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In this lab, you will learn how to write a Linux device driver. As opposed to previous lab on Linux Kernel, 

in which a full, detailed and step-by-step manual is given, this lab will need you to think more and read 

more to solve problems. By the end of the lab, you will be a Linux device driver developer and be able to 

write a device driver from scratch. 

To finish this lab smoothly, you are expected to have a moderate understanding about the following 

topics. If not, at least, you need something for reference while you are working on this lab. 

 C programming. 

o Make sure you understand what is pointer, function pointer. 

o References 

 Microcomputer organization and interfacing. 

o Get familiar with the following concept again I/O Port, DMA, interrupt. 
 

Kernel module and preparation 
A device driver is no more than a piece of program that runs together with the kernel. It is fine to write a 

C file that compiles into kernel just like what you did in Lab 4. However, compile the whole kernel takes 

too much time and makes development very inefficient. Moreover, requiring user to recompile kernel 

whenever a new device is added is quite inconvenient. 

To solve these problems, the Linux kernel has a mechanism to load in (insert) a piece of kernel program, 

which is called “kernel module” or simply “module”, during runtime. The relation of kernel image to 

kernel modules is analogous to program EXE file to DLLs in Windows and ELF binary file to “*.so” files in 

Linux. Actually, kernel modules usually bears a “*.ko” name in Linux system. 

In Lab 4 in order to trim down the kernel image size, we do not include support for kernel modules in 

configuration. Now it is time make another kernel image with “Enable loadable module support” in 

configuration. Check all sub menu items as well, because those options can be handy for module 

development. Later we need to copy some sound into virtual machine. Hard drive is used to implement 

it. 

 



DoNothing module 
We will start with a kernel module that essentially does nothing just to smooth the steep learning curve. 

To qualify as a kernel module, an initialization function and a clean-up function need to be implemented. 

These two functions are called by the kernel when loading in or unloading the modules respectively. By 

default they are called init_module and cleanup_module, although is possible to use two macros, 

module_init and   module_exit to appoint functions with arbitrary name to serve as  

initialization and clean-up purpose. 
 

Here I will show the example code for a module that essentially does nothing. 
 

 

 

The example is simple and self-explanatory. At the beginning, necessary files are included. The 

donothing_init prints a message and return 0 signify it is successful. Notice here KERN_ALERT is 

used, which tell the kernel the message has a higher priority and will be displayed on the console 

directly. Moreover, in Linux kernel, it is a convention to return a 0 for successful and negative numbers 

for failures. The absolute value of the negative result is the error code. Most error codes are defined in 

the kernel header file “include/errno.h”. The donothing_exit prints a message and returns nothing. 

At the end, the module_init and module_exit macros appoint the function for initialization and 

clean-up, respectively. 

Make a directory under the kernel source tree (~/kernel/linux-2.6.32.55), for example “lab5”. Please 

type in the code above into a file “nothing.c” in lab5 directory. 

It is possible to use gcc command line to compile this C file into a module binary file (.ko file), however, it 

is a common practice to use make utility to automate the building process in software engineering in 

Linux. The benefit of using make file includes: 

 Typing fewer commands for building target file (the file we wanted, the kernel module file in 

this case). 

#include <linux/module.h> /* all modules need this*/ 

#include <linux/kernel.h> /* KERN_ALERT */ 

#include <linux/init.h> /* the macro definition */ 

 
static int donothing_init(void) 

{ 

printk(KERN_ALERT "This is a DoNothing module\n"); 

return 0; 

} 

 
static void donothing_exit(void) 

{ 

printk(KERN_ALERT "DoNothing module is unloaded\n"); 

} 

module_init(donothing_init); 

 

module_exit(donothing_exit); 

// donothing_init will be called when loading 

// this kernel module 

// donothing_exit will be called when loading 

// this kernel module 



 Dependencies are automatically managed. Changes in source files will be correctly propagated 

to the target. 

