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Abstract—This work is motivated by the growing prevalence
of obesity, a health problem affecting over 500 million people.
Measurements of energy intake are commonly used for the study
and treatment of obesity. However, the most widely used tools
rely upon self-report and require a considerable manual effort,
leading to underreporting of consumption, non-compliance, and
discontinued use over the long term. The purpose of this paper
is to describe a new method that uses a watch-like configuration
of sensors to continuously track wrist motion throughout the
day and automatically detect periods of eating. Our method uses
the novel idea that meals tend to be preceded and succeeded
by periods of vigorous wrist motion. We describe an algorithm
that segments and classifies such periods as eating or non-eating
activities. We also evaluate our method on a large data set (43
subjects, 449 total hours of data, containing 116 periods of eating)
collected during free-living. Our results show an accuracy of
81% for detecting eating at 1 second resolution in comparison
to manually marked event logs of periods eating. These results
indicate that vigorous wrist motion is a useful indicator for
identifying the boundaries of eating activities, and that our
method should prove useful in the continued development of
body-worn sensor tools for monitoring energy intake.

Index Terms—obesity, energy intake, activity recognition, body
motion tracking, accelerometer, gyroscope

I. I NTRODUCTION

This work is motivated by the growing prevalence of
obesity. The World Health Organization reports that in 2008,
1.4 billion adults (age 20+) were overweight (body mass index
> 25) and 500 million adults were obese (BMI> 30) [41].
Reports for 2012 show that one in three adults and one in six
children in the United States were obese [13], [25]. Obesity
is a major risk factor for diabetes, heart disease, high blood
pressure, stroke and cancer [39]. Deaths attributed to obesity
continue to increase [12], [23]; 65% of the world’s population
lives in countries where more people die from complications
due to overweight or obesity than from complications due to
underweight [41].

Energy expenditure (EE) and energy intake (EI) are com-
monly used measurements in the study and treatment of obe-
sity [30]. The former measures the energy cost of homeostasis
(body maintenance) plus physical activities, the latter measures
consumption. Many studies have shown that self-reported
estimates of EE suffer from bias [8], [20], [28]; body-worn
motion sensors provide more objective measurements with
less user burden at less cost [40]. Similarly, numerous studies
have shown that people tend to underreport their EI using

self-report methods, with estimates of underreporting ranging
from 10-30% for normal weight subjects to 20-50% for obese
adults and children [6], [14], [16], [19], [24], [32], [37].The
goal of our research is to develop body-worn sensing methods
that can objectively measure EI. The need for such tools has
been widely advocated within the dietetics community [21],
[36] and in funding programs from the US National Science
Foundation and National Institutes of Health [11].

The purpose of this paper is to describe a new method
that uses a watch-like configuration of sensors to continuously
track wrist motion throughout the day and automatically detect
periods of eating. The problem of using body-worn sensors to
automatically measure EI may be broken into two parts. The
first part is identifying periods of consumption amongst all
daily activities. The second part is estimating EI during those
periods. Previous research has focused on the second part of
the problem, such as counting the numbers of chews [31],
swallows [27], [29], drinks [4], bites [9], or specific eating
gestures [2], [3]. This paper is the first to describe a method
that detects entire periods of eating (e.g. meals and snacks)
during all-day tracking. It is also significant that we evaluated
our method on a data set that was collected during free-living
as opposed to in a laboratory environment, so that our method
could be tested on unscripted eating behaviors.

II. M ETHODS

Our method assumes a person is wearing a watch-like
configuration of accelerometers and gyroscopes, as depicted
in Figure 1. The sensors track the linear and rotational motion
of the wrist. We have discovered that prior to an eating activity
(e.g. a meal/snack), there tends to be a period of larger wrist
motion energy, caused by things like bringing food to a table,
adjusting the position of utensils, opening food containers,
and unwrapping food. During an eating activity, the total
wrist motion energy tends to be reduced. At the end of an
eating activity, there tends to be another period of larger wrist
motion energy, caused by things like putting remaining food
away, washing hands, standing up, and putting dishes away.
We have designed an algorithm that uses this idea to detect
periods of eating. It calculates a continuous estimate of wrist
motion energy and uses a hysteresis-based peak detector to
segment periods of time in-between vigorous motions. For
each segmented period, features are calculated and used to
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Fig. 1. A watch-like configuration of accelerometers and gyroscopes tracks
wrist motion continuously throughout the day (shown here on the right hand).

classify the period as an eating or non-eating activity. We first
describe the details of the algorithm. We then describe the
data collected and the evaluation metrics used to determine
the efficacy of this approach.

