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Assessing the Accuracy of a Wrist Motion Tracking
Method for Counting Bites across Demographic and

Food Variables
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Abstract—This paper describes a study to test the accuracy
of a method that tracks wrist motion during eating to detect
and count bites. The purpose was to assess its accuracy across
demographic (age, gender, ethnicity) and bite (utensil, container,
hand used, food type) variables. Data were collected in a cafeteria
under normal eating conditions. A total of 271 participants ate a
single meal while wearing a watch-like device to track their wrist
motion. Video was simultaneously recorded of each participant
and subsequently reviewed to determine the ground truth times of
bites. Bite times were operationally defined as the moment when
food or beverage was placed into the mouth. Food and beverage
choices were not scripted or restricted. Participants were seated
in groups of 2-4 and were encouraged to eat naturally. A total
of 24,088 bites of 374 different food and beverage items were
consumed. Overall the method for automatically detecting bites
had a sensitivity of 75% with a positive predictive value of 89%.
A range of 62-86% sensitivity was found across demographic
variables, with slower eating rates trending towards higher
sensitivity. Variations in sensitivity due to food type showed a
modest correlation with the total wrist motion during the bite,
possibly due to an increase in head-towards-plate motion and
decrease in hand-towards-mouth motion for some food types.
Overall, the findings provide the largest evidence to date that
the method produces a reliable automated measure of intake
during unrestricted eating.

Index Terms—energy intake, gesture recognition, mHealth,
activity recognition

I. INTRODUCTION

MORE than half of the world population is overweight
(39%) or obese (13%) [32]. Obesity is associated with

increased risks for cardiovascular disease, diabetes, and certain
forms of cancer [13], and has become a leading preventable
cause of death [15]. The study and treatment of obesity
is aided by tools that measure energy intake, determined
by the amount and types of food and beverage consumed.
Existing tools include questionnaires about the frequency of
food consumption, food diaries, and 24-hour recalls of the
foods consumed during the day [5], [30]. However, these
tools rely upon self-report and have a number of limitations,
including high user and experimenter burden, interference with
natural eating habits, decreased compliance over time, and
underreporting bias [16], [30]. Experts in the field of dietetics
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have emphasized the need for technology to advance the tools
used for energy intake monitoring [14], [27], [31].

Advances in body sensing and mobile health technology
have created new opportunities for empowering people to take
a more active role in managing their health [12]. Wearable
sensors have significantly advanced the assessment of energy
expenditure in the form of accelerometer-based physical ac-
tivity monitors [34]. However, the development of a similar
tool for monitoring energy intake has remained elusive. Re-
searchers have investigated the automatic recognition of foods
in images [3], [10], [20], [35] and sensors worn on the throat
and ear area to detect swallowing events [2], [17], [18], [23],
[24], [26]. Our group has been investigating using a wrist-worn
configuration of sensors to detect periods of eating [9] and
track hand-to-mouth gestures [8], [21]. One benefit of wrist-
mounted sensors is that they can be embodied in a device
that resembles a common watch. This makes the monitoring
inconspicuous which helps promote long-term daily use [4].

In previous work our group developed a method that detects
a pattern of wrist motion during the ingestion of a bite [7],
[8]. An experimental evaluation of 49 people eating a meal
of their choice in a laboratory setting found that the method
counted bites with a sensitivity (ratio of true detections to
total actual bites) of 86% and a positive predictive value (ratio
of true detections to true detections plus false positives) of
81% [8]. The experiment also revealed that an inexpensive
micro-electro-mechanical systems (MEMS) gyroscope was as
accurate as a more sophisticated magnetic, angular rate and
gravity (MARG) sensor in tracking the relevant motion pat-
tern [8]. These experiments were conducted using wrist-worn
devices that were tethered to a stationary computer in order to
facilitate the recording of raw motion data. Subsequently, the
method was instantiated in a wearable version that resembles a
watch. The watch executes the algorithm to detect the relevant
motion pattern on a microcontroller. A button is pressed at
the beginning of an eating activity (e.g. meal or snack) to
begin bite counting, and pressed again at the end of the
eating activity to end bite counting. The total bite count for
the eating activity is stored for subsequent downloading to
an external computer. To test its relevance for measuring
energy intake, 77 people wore the device for 2 weeks and
used it to automatically count bites during all eating activities
[28]. Participants completed the automated self-administered
24 hour recall to measure kilocalories consumed [29]. A total
of 2,975 eating activities were evaluated, an average of 39
per participant. A comparison of automated bite count to
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kilocalories found an average per-individual correlation of
0.53, with 64 participants having a correlation between 0.4
and 0.7 [28]. This range of correlation is similar to what
has been found in evaluations of energy expenditure measured
by accelerometer-based devices (pedometers, physical activity
monitors) [33].