 Sharing configuration and options with other make files. 
 

A makefile defines the rules for building the final file. The makefile for building the DoNothing kernel 

module is quite simple. It only has one line. 
 

obj-m := nothing.o   

Save the content above in a file named “Makefile” in the lab5 directory. Type the following command to 

compile the kernel module. Make sure the current directory is lab5. 
 

make –C ~/kernel/linux-2.6.32.55 M=$PWD modules 

 

The make command will look for “Makefile” and use the definition inside the file to compile the module. 

However, in this case, we are reusing the Makefile for building the kernel image since it has necessary 

definition. The option “-C” direct the make utility to look for “Makefile” in directory “~/kernel/linux- 

2.6.32.55”, which is the directory of kernel source tree. The “modules” directive inform the make utility 

to build modules and “M=$PWD” will tell make where the module source code is. The $PWD will be 

expended into the current directory and thus it is equivalent to write “M=~/kernel/linux-2.6.32.55/lab6” 

given the current working directory is “lab6”. 

If the Makefile used by make is the one in “~/kernel/linux-2.6.32.55”, why we are writing another? The 

reason is that the Makefile in “~/kernel/linux-2.6.32.55” will actually insert the content of our Makefile 

into a general template and compile the kernel module. 

If you saw something like this, the module is built successfully. You will see a nothing.ko file in lab5 

directory. 
 

 

 

It is probably a good choice to write the command line into a script because otherwise you are going to 

type it so many times in this lab. For more information about Makefile please read 

http://www.opussoftware.com/tutorial/TutMakefile.htm and 

http://www.ravnborg.org/kbuild/makefiles.html. 
 

Now we have a module and it is time to load it into kernel. Type the following command: 
 

sudo insmod ./nothing.ko 

 

The insmod stands for INSert MODule. It will “insert” (load) the module into the kernel. Since it is a 

command that requires root privilege,  “sudo” is used. During the loading process, the initialization 

http://www.opussoftware.com/tutorial/TutMakefile.htm
http://www.ravnborg.org/kbuild/makefiles.html


function is called and the message is printed. Kernel modules currently loaded into kernel can be viewed 

by “lsmod” command. 

To unload the kernel module, another command, rmmod, is used. The following command will unload 

the module and the unload message is displayed because the clean-up function is called. 
 

sudo rmmod nothing.ko 

 

Check the currently load module again with “lsmod” to confirm it is unloaded. 
 

 

 

At this point, you should know how to write a simple kernel module and the commands to load and 

unload the module. 

NOTE: This will be CHECKPOINT 1 for this lab. You need to save all files that are required for this 

demonstration. 
 

Make it a device 
In this section, you will extend the nothing.c to make it appear to be a device. 

 

In Linux, almost everything is a file. This convention starts from UNIX and affects many modern 

operating systems. A common set of operations are defined on the broader sense files, which include 

files in the disk and devices such as keyboard, video card, serial cable, etc. Think of the scenario when 

you have to write a program to read a file. If nothing special is done to the files, the same program can 

be used to read data from a device, such as a serial cable, without any modification. This is quite 

convenient for both programmers and users. 

All operations can be done to a file is defined in a structure named “file_operations”. The structure is 

defined in “include/linux/fs.h” in kernel source directory. Each field in “file_operations” is a function 

pointer pointing to the function that implements the operation. If you do not remember what function 

pointer is, Google it or read the textbook for C programming. 
 

Here is the file_opeartions structures with only a few fields that will be used in this lab displayed. 



 

 

 

If you still remember function pointers, you will quickly recognize that the file_operations is a structure 

of many function pointers. Each function pointer will point to the function that handles the operation. 

Each file is associated with a file_operation structure of its kind. The operating system will call to the 

corresponding functions in that associated  file_operation when requested by the user program. 
 