A. Algorithm

1) Preprocessing:Data from the sensors are first smoothed
to reduce the effects of noise:
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whereRt is the raw datum andSt is the smoothed datum at
time t. Equation 1 implements a Gaussian-weighted window
centered on the current measurement, so that only half of a
Gaussian distribution is used for smoothing. The variableN
is a window size andR is the sigma of the Gaussian. The
particular values used for these variables will depend uponthe
quality of the sensors used; we provide values for our testing
device later. Equation 1 is applied independently to the data
from each accelerometer and gyroscope axis.

2) Segmentation:Wrist motion energy can be characterized
by the total amount of motion. We tested both the sum of
accelerometer readings and the sum of gyroscope readings,
finding similar results [10]. Because accelerometers use ap-
proximately one-tenth the power of gyroscopes [34], [35],
it is preferable to use accelerometers for continuous all-day
monitoring. We therefore calculate wrist motion energy as
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|Sx,t|+ |Sy,t|+ |Sz,t| (2)

where Sx,t, Sy,t and Sz,t are the smoothed acceleration
readings at timet. The parameterW is a window size; we
have found a sliding 1 minute window to be sufficient for
smoothing over brief vigorous motions while still capturing
longer vigorous motions indicative of the boundaries of eating
activities [10].

The following example demonstrates the presence of vig-
orous wrist motions before and after eating, and is helpful
for explaining the algorithm. Figure 2 shows the wrist motion

loop t (data index)
reset (T1,T2)
while (E[t] < T2)
t=t+1
if (E[t] < T1)

reset (T1,T2)
end while
while (E[t] > T1)
t=t+1

end while
end loop

Fig. 3. Pseudocode for peak detector used to segment data.

Fig. 4. Detected peaks on the first 2 hours of data from figure 2.Arrows
indicate the points used for segmentation, lines above arrows indicate the
spans of the detected peaks.

energy of a person over a 12 hour period (the Y-axis is clipped
to save space). The start and stop times of the meals/snacks
shown in the figure were manually logged by the person being
recorded. It can be seen that all 4 eating activities show a
pronounced peak before and after eating. Of course, other
peaks occur throughout the day, so this feature alone cannot
be used for classification. But it does provide a reasonable
mechanism for segmenting the data.

To automatically identify peaks we developed a custom peak
detector using the concept of a hysteresis threshold [33]. Our
detector identifies peaks at local maxima that are sufficiently
pronounced while suppressing marginal local maxima. Pseu-
docode for the algorithm is given in Figure 3. The algorithm
loops through the data from beginning to end, with each pass
through the two while loops identifying a single peak. The two
thresholdsT1 andT2 are set equal to the value of the signal
(wrist motion energy) at the current index, and two times that
value. The first while loop iterates until the signal exceeds
the second (larger) threshold, in essence requiring the signal
to go 2x above its previously observed minimum. During this
search, if a signal value is found that is lower thanT1, then
the required thresholds are recalculated. Once the signal has
exceeded the second threshold, the second while loop iterates
until the signal falls below the first (lower) threshold. The
index of the peak is taken as the location with the maximum
signal value found during the two while loops. Figure 4 shows
the result of the peak detector on the first 2 hours of data from
Figure 2.

The indices of the detected peaks are used to segment the
data. We have noticed that sometimes, a meal/snack can have
a peak inside the period of eating. An example of this can
be seen in the period labeled “dinner” in Figure 2. This is
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Fig. 2. An example of accelerometer-based wrist motion energy of a person over a 12 hour period. Manually logged meal times are marked.

likely caused by the person conducting activities like extended
application of condiments, or preparing a second course. Since
the wrist motion energy is calculated over a sliding 1 minute
window, brief periods of intense motion such as single gestures
will not trigger our segmentation algorithm. In the case of a
longer vigorous activity, the result is that the period of eating is
oversegmented. If desired, this could be overcome by merging
consecutive segmented periods after classification.