This paper describes an experiment conducted to further
evaluate the accuracy of the automated bite counting method.
The goal was to record a large number of people eating a
wide variety of foods and beverages to evaluate its accuracy
in terms of demographic variables (gender, age, ethnicity) and
bite variables (food type, hand used, utensil, container). One
approach to such an experiment is to script activities and
ask each participant to complete the script. For example, a
participant could be asked to consume 5 bites of 20 different
types of food in a controlled order. This approach has been
taken in some other studies of eating activities (e.g. [1], [18],
[26]). Advantages to this approach include limiting the set
of food types, simplifying the ground truth identification of
events due to the use of a controlled script, and ensuring an
equal quantity of each event type through repetition. However,
this is unnatural in terms of food choices, eating pace, food
order, and overall behavior during normal eating. Instead, we
instrumented a cafeteria setting. Participants were allowed
to select their own foods and eat naturally. This resulted
in unequal distributions of bite variables which is offset by
recording a large number of participants. Section II describes
the experimental conditions and Section III describes the
variations in the accuracy of the bite counting method due
to demographic and bite variables.

II. METHODS

A. Instrumentation

The experiment took place in the Harcombe Dining Hall
at Clemson University. The cafeteria seats up to 800 people
and serves a large variety of foods and beverages from 10-
15 different serving lines. Figure 1 shows an illustration
and picture of our instrumented table [11]. It is capable of
recording data from up to four participants simultaneously and
is similar to others in the cafeteria so that its appearance would
not be distracting. Four digital video cameras in the ceiling
(approximately 5 meters height) were used to record each
participant’s mouth, torso, and tray during meal consumption.
A custom wrist-worn device containing MEMS accelerometers
(STMicroelectronics LIS344ALH) and gyroscopes (STMicro-
electronics LPR410AL) was used to record the wrist motion of
each participant at 15 Hz. Cameras and wrist motion trackers
were wired to the same computers and used timestamps for
synchronization. All the data were smoothed using a Gaussian-
weighted window of width 1 s and standard deviation of 2

3 s.

B. Participants

The Clemson University Institutional Review Board ap-
proved data collection and each subject provided informed
consent. A total of 276 participants were recruited and each
consumed a single meal [22]. Participants were free to choose
any available foods and beverages. Upon sitting at the table
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Fig. 1. The table instrumented for data collection. Each participant wore a
custom tethered device to track wrist motion.

to eat, an experimental assistant placed the wrist motion
tracking device on the dominant hand of the participant and
interviewed them to record the identities of foods selected.
The participant was then free to eat naturally. If additional
servings were desired, the participant was instructed to notify
the experimental assistant to assist with removing the wrist
motion tracker before moving through the cafeteria to obtain
more food or beverage, returning to the table to begin a
new segment of recording. Each such segment is referred
to as a course. For 5 participants, either the video or wrist
motion tracking data failed to record, and so are excluded
from analysis. Total usable data includes 271 participants, 518
courses with a range of 1-4 and average of 1.8 courses per
participant. Demographics of the participants are 131 male,
140 female; age 18-75; height 50-77 in (127-195 cm); weight
100-335 lb (45-152 kg); self-identified ethnicity 26 African
American, 29 Asian or Pacific Islander, 190 Caucasian, 11
Hispanic, 15 Other.

