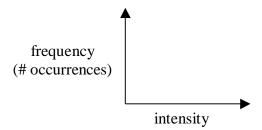
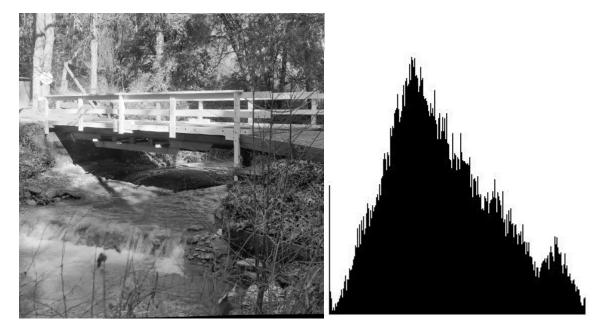
## Lecture notes: Histogram, convolution, smoothing

Histogram. A plot of the intensity distribution in an image.



The following shows an example image and its histogram:



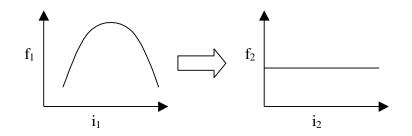
If we denote a greyscale image as  $\mbox{I}[\mbox{r,c}]$  then the histgram  $\mbox{H}[\mbox{i}]$  can be computed as

$$H[i] = \sum_{r,c} \stackrel{1}{\underset{r,c}{0}} I[r,c] = i$$

$$I[r,c] \neq i$$

The histogram is often used in image restoration or cleaning.

**Histogram equalization.** Stretch the contrast evenly through the intensity range by manipulating the histogram. The distribution of intensity is remapped to come as close as possible to uniform:



We desire to find a transform T for each original intensity  $i_1$  to a new value  $i_2$  so that the histogram becomes uniform.

$$i_{2} = T(i_{1})$$

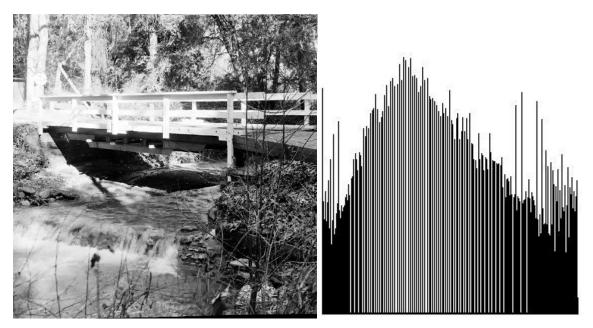
However, because the function  ${\rm H}[{\rm i}]$  is discrete the output will only be approximately uniform.

Assuming we have an image of ROWS by COLS 8-bit pixels, the histogram equalization transform can be written as

$$i_2 = T(i_1) = \sum_{x=0}^{l_1} H[x] * \frac{1}{ROWS * COLS} * 255$$

where the summation on H[] computes how much of the image has an intensity less than or equal to  $i_1$  (this is the cumulative histogram), the fraction 1/(ROWS\*COLS) normalizes these percentages (this is the normalized cumulative histogram), and the value 255 scales the output  $i_2$  to the desired range 0...255.

The following shows the image from above after histogram equalization, along with the equalized histogram:



In C code, it can be computed as follows: \*image; unsigned char int ROWS, COLS; int hist[256],x; nhist[256], chist[256]; double for (x=0; x<256; x++) hist[x]=0; for (x=0; x<ROWS\*COLS; x++)</pre> hist[image[x]]++; for (x=0; x<256; x++) /\* normalized distribution \*/ nhist[x] = (double) hist[x] / (double) (ROWS\*COLS); chist[0]=nhist[0]; for (x=1; x<256; x++) /\* cumulative distribution \*/ chist[x]=chist[x-1]+nhist[x]; for (x=0; x<ROWS\*COLS; x++) /\* remap pixels according to chist \*/ image[x]=(unsigned char)(255.0 \* chist[image[x]]);

What purpose does histogram equalization serve? It tends to sharpen the details visible in an image, by increasing their contrast. For a human viewer, this can be quite useful. For a machine vision system, it is generally useless, as no new information is gleaned through the process.

Convolution. Combining local-area information.

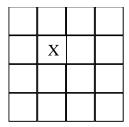
Image convolution can be written as

$$O[r,c] = \sum_{dr=-W}^{+W} \sum_{dc=-W}^{+W} I[r+dr,c+dc] * f[dr,dc]$$

where the range -W...+W is a **window** of local-area information. The function f[] is called a **filter**, and weights how much each pixel in the local area contributes to the output. I[] is the input image and O[] is the output image.

Smoothing. Suppressing noise in an image.

Consider a portion of an image



in which a pixel X is corrupted by noise. How could we go about suppressing this noise, and determining a good value for the pixel?

One way is to take the average of all the pixels in the local neighborhood. For example, we could convolve the image with W=1 and

$$f = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

This is a **mean filter**. Mean filtering is good when nothing is known about the type of noise affecting the image.

Often we assume that the noise has a Gaussian distribution (for no better reason that because lots of naturally occurring things have a Gaussian distribution). In this case we can perform **Gaussian smoothing** using a Gaussian-shaped filter:

$$f[dr, dc] = \frac{1}{2\pi\sigma^2} e^{\frac{dr^2 + dc^2}{-2\sigma^2}}$$

where  $\sigma$  is the standard deviation of the Gaussian noise, and the stuff in front of e is a normalizing constant (may need to be adjusted).

Suppose the corrupted pixel X is a spike, caused by a temporary loss or saturation of signal? In that case, averaging would be bad, because the spike would clearly bias the mean. This type of noise is often called **salt-and-pepper noise**.

A **median filter** is good for spike noise. Each pixel X is replaced by the median (middle) value in its local neighborhood. A median filter cannot be implemented by convolution.

When working with a segmentation, another convenient smoothing filter is the **mode filter**. Each pixel X is replacted by the mode (most commonly occurring) value in its local neighborhood. A mode filter cannot be implemented by convolution.

The following shows the above image smoothed with a 3x3 mean, median, and mode filter. Note the very different results.



An example of salt-and-pepper noise will be demonstrated in class, along with the result from using these different methods to smooth it.

Separable filters. Convolution can be slow as W gets large. Separating a 2D filter into two 1D filters can greatly speed convolution.

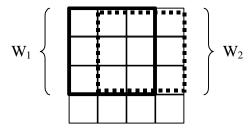
$$O_{1}[r,c] = \sum_{dc=-W}^{+W} I[r,c+dc] * f_{c}[dc]$$
$$O[r,c] = \sum_{dr=-W}^{+W} O_{1}[r+dr,c] * f_{r}[dr]$$

For example, the mean filter could be implemented using W=1 and separating f[] into the filters

$$f_{c} = \begin{bmatrix} 1/3 & 1/3 & 1/3 \end{bmatrix}$$
$$f_{r} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

The choice of which filter  $f_{\rm c}$  or  $f_{\rm r}$  to convolve first is arbitrary. Note the need of an intermediary result image O\_1[].

**Sliding window.** In the case where W is large, convolution can also be sped up by using the summation from the preceeding pixel. For example:



How does the summation  $f^*W_1$  differ from  $f^*W_2$ ? Only by the subtraction and addition of a single column at each end. As W gets large, computing the summation this way can save a great deal of time.

The sliding window and separable filter tricks can be applied together, speeding the computation even more.