3) Features: We investigated numerous features for clas-
sification [10]; this paper reports on the 4 features found to
be most useful. Each feature is calculated over each inter-peak
segmented period. We refer to the first feature as manipulation.
It is calculated as:

f1,w =
1

W

W
∑ |Sφ,t|+ |Sθ,t|+ |Sψ,t|

|Sx,t|+ |Sy,t|+ |Sz,t|
(3)

whereW is the span of the segmented period,t is the index
that iterates across that span, andS is the smoothed datum
(φ, θ, ψ = yaw, pitch, roll). This feature measures the ratio of
rotational motion to linear motion. The second feature is linear
acceleration, and is calculated as:
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The third feature is the amount of wrist roll motion, and is
calculated as:
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The fourth feature is the regularity of wrist roll motion, and
is calculated as:

f4,w =
1

W

∫

W

1 ∀ t ∈ [|Sψ,t| > 10◦ ... t+ 8sec] (6)

This feature takes on a value between 0 and 1, representing
the percentage of time that the wrist is in roll motion. The

calculation includes the time the wrist roll is at least 10
deg/sec, plus a period of 8 sec after each occurrence of wrist
roll motion falling below 10 deg/sec. The latter two features
are inspired by our previous work [9] in which wrist roll was
used to detect bites during eating. The values 10 deg/sec and
8 sec were found to be optimal for characterizing a typical
bite motion and interval.

4) Classification:For classification we used a naive Bayes
classifier [22]. The Bayesian approach to classification is to
assign the most probable classci ∈ C, given feature values
f1, f2, ..., fN . Using the naive assumption of independence of
features, the classification problem can be written as:

ci = argmax
C

P (ci)
∏

j

P (fj |ci) (7)

For our problem there are only two classes, eating(c0) and
non-eating(c1). We set eachP (ci) = 0.5. We modeled the
probabilities of each feature given each class using a normal
distribution:

P (fj |ci) =
1

√

2πσ2
i,j

exp
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−
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2

2σ2
i,j

)
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whereµi,j andσ2
i,j are the mean and variance of featurej for

classi.

B. Data collection

An iPhone 4 (Apple Inc., 1 Infinite Loop, Cupertino, CA
95014, http://www.apple.com/iPhone/) was used to collectdata
to develop and evaluate our algorithm. This device was chosen
because it is programmable, equipped with the appropriate
sensors, and has a sufficiently large memory (16GB) and
battery (1420 mAh) to record continuous data for an entire
day. Commercial activity monitors exist in the form of wrist
watches, but they only contain accelerometers (no gyroscopes),
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Fig. 5. Data collection using an iPhone 4 on the wrist.

and so could not be used for this work. Although the iPhone
is larger than a watch, it is important to note that a much
smaller device could be constructed; this is discussed further
in section IV.

The iPhone was placed inside a pouch which could be
wrapped snugly around the forearm (see Figure 5). The top
of the device was aligned with the wrist joint but positioned
so that it would not inhibit movement of the wrist. A custom
program was written to run on the iPhone, recording the raw
data for later transfer to a computer through a USB port. Our
segmentation and classification algorithms were implemented
in the C programming language using a Win32 graphical
user interface to visualize the data and results. For smoothing
sensor data from the iPhone, we found that a window sizeN
of 1 second with a Gaussian sigmaR of 10 produced good
results.

The Clemson University Institutional Review Board ap-
proved the data collection and each subject provided informed
consent. Subjects were given the device in a brief laboratory
visit prior to the day of their recording, and were instructed
in its use. They were asked to put the device on and start
the custom program soon after waking in the morning, and
to conduct all activities throughout the day as naturally as
possible while the device continuously recorded their wrist
motion. Subjects were asked to remove the device only when
engaging in activities that could damage it, such as taking a
shower. On the day following recording, each subject returned
the iPhone to the experimenter for data download and review.