C. Ground truth

The goal of the ground truthing process was to identify the
time, food, hand, utensil and container for each bite. Because
our data set is so large and was collected during natural
(unscripted) eating, the total process took more than 1,000
man-hours of work. Figure 2 shows a custom program we
built to facilitate the process. The left panel displays the video
while the right panel shows the synchronized wrist motion
tracking data. Keyboard controls allow for play, pause, rewind
and fast forward. The horizontal scroll bar allows for jumping
throughout the recording and additional keyboard controls
allow for jumping to previously labeled bites. A human rater
annotates a course by watching the video and pausing it at
times when a bite is seen to be taken, using frame-by-frame
rewinding and forwarding to identify the time when food or
beverage is placed into the mouth. Figure 3 shows an example
of a sequence of images surrounding a bite. Once the bite time
is identified, the rater presses a key to spawn a pop-up window
that allows the user to select from a list of foods recorded as
having been eaten by the participant during the course, and
a list of hand, utensil and container options. The process of
ground truthing a single course took 20-60 minutes.

In total, 374 different food and beverage types were chosen
by participants. Food and beverage names were taken from
the menus of the cafeteria. Some foods are given the generic
name of the food line from which they are served due to the
heterogeneous mixture of ingredients that could be custom
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Fig. 2. A custom program created for manual labeling of ground truth bites. The left panel shows the video and the right panel shows the wrist motion
tracking. Vertical purple lines indicate the times marked as bites, the vertical green line indicates the time currently displayed in the video. Variables (hand,
utensil, container, food) are identified for each bite.

(a) frame=0 (a) frame=7 (a) frame=14 (a) frame=21 (a) frame=28

Fig. 3. Example identifying the time index of a bite (frame 14).

selected by the participant, for example from a salad bar. In
cases where a participant mixed 2 or more uniquely chosen
foods, a single name was used that identified the combination.
In cases where a participant ordered a custom version of a
food in a food line, the modifier ‘custom’ was included in the
name. Example food identities include salad bar, shoestring
french fries, Asian vegetables, pasta tour of Italy, cheese pizza,
homestyle chicken sandwich, hamburger, custom sandwich,
garlic breadsticks, fried shrimp and grapefruit. Example bever-
age identities include whole milk, coca cola, water, sweet tea,
coffee and apple juice. Figure 4 shows some example images
of foods. Foods and beverages were served in four types of
containers: plate, bowl, glass and mug. Four different utensils
were used: fork, spoon, chopsticks and hand. Hand could be
identified as left, right or both.

Two human raters independently labeled each course. A
total of 22 raters contributed. Raters were trained during a
1 hour training session to understand the process and how
to use the program for labeling. Quantifying rater agreement
is complicated because labeling is a two step process. First,
each rater had to decide when bites occurred. Second, they
had to quantify food, hand, utensil and container for each bite.

Therefore we developed a two stage approach to determining
rater agreement.

For each bite labeled by one rater, a ±1 sec window was
searched for a corresponding bite from the second rater. If the
food identity, hand, utensil and container all matched, then the
bite was considered matched and the time index was taken
as the average of the time indicated by the two raters. If a
corresponding bite was found within the window but one or
more of the variables did not match, then the bite was reviewed
by a third rater who judged which variable values were correct.
If no corresponding bite was found within the window, the
third rater reviewed the bite to determine if it was missed by
one of the raters or if it was off by more than 1 sec from a
bite labeled by the other rater, in which case the third rater
judged the correct time.

Using this process, rater performance can be evaluated using
four metrics: mistaken identity (food identified incorrectly),
time error (bite labeled more than 1 second from actual
time), missed bite (the rater missed the bite completely) and
data entry error (hand, utensil or container was mislabeled).
Figure 5 shows some examples of foods that can be difficult
to identify, for example when 2 or more foods of similar
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Fig. 4. Examples of foods. From left to right: cheese pizza; cereal Apple Jacks; chunky chocolate chip cookie; California chicken wrap, shoestring french
fries; hamburger, shoestring french fries.

missed bites 900 (3.7%)
time error 1217 (5%)

identity error 714 (3%)
data entry error 1059 (4.4%)

TABLE I
MANUAL LABELING ERROR RATES.

color and texture are served overlapping each other. Figure
6 illustrates an example of when the time of a bite can
be difficult to determine due to the head of the participant
obscuring the precise time of food intake. Data entry errors
occurred most commonly when a rater mistakenly labeled
a bowl as a plate or a mug as a glass, either of which
would propagate to all the related bites in the course. Table I
summarizes the errors found as judged by the third rater.