For example, when you call fread on a file in the disk, the operating system will actually call to the read 

function pointer in the file_operation associated with that file. This read pointer is pointing to a read 

function in a file system implementation, such as Ext2, Ext4 or FAT32, since it is a file on the disk. If the 

file is actually a device, the function pointers will point to some function in device driver implementation. 
 

In the file operations listed: 
 

 read by convention will implement read of a file/device. 

o 1st parameter: struct file *, is a pointer to file structure. The file structure is defined in…. 

o 2nd parameter: char *, pointer to the data buffer 

o 3rd parameter: size_t(unsigned int), size of data to be read 

o 4th parameter: loff_t *(unsigned long long *) pointer to 64 bit current byte offset. 

o return value: ssize_t(int): number of byte actually read. 

 write by convention will implement write of a file/device. 

o Parameters and return value definition similar to read. 

 open by convention will implement open of a file. 

o 1st parameter: struct inode *, a pointer to inode structure. 

o 2nd parameter: struct file *, pointer to a file structure 

o Return value: 0 if success or negative error number if failed. 

 release by convention will implement close of a file. 

o Parameters and return value definition similar to open. 
 

Notice that the parameter list of read is different to fread. This is due to fread is defined as a standard C 

library function which will be common in many different operating systems. In contrast, read is for Linux 

operating system only although it is heavily modeled after UNIX design. The fread will finally call to read 

function of the appropriate file_operation. 

As we said before, devices in Linux are just files. Thus, it is possible to create a special file in the file 

system to denote our device. In this way, it is required to define a custom file_operation and register it 

to the kernel so that any access to that special file will be handled by functions in the custom 

file_operations. In Linux, all the special file are in the directory /dev. 



When creating this special file, it is required to supply a “major number” and “minor number”. One 

instance of device is uniquely identified by a “major number” and “minor number” combination. The 

“major number” is used to differentiate type of devices and “minor number” is used to differentiate 

instance of device of the same type. For example, if you have two IDE hard disks in the computer of the 

same type, they will have the same “major number” but different “minor number”. 

Also, when registering a device in the driver, it is required to supply a major number. The kernel 

matches the major number and associates the special file with corresponding driver. 

There are two types of device in Linux, block device and character device. Block device is referring to 

devices that are written and read by chunks, such as hard disk or tape. Character device is referring to 

those written and read by bytes. Character device is simpler and lots of device driver is implemented as 

character device. In this lab, we are going to use character device only. 
 

Now we can start writing a device driver. We will make a virtual device that has 1 byte storage in it. 

After this device module is loaded. You can write into the device, and the device will hold one byte. 
 

Before writing the code, we can create the device special file in /dev use the following command. 
 

sudo mknod –m666 /dev/onedev c 61 0 

 

The mknod command will make the special file. In its parameter, “-m666” set the mode of file to 

read/write, “/dev/onedev” is the path of the special file, “c” means it is a character device and 61 and 0 

are major and minor numbers respectively. The major number 61 is an arbitrary choice. (In Linux, major 

numbers in range of 60-63, 120-127, 240-254 are for experimental use.) 

Now if you are trying to access the special file, since there is no corresponding driver loaded, the kernel 

will complain. 
 

 

 

Here is the code for the one byte device. Code is commented and you are expected to understand the 

code by yourself. 
 
#include <linux/module.h> 

#include <linux/kernel.h> 

#include <linux/init.h> 

#include <linux/slab.h> 

#include <linux/errno.h> 

#include <linux/types.h> 

#include <linux/fs.h> 

#include <linux/proc_fs.h> 

#include <asm/uaccess.h> 

 

#define MAJOR_NUMBER 61 

 

/* forward declaration */ 

int onebyte_open(struct inode *inode, struct file *filep); 

int onebyte_release(struct inode *inode, struct file *filep); 

ssize_t onebyte_read(struct file *filep, char *buf, 

size_t count, loff_t *f_pos); 

ssize_t onebyte_write(struct file *filep, const char *buf, 



size_t count, loff_t *f_pos); 

static void onebyte_exit(void); 

