diffraction beam. In this case resorting to an
analytical continuation of the DO function
is necessary [6], and only complex [7] or
classically forbidden trajectories (although
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100 in the range 37°-45° at 63 meV. As can be
seen, at 40.91° the peak (40) disappears, leading

80 J= - .
| P to strong variations of the rest of the diffracted
60 - beams around this incident angle value. These
T drastic changes in the curve should be easily
40? observable in scattering experiments. At this
20 - point it is important to remark that at present
0 1 TRs have not been observed experimentally in

atom-—surface scattering and these results show
that this should not be the case for highly

80 /.’ ','\ I=2 corrugated surfaces.
i)

Deflection Angle (CD function) (deg)

60 4 J=1 (3) When the rainbow begins to bifurcate (mini-
C mum of the concave curve in Fig. 1) both
40 4 ' factors contribute to the divergence of the
20: slope given by Eq. (9). This case corresponds
. (b) to the onset of chaos or threshold of classical

0 trapping. In Fig. 2b we show the appearance

0 02 04 _ 06 08 1. . . k .
0.0 Impac't p,,g,‘nete,‘f ab 10 of the chattering or chaotic scattering region

(discrete points) for an incident angle of 55.83°

Fig. 2. CD functions for E; =63 meV in the scattering of He which is greater than 53.2°. At 63 meV this
atoms from the corrugated Morse potential model of the s

incident angle corresponds to the emergence
Cu(115) surface: (a) at §;=40.91° and (b) at ;= 55.83°, prior fth 20 dgff ; ph 1(J =2inFi g 7h
and after the onset of chaos, respectively. Horizontal lines of the (20) diffraction ¢ .a.nne ( - in Fig. 2b).
correspond to some integer values of the DO function showing As opposed to the conditions prior to the onset
the position of the corresponding diffraction channels. of chaos, only classical chaotic trajectories con-

tribute to the (20) diffracted peak. However, it
should be noticed that these trajectories escape
from the interaction region with a final scatter-
ing angle 8;=m=/2. They form a special zero
measure subset of the chattering region, which
never leave the surface since they would reach
the asymptotic region oaly after an infinite

energetically allowed) contribute to the (40)
peak. Furthermore we present in Fig. 3 the
variation of some calculated close coupling
diffracted intensities (Iyg, I3o and I4,) versus 6;

0.25 I time. To give an idea of the topology of these

" 30 trajectories we present two examples in Fig. 4.
5020 1 The solid line represents a direct classical
g T2 trajectory belonging to the zero-measure subset
§0.15 i of an emerging beam at 6;=r/2. Actually it
g has been calculated at the left border of the
- chattering region. The dashed line corresponds
30.10 ~ to a classical trajectory with the same final
g scattering angle but bouncing twice on the
30.05 - surface. In a similar way trajectories from this
R subset can be found with any number of
0.00 - bounces on the surface considering the (fractal)
se chattering region in Fig. 2b at finer and finer

38 40 42 44 48
Incident Angle (deg) scales [5].
Fig. 3. Close-coupling diffraction intensities for the corrugated Finally, let us point out that only in this third

Morse potential model of Fig.2 for He-Cu(115) scattering case ’does the name resonance truly apply in a
at 63 meV. classical context, in the sense that the He atoms
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Fig. 4. Two representative trajectories for He—Cu(115) scatter-
ing at 63 meV and incident angle of 55.83°, They belong to the
zero measure subset of the chattering region shown in Fig. 2b
that leave the surface with a final scattering angle of =/2. See
text for details.

spend part of their time making multiple collisions
with the surface. Another important point is the
following: when 6; is above the threshold value
g# for chaotic behavior and the chattering region
is large, the contributions of a large number of
chaotic trajectories become important and cause
an enhancement of the intensities at TR conditions.
For weakly corrugated surfaces this fact could be
exploited as a means to enhance the effect of TR.
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