The usefulness of a fourth rater independently labeling each
course and then comparing it to the union judged by the third
rater was explored. After 71 courses were labeled, the process
was stopped. In those 71 courses the following total errors
were found: 17 missed bites, 0 timing errors, 18 identity errors
and 8 data entry errors (0.2% of the total bites). Given the large
amount of time needed to independently label the data and the
tiny amount of new errors discovered, it was determined that
the quality of ground truth provided by two human raters and
then judged by a third rater was sufficient.

D. Bite counting algorithm

The bite counting algorithm described in [8] is briefly
repeated here for background. The algorithm detects a pattern
of wrist roll motion associated with a bite through the detection
of four events. First, the wrist roll velocity must surpass a
positive threshold. Second, a minimum amount of time must
pass. Third, the velocity must surpass a negative threshold.
Finally, a minimum time must pass between the negative wrist
roll for one bite and the positive wrist roll for the beginning
of a next bite. The minimum times help reduce false positives
during other motions. The algorithm for detecting a bite based
on this motion pattern can be implemented as follows:

Let EVENT = 0
Loop

Let Vt = measured roll vel. at time t
If Vt > T1 and EVENT = 0

EVENT = 1
Let s = t

if Vt < T2 and t-s > T3 and EVENT = 1
Bite detected

Let s = t
EVENT = 2

if EVENT = 2 and t-s > T4
EVENT = 0

The variable EV ENT iterates through the events just de-
scribed. The parameters T1 and T2 define the threshold for
roll detections, the parameter T3 defines the minimum time
between positive and negative rolls, and the parameter T4
defines the minimum time between bites.

E. Evaluation metrics

The evaluation method follows the procedure previously
established [8]. Algorithm bite detections are compared to
ground truth manually marked bites. Figure 7 illustrates the
possible classifications. For each computer detected bite (small
square in the figure), the interval of time from the previous
detection to the following detection is considered. The first
actual bite taken within this window, that has not yet been
paired with a bite detection, is classified as a true detection (T).
If there are no actual bite detections within that window, then
the bite detection is classified as a false detection (F). After
all bite detections have been classified, any additional actual
bites that remain unpaired to bite detections are classified
as undetected bites (U). This approach defines an objective
range of time in which an actual bite must have occurred
in order to classify a detected bite as a true positive. The
window extends prior to the actual bite because it is possible
in some cases for the wrist roll motion to complete just
prior to the actual placing of food into the mouth. Sensitivity
(true detection rate) is calculated as (total Ts)/(total Ts+ total
Us). Because this method does not allow for the definition
of a true negative, specificity (false detection rate) cannot be
calculated. We therefore calculate the positive predictive value
as a measure of performance regarding false positives. The
positive predictive value (PPV) is calculated as (total Ts)/(total
Ts+ total Fs).

F. Parameter Tuning

In the original experiment involving 49 people eating a
meal in a laboratory setting, T1 = T2 = 10, T3 = 2
and T4 = 8 were determined to be optimal [8]. It was
also found that a range of values provided reasonable results.
The present work reports results using these same values
but also reports results using a shorter time for T4. During
evaluation is was discovered that people ate faster on average
in the cafeteria experiment than in the previous laboratory
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Fig. 5. Examples of foods that are difficult to identify bite by bite. From left to right: collard greens, macaroni and cheese, corn bread; edamame, jasmine
rice, stir fry; char sui braised pork, brown rice, peas and carrots; pork chop suey with white rice, turkey sliced; Mexican rice, refried beans, roast pork loin.