 

/* definition of file_operation structure */ 

struct file_operations onebyte_fops = { 

read: onebyte_read, 

write: onebyte_write, 

open: onebyte_open, 

release: onebyte_release 

}; 

 

char *onebyte_data = NULL; 

 

int onebyte_open(struct inode *inode, struct file *filep) 

{ 

return 0; // always successful 

} 

 

int onebyte_release(struct inode *inode, struct file *filep) 

{ 

return 0; // always successful 

} 

ssize_t onebyte_read(struct file *filep, char *buf, 

size_t count, loff_t *f_pos) 

{ 

if (*f_pos == 0) { 

// at position 0, need to use copy_to_user 

// because kernel space and user space 

// are different 

copy_to_user(buf, onebyte_data, 1); 

// advance the f_pos 

*f_pos += 1; 

// return 1, since the device only have 1 byte 

return 1; 

} else { 

return 0; 

} 

} 

ssize_t onebyte_write(struct file *filep, const char *buf, 

size_t count, loff_t *f_pos) 

{ 

if (*f_pos == 0) { 

// Use copy_from_user due to pointer are in different 

// address space 

copy_from_user(onebyte_data, buf, 1); 

// advance f_pos 

*f_pos+=1; 

return 1; 

} else { 

// no more space to write 

return -ENOSPC; 

} 

} 

 

static int onebyte_init(void) 

{ 

int result; 

// register the device 

result = register_chrdev(MAJOR_NUMBER, "onebyte", &onebyte_fops); 

if (result < 0) { 

return result; 

} 

// allocate one byte of memory for storage 

// kmalloc is just like malloc, the second parameter is 

// the type of memory to be allocated. 

// To release the memory allocated by kmalloc, use kfree. 

onebyte_data = kmalloc(sizeof(char), GFP_KERNEL); 

if (!onebyte_data) { 

onebyte_exit(); 



// cannot allocate memory 

// return no memory error, negative signify a failure 

return -ENOMEM; 

} 

// initialize the value to be X 

*onebyte_data = 'X'; 

printk(KERN_ALERT "This is a onebyte device module\n"); 

return 0; 

} 

 

static void onebyte_exit(void) 

{ 

// if the pointer is pointing to something 

if (onebyte_data) { 

// free the memory and assign the pointer to NULL 

kfree(onebyte_data); 

onebyte_data = NULL; 

} 

// unregister the device 

unregister_chrdev(MAJOR_NUMBER, "onebyte"); 

printk(KERN_ALERT "Onebyte device module is unloaded\n"); 

} 

 

MODULE_LICENSE("GPL"); 

module_init(onebyte_init); 

module_exit(onebyte_exit); 
 

 

Read the code above, understand what it is doing. Here are some hints: 
 

The function 
int register_chrdev( unsigned int major_number, 

const char* dev_name, 

const struct file_operations* fops); 

will register a character device and associate major_number with the file_operations structure. The 

dev_name will show up in system management software to help keep track of the device. Function 

returns 0 for success and negative numbers otherwise. 
 

The function 
 
void unregister_chrdev( unsigned int major_number, 

const char* dev_name, 

works the opposite way. It reverses everything done in register_chrdev. 
 

Type the code into a file named “onebyte.c” and add one more item into Makefile. The Makefile will 

looks like the following. 
 

obj-m := nothing.o onebyte.o 

 

Use the same command and to make the kernel module and you will see a “onebyte.ko“ file in the 

directory lab6. 

Insert this newly built module and we can do some testing. 
 

 



The command cat following a file will display the content of that file. The “printf” command will output 

its parameter without change and the output is redirect (“>”) to /dev/one . Notice that since there is 

only one byte in this device. The output (high-lighted with red line) do not has a “\n” and mixed with the 

prompt. The example also shows that when more than one character is written, only the first character 

will be written and then a “no space” error will show. This is expected behavior as the code specified. 