Data was collected in two separate batches. In the first
batch, 30 subjects (12 male, 18 female, ages 18-32) were
instructed to manually write down the start and stop times
of their actual meals and snacks in a provided log book, using
the time displayed on the device for reference. The iPhone
program recorded data at 60 Hz and drained the battery after
approximately 8.5 hours. Subsequent to this batch, we learned
that 15 Hz data was sufficient for our method, and were able
to extend recording time to approximately 12 hours. We also
learned that subjects had trouble using the provided written log
to record the times of eating. We therefore discontinued using
the manually written log and instead added an event marker
button to the iPhone program that subjects were instructed
to press when they started and ended meals or snacks. We
also removed the function from the program that allowed
participants to halt/resume recording, to avoid confusion. In
the second batch of data collection, 25 subjects (8 male, 17

female, ages 20-50) used the updated version of the iPhone
program.

During post-review, the experimenter interviewed each sub-
ject to identify possible errors for exclusion. Out of the first
batch of 30 recordings, 10 had to be discarded due to poor
compliance with keeping records. Two subjects forgot to write
down start or stop times for 1 or more meals/snacks. Three
subjects stated that they filled the log out at the end of the
day based upon memory, instead of writing down the start and
stop times as they occurred. Five subjects misinterpreted our
instructions and started/stopped the iPhone recording program
for meals only. These problems motivated the reprogramming
of the iPhone recording program to remove the halt/resume
button, and to include an event marker on the iPhone screen
in place of using a written time log. For the second batch of
25 recordings, button press logs were reviewed with subjects
the day after recording to eliminate inadvertent markers. Out
of 294 total marks, 172 recorded 86 discrete, verified eating
activities with event marks at the actual start and stop bound-
aries as verified by the participants. Most of the remaining
122 marks were identifiable as inadvertent due to being single
marks (as opposed to marks that could be paired into start/stop
sets). Given the sensitivity of the iPhone touchscreen, thesize
of the event marker button (5× 2 cm), and the fact that
each subject wore the device for a whole day, this number
of inadvertent presses was not surprising. Nine marks were
reported as intentional by the subjects to test that the device
was still recording, but were not associated with meals. Six
marks were identified as double presses of the button due
to being less than 10 seconds apart. Two subjects reported
forgetting to press the button at the end of one or more meals;
these recordings were discarded.

In total, our data collection yielded 449 hours of data from
43 subjects, including a cumulative 22.4 hours of eating over
116 total meals/snacks. It is important to note that the goalof
the data collection was to capture a sample of eating activities
covering a variety of individuals, meals, environments and
times of day. The purpose of the data set was to enable algo-
rithm development for automatically detecting such periods.
It was not a goal of the data collection to capture total daily
intake. We asked that participants try to capture all their eating
activities, but the goal of this work was not contingent on
meeting this criteria.

C. Evaluation

We used two sets of evaluation metrics. The first metrics
evaluate the classifier by the total amount of time correctly
classified, the second metrics evaluate the classifier by thetotal
amount of eating activities (segments) correctly classified. The
boundaries of manually logged periods of eating were recorded
at 1 second resolution. The boundaries of automatically clas-
sified periods of time were rounded to the nearest second.

For the first metrics, true positives (TP) were counted as
the number of seconds of time that were labeled as eating
in the manual logs and classified as eating. False positives
(FP) were counted as the number of seconds of time that
were labeled as non-eating in the manual logs and classified
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notation feature eating non-eating
mean var mean var

f1 manipulation ((deg/sec)/G) 791 45785 395 57284
f2 acceleration (G) 0.039 0.0002 0.054 0.0043
f3 roll motion (deg/sec) 9.1 18.2 6.8 39.2
f4 roll regularity (%time) 0.58 0.02 0.37 0.07

TABLE I
AVERAGE FEATURE VALUES FOUND DURING TRAINING.

as eating. True negatives (TN) and false negatives (FN) were
counted similarly by comparing the manual log labels to the
data classified as non-eating. Sensitivity and specificity were
calculated as TP/(TP+FN) and TN/(TN+FP). Accuracy was
calculated as:

accuracy=
TP× 20 + TN

(TP + FN)× 20 + (TN + FP)
(9)

The factor of 20 in equation 9 weights true positives to true
negatives at a ratio of 20:1. This is used because eating occurs
much less frequently than non-eating in general free-living.
The importance of using 20:1 weighting during evaluation is
demonstrated in our results and further discussed in section
IV.