(a) frame=0 (a) frame=15 (a) frame=30 (a) frame=45 (a) frame=60

Fig. 6. Example of difficulty identifying the time index of a bite due to obscuring head motion.
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Fig. 7. Classification of results.

experiment. It was found that setting T4 = 6 produced a
more balanced sensitivity and positive predictive value. This
is further discussed in sections III-IV.

III. RESULTS

Table II lists the sensitivities found across demographic
variables age, gender and ethnicity. Sensitivity trended higher
as age increased. Sensitivity for females was 10% higher than
sensitivity for males. For ethnicity, sensitivity was highest for
African Americans and lowest for Asians/Pacific Islanders.
Table II also reports the average eating rate for each de-
mographic in seconds per bite (SPB). SPB trends lower for
every demographic as sensitivity trends lower, suggesting that
a faster eating rate results in lower sensitivity.

Figure 8 plots the sensitivity of the method for the foods
of which more than 100 bites were consumed. The average
sensitivity (75%) is given for reference. For most foods the
sensitivity trends consistently in the range of 60-90%. For
a small number of foods the sensitivity drops precipitously.
For a food like ice cream cone the decrease in sensitivity
is likely due to the natural minimization of wrist roll during
consumption (for fear of having the ice cream fall out of the
cone). Figure 8 also shows the average SPB of each food type.

demographic #partic. #bites #detected (sensitivity) SPB
age
51-75 21 1634 1404 (86%) 18
41-50 33 2790 2227 (80%) 17
31-40 27 2531 1949 (77%) 15
24-30 76 7426 5326 (72%) 13
18-23 114 9707 7050 (73%) 13
gender
female 140 11811 9401 (80%) 15
male 131 12277 8555 (70%) 13
ethnicity
African American 26 1958 1583 (81%) 18
Caucasian 190 15990 12327 (77%) 15
Hispanic 11 1195 877 (73%) 13
Other 15 1635 1115 (68%) 14
Asian or Pac. Isl. 29 3310 2054 (62%) 12

TABLE II
SENSITIVITY AND SECONDS PER BITE (SPB) FOR AGE, GENDER, AND

ETHNICITY.

The correlation between SPB and sensitivity is 0.4 suggesting
it has a mild effect.

To look for other potential causes of variability we manually
observed the motion in the hundreds of hours of video to
try to infer commonalities. In many cases a bite involves
head-towards-plate motion in combination with hand-towards-
mouth motion. The former seems to be larger when a food is
more prone to spillage, so a participant positions their head
over the container to facilitate delivery of the food to the mouth
(for example, compare figure 3 to figure 6). To explore this
hypothesis we calculated the amount of motion of the wrist
during a 2 second window centered on every bite and took
the average value for each food type, finding a 0.4 correlation
which again suggests a mild effect.

Table III summarizes the accuracies found across other bite
type variables. Container sensitivity was fairly consistent with
the exception of glass which was 9% lower than average.
For utensils, chopsticks showed a relatively low detection
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Fig. 8. Sensitivity and seconds per bite (SPB) for all foods of which participants consumed greater than 100 bites. Frequency (number of occurrences) of
bites for food types in this figure ranged from 110 to 3,986. Average sensitivity (75%) highlighted for reference.

bite variable #bites #detected (sensitivity) SPB
container
bowl 3939 3091 (79%) 15
mug 116 87 (75%) 17
plate 16434 12389 (74%) 15
glass 3599 2389 (66%) 19
utensil
fork 10308 8627 (83%) 16
spoon 2389 1711 (73%) 12
hand 10989 7419 (68%) 16
chopsticks 400 198 (50%) 7
hand used
l-handed using left hand 1363 1106 (81%) 15
r-handed using right hand 18344 14267 (78%) 15
l-handed using both hands 162 116 (72%) 19
r-handed using both hands 1233 860 (70%) 16

TABLE III
SENSITIVITY AND SECONDS PER BITE (SPB) FOR CONTAINER, UTENSILS,

AND HAND USED.

rate (50%) but were also found to be used twice as fast (7
seconds per bite) as a fork or hand (14-15 seconds per bite).
Handedness showed a small variation in sensitivity, while
the use of both hands as opposed to a single hand reduced
sensitivity by 8-9%.

Overall, across all 24,088 bites the sensitivity was 75% with
a positive predictive value of 89%. The algorithm parameters
were originally determined using data recorded in a laboratory
setting [8] in which the average eating rate was slower (n=49,
seconds per bite = 19.1 ± 6.4) compared to what was observed
in the cafeteria setting (n=271, seconds per bite = 14.7 ±
5.6). We therefore experimented with shortening the parameter
controlling the minimum time between detections of bites
to 6 seconds. With this value the algorithm produced 81%
sensitivity with a positive predictive value of 83%.

IV. DISCUSSION

The primary goal of this study was to assess the accu-
racy of the bite counting method across a wide variety of
demographics and food types. While minor variations occurred
across most variables, the method showed robustness to this
challenging data set. The original laboratory test found 81%
sensitivity with 86% positive predictive value [8]. After tuning
the algorithm to the faster eating pace observed in the cafeteria,
the same sensitivity was achieved with only a 3% decrease in
positive predictive value. This experiment provides the most
comprehensive evidence to date that the method is reliable
during normal unscripted eating.
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The experiment identified two areas where the algorithm
could be improved. First, variations in eating pace affect the
sensitivity. The bite detection algorithm includes a parameter
(T4) that defines the minimum time between bites. It is
intended to reduce false positives that may be caused by
non-eating wrist motions. In our previous experiment in a
laboratory (49 people), we found that tuning T4 to 8 sec-
onds provided the best average results [8]. In the cafeteria
experiment reported in this paper (271 people), we found that
tuning T4 to 6 seconds provided the best average results. We
also found that there were some differences in average eating
rate across demographic variables (age, gender, ethnicity) that
trended with bite detection sensitivity. In future work we in-
tend to use those demographic variables to try to automatically
adjust T4. We also intend to try to detect eating rate from the
wrist motion tracking signals to automatically adjust to the
individual. This would be similar to how a pedometer learns
the stride duration of a person while running or walking and
adjusts its step detection parameters accordingly.

Second, variations in the amount of wrist motion versus
the amount of head-towards-plate motion affect the sensitivity.
Two parameters of the algorithm are designed to detect the
typical amount of motion. Again it may be possible to adjust
these parameters in real-time to learn the typical amount of
wrist motion of a person during a meal. This work provides
the data set necessary to explore these ideas.

One limitation of the bite counting algorithm is that it
requires a user to turn the method on/off at the beginning/end
of a meal. However, in a previous study we analyzed data from
77 participants consuming 2,975 meals over a 2 week period
[28]. This demonstrated good compliance with remembering to
use the device. Another potential limitation of the bite counting
algorithm is its susceptibility to false positives caused by wrist
motions unrelated to eating. However, in this experiment we
did not script the eating activity or restrict the types of motions
of the participants. People were instructed to eat as naturally
as possible and thus the amount of non-eating wrist motions
can be expected to be typical. In our previously published
laboratory experiment, we manually reviewed the videos and
counted non-eating wrist motions such as those caused by
using a napkin, phone, or engaging in conversation, and found
that they occurred between 67% of bites. Collectively our
experiments demonstrate robustness to typical non-eating wrist
motions during normal eating.

A strength of the experiment reported in this paper is that
the eating recorded took place in an environment that was
as natural as possible, and eating behaviors were completely
unscripted and unrestricted. A weakness of this approach is
that it requires a tremendous effort in labeling ground truth.
In total over 1,000 man hours were invested in reviewing
the videos and labeling the bites. We recruited 22 reviewers
because of the large effort needed to complete the ground
truthing process. Studies have shown that participants change
their eating behavior in clinical settings [6], [19]. As this
method is intended to be used in free-living scenarios, a
naturalistic evaluation of its accuracy is important. However,
although we tried to make the cafeteria setting as natural
as possible, it is still possible that behaviors in free-living

environments could affect the accuracy of the method in
ways that could not be captured with this study (e.g. grazing,
other types of distraction). Future studies should examine the
algorithm’s accuracy in these types of situations.
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