For the second metrics, consecutive segments that were
labeled as eating by the classifier were merged into single
whole segments (see end of section II-A2). True detections
were counted as the number of manually logged entries that
overlapped segments that were labeled eating by the classifier.
Undetected eating activities were counted as the remainderof
the manually logged entries. False detections were countedas
the remainder of the segments that were labeled eating by the
classifier.

III. R ESULTS

The classifier was trained using leave-one-out cross-
validation. Thus, for testing each of the 43 recordings (1
per person), the classifier was trained using the other 42
recordings to calculate values for the classifier probabilities
(µi,j andσi,j). Table I lists the average means and variances
for the features for each class. We use the notationf1 to refer
generically to the feature manipulation (see equation 3), and
f1,w to refer to that feature calcualted over a specific window
W . The probabilities for the eating class were calculated as
the average feature values for all segments labeled as eating by
the subjects. For the non-eating class, all the remaining data
from the recordings was broken into 5 minute windows and
the probabilities were calculated as the average feature values.
As can be seen in Table I, during eating there tends to be
higher values for manipulation, roll motion and roll regularity,
and lower values for linear acceleration. The variances forall
features for the non-eating class are higher than for eating, due
to the variety of activities grouped together in this class.Two-
tailed independent t-tests comparing all paired distributions
showed the differences are statistically significant (all p’s <
0.001).

Table II shows the results of testing the classifier us-
ing leave-one-out cross validation combined across the two

features sensitivity specificity accuracy
f1, f2 80% 79% 79%

f1, f2, f3, f4 76% 82% 79%

TABLE II
RESULTS USING LEAVE-ONE-OUT CROSS VALIDATION ON ALL DATA .

features sensitivity specificity accuracy
f1, f2 78% 79% 79%

f1, f2, f3, f4 81% 82% 81%

TABLE III
RESULTS USING LEAVE-ONE-OUT CROSS VALIDATION SEPARATELY ON

EACH OF THE TWO BATCHES OF DATA.

batches of data collected. The accuracy achieved was 79%.
Using just the first two features (manipulation and linear
acceleration) produced the same accuracy as using all 4
features. However, since our data was recorded in two batches,
we also analyzed the results using separate leave-one-out cross
validation for each batch. Specifically, for the 20 recordings in
the first batch, each was tested using the other 19 for training
the classifier; for the 23 recordings in the second batch, each
was tested using the other 22 for training the classifier. Table
III shows these results. In this case an accuracy of 81% was
achieved, and the use of all 4 features improved sensitivity,
specificity, and accuracy. We hypothesize that this is due to
the different amounts of data recorded in each batch. The first
batch averaged 8.5 hours per recording, spanning 10AM to
6:30PM on average. The second batch averaged 12 hours per
recording, spanning 10AM to 10PM on average. Since the
second set included more evening and night activities, we
suppose that the different training produced more accurate
feature values for the classifier.

The valuesP (c0), P (c1) in our classifier (see section II-A4)
determine the likelihood of a segment being classified as an
eating or non-eating activity. We tested across the range of
valuesP (c0), P (c1) = {0, 1}, {.05, .95}, {.1, .9}, ...{1, 0} to
find the maximum accuracy. Table IV shows the importance of
weighting accuracy at 20:1 for evaluating total time correctly
classified. Weighted at 1:1, our classifier achieves a maximum
accuracy of 95% but this occurs at a sensitivity of 0%, in
other words when all data are labeled as non-eating. Weighted
at 20:1, our classifier achieves a maximum accuracy of 81%
which is less than 95%, but the sensitivity and specificity are
balanced.

The accuracy per person ranged from 35-97%, with a
median of 82%. The accuracy was above 70% for 38 out of
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weighting sensitivity specificity accuracy
1:1 0% 100% 95%
20:1 81% 82% 81%

TABLE IV
EVALUATION OF CLASSIFIER AT MAXIMUM ACCURACY USING 1:1 VERSUS

20:1 WEIGHTING OF TIME CORRECTLY CLASSIFIED AS EATING VERSUS

NON-EATING.

43 people (88%), with the five remaining having much lower
accuracies. This suggests that for most people, our method
may be suitable for detecting eating activities, but that for
some people our method may not work. It could be that some
people are less likely to engage in vigorous wrist motions
before and after eating activities. However, each subject was
only recorded for a single day, so this result may be more a
function of the particular meals/snacks eaten on the day of
recording than individual habits.

We also evaluated our classifier at the segment level using
the second set of metrics described in section II-C. The
classifier correctly detected 100 actual eating activities, missed
16, and had 379 false detections. The average time between
the start of manual log entries and correctly detected eating
activities was -0.6 minutes. The average time between the end
of manual log entries and correctly detected eating activities
was +1.5 minutes. This suggests that the peaks detected by our
method occur slightly before and slightly after actual eating
begins and ends, respectively.

IV. D ISCUSSION

Table V summarizes the present study in comparison to
related works. The first contribution of this paper is that it
is the first to describe a method to detect entire periods of
eating (i.e. meals, snacks) as opposed to counting individual
swallows, chews, bites or specific gestures during eating. For
example, Amft and colleagues studied the recognition of four
different gestures related to eating: using a fork and knifeto
eat from a plate, using a spoon to eat from a bowl, using hands
to eat, and drinking from a glass [3], [17]. In a related work
they recognized gestures specific to 11 food categories [2],and
in a recent study they detected drinking gestures (sip and fetch
motions) [4]. Sazonov and colleagues studied the recognition
of chews [31] and swallows [29]. Päßler and colleagues
developed a method to recognize swallows associated with
different types of foods [27]. Our group developed a method
to recognize and count bites of food and sips of liquid taken
during a meal [9]. All these methods make progress towards
the goal of using body-worn sensors to automatically measure
EI. However, when operated all day, all these methods face
the challenge of false positives occuring during non-eating
activities. The method described in this paper could be usedas
an automated on/off switch, activating any of these methods
only during a detected meal/snack. This has the potential
to greatly reduce the incidence of false positives in all-day
automated EI measures.

A second contribution of this paper is that we tested our
method on data collected during free-living, as compared
to scripted eating activities in the lab. For example, most

previous works used between 4 and 11 specific foods and
directed subjects through a scripted sequence of eating and
rest activities [2], [3], [17], [27], [29], [31]. In one study
designed to detect drinking gestures, each subject was recorded
in an approximately one hour session that included scripted
activities of office work, gaming, and leisure [4]. In our
previous work that studied an automated bite counting method,
no restrictions were placed on food or beverage types, but all
data was still collected in a lab [9]. In contrast, for this work
each of our subjects was recorded for a day (10.4 hours on
average) during normal daily free-living, and we placed no
restrictions on eating behavior. To our knowledge this is the
first study using body-worn sensors to detect eating activities
in free-living conditions. Although lab studies offer a con-
trolled environment in which eating period detection couldbe
objectively confirmed by video recording or direct observation,
body-worn sensors that detect eating are designed with the
ultimate intention of being used in free-living. Free-living
studies face the challenge of recording the actual activities of
subjects in order to evaluate the automated methods, as seen
in this paper. However, event markers are commonly used in
mobile physiological monitors, such as Holter EKG monitors,
for a wearer to note a significant event, e.g. a panic attack.
Hence, event markers are an accepted approach to identifying
significant behavioral events from among other free living
activities. The advantage of studying eating in free-living is
that eating behaviors, schedules and activities are as natural
as possible.

A third contribution of this paper is that we tested our
method on the largest data set (449 total hours) that has been
reported in the related literature. This is partly due to thefact
that eating occurs much less frequently than non-eating in free-
living. In our data set we observed 22.4 hours of eating out
of 449 total hours, a ratio of 1 to 20. In contrast, previous
works that used data collected in the lab were based on an
unrealistic equal ratio of eating and non-eating data [3], [27],
[29]. This confounds comparisons of accuracies between these
methods and the results reported in this paper. As shown in
our results, using equal weighting for eating and non-eating
data achieves 95% accuracy for a classifier that blindly labels
all data as non-eating; this is obviously not desirable. We
achieved 81% accuracy classifying 1 second epochs as eating
or non-eating at a more realistic 20:1 weighting that more
closely conforms to actual behavior. Contrasting our results
against previous works, Sazonov and colleagues achieved 97%
accuracy classifying 1.5 second epochs as containing swallows
or not, 85% accuracy detecting individual swallows, and 81%
accuracy classifying 30 second epochs as containing chews or
not [29], [31]. P̈aßler and colleagues achieved 83% accuracy
detecting swallows and 79% accuracy recognizing the food
type swallowed [27]. Amft and colleagues achieved 80%
accuracy recognizing 11 different foods being eaten by a single
subject [2], and 94% precision with 84% recall recognizing
drinking motions of 6 subjects [4]. Our previous work achieved
86% sensitivity at 81% positive predictive value at detecting
bites during meals [9]. However, we reiterate that all the
related works weighted the detection of eating activities vs
non-eating activities at a 1:1 ratio, whereas we weighted 20:1.
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study activities test total total sensor
detected environment subjects hours location

[3], [17] gestures lab, 4 foods 4 5 arm, wrist, back
[2] gestures lab, 11 foods 1 - neck, ear, wrist, arm
[4] drinks lab 6 6 wrist
[29] swallows lab, 5 foods 20 65 neck, throat
[31] chews lab, 5 foods 20 65 jaw
[27] swallows lab, 8 foods 51 21 jaw
[9] bites lab 47 14 wrist
present meals/snacks free-living 43 449 wrist

TABLE V
SUMMARY OF DISCUSSION COMPARING THIS WORK TO RELATED WORKS.

It also bears repeating that the related works limited eating
conditions by collecting data in the lab.

The envisioned embodiment of our device is a small watch
worn on the wrist. Compared to some related works, this
configuration is simpler, and potentially less embarrassing
(compared for example to head mounted sensors), which
has implications for long-term use in free-living. We used
an iPhone to collect data for algorithm development and
evaluation so that we could record a full day of raw data.
However, in practice our method would only need to store
raw data until the current data segment was classified, greatly
reducing the needed memory. It would also only need to power
gyroscopes during data segments suspected of containing eat-
ing activity. This is important because a MEMS accelerometer
uses approximately 10% of the power of a MEMS gyroscope
[34], [35]; a typical coin-sized battery can power a single
MEMS gyroscope for part of one day, while it can power
an accelerometer for over one week.

Another application for the method described in this paper
is the automated measurement of a daily pattern of eating
activities. Daily patterns are known to be associated with
variations in EI [18]. For example, night eating syndrome
(NES) is characterized by evening hyperphagia and morning
anorexia [5]. Different studies have found varying links be-
tween NES and obesity and other disorders [7]. One factor
inhibiting study is the difficulty of objectively quantifying
and measuring diagnostic criteria involving eating patterns [1].
Binge eating disorder [15] and eating disorders linked to night
shift working [38] are other problems associated with temporal
eating patterns. The method described in this paper has the
potential to provide an objective eating activity calendarfor
studying these types of problems.

A limitation of our evaluation is that the classifier was
trained at the group level. We hypothesize that individual-
level training could improve these results. However, we only
recorded 1 day of data per person, with an average of
116/43 = 2.7 periods of eating per person. In future work we
would like to collect free-living data from individuals over a
longer duration (e.g., a week or more). This would allow the
classifier to be trained to the individual, perhaps improving
performance. This would also allow us to further explore the
idea that our method may not be suitable for some people
who do not exhibit vigorous wrist motion at the boundaries
of eating activities. Another limitation of our method is that it
groups all non-eating activities into a single class. It maybe

that a multi-class approach with a more sophisticated classifier
would achieve a higher recognition accuracy. These ideas
are all subjects for future work, for which the current work
provides the foundation that the detection of eating boundaries
is feasible based on a relatively simple wrist sensor.
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