NOTE: This will be CHECKPOINT 2 for this lab. You need to save all files that are required for 

demonstrating read and write of this onebyte kernel device. 
 

Interact with hardware 
In this section, we will learn to interact with hardware. If you have ever take classes such as Computer 

Organization or Microcomputer Interfacing, you should be familiar with the following terms: 
 

 Memory addressing 

 I/O port 

 Interrupt 

 DMA (Direct memory access) 
 

I/O port is similar to memory. You can read from and write to it and achieve information exchange 

between CPU and the peripheral hardware. However, I/O address space and memory spaces are 

completely separate in x86 architecture, which means the I/O address 0x10 has nothing to do with 

memory address 0x10. 

It is designed this way because in the early days of personal computer, memory is a scarce resource. The 

simple architecture at that time does not allow engineers to remap piece of memory to a different 

address. If there are 65536 I/O ports mapping to memory address space, 64KB of memory will be 

wasted, which is not acceptable at that time. Thus, I/O ports are given a different address space and the 

tradition follows until now. 

Accessing I/O ports is as simple as accessing memory. In x86, there are two dedicated assembly 

instruction, IN and OUT for input from and output to an I/O port. In Linux, port I/O access is wrapped by 

functions in?, out?. The question mark can be b (for byte or 8-bit), w(for word or 16-bit), l(for long word 

or 32bit)…. Here are the prototypes of inb and outb, I/O for other data type can be easily generalized. 
 

unsigned char inb(unsigned int port); 
 

void outb(unsigned char value, unsigned int port); 
 

For example, the following code snippet reads 8-bit port 0x50, adds the data by 0x10 and writes it back 

to port 0x51. 
 

unsigned char data; 
 

data = inb(0x50); 
 

data +=0x10; 



outb(data, 0x51); 
 

Please note that you need to include asm/io.h for using the inb and outb. 
 

Now we know how to read and write ports. But which ports should be read from or write to if we are 

going to access the Sound Blaster 16 audio card? 

Sound Blaster 16 is released before PCI and uses ISA bus originally. Lacking of plug and play support, ISA 

devices usually requires user to configure the address settings by changing the onboard jumpers. In the 

virtual machine we use, the base address for Sound Blaster is 0x220, which means the I/O port address 

for Sound Blaster will start from 0x220. 

It is time to read the “Sound Blaster Series Hardware Programming Guide”(the Guide) to figure out the 

exact addresses for different ports on Sound Blaster 16 audio card. The Guide is provided in Lab6 

Resource Pack. The file name is “SoundBlasterProgrammingGuide.pdf”. 
 

Please read Chap. 1 of the Guide for an overview of the sound blaster sound card. 
 

Please read first 4 Sections of Chap. 2 (DSP I/O address, Resetting DSP, Read from DSP and Write to DSP) 

of the Guide for an overview of the sound blaster sound card. 

First, quiz yourself (open everything) about the following question. Please write the answer down, they 

may be useful for you later. 

Assume the base address is 0x220, 
 

1. What is the port for resetting the DSP? 

 
2. What is the port to read data from DSP? 

 
3. Which bit of which port should be checked before reading data from DSP? 

 
4. What is the port to write data to DSP? 

 
5. Which bit of which port should be checked before writing data to DSP? 

 

 
In the Guide, they have given out the source code for reading from and writing to DSP and code for 

resetting DSP. Unfortunately, the code is written in x86 assembly language, which I assume most of you 

do not remember how to interpret. Thus, I will show the C code for DSP read. Please compare the C 

code with the assembly code and try to write the C code fore write DSP and DSP reset. If you have 

further questions about interpreting the assembly code, here are some helpful tutorials. 
 

http://www.drpaulcarter.com/pcasm/ 

http://www.csn.ul.ie/~darkstar/assembler/tut3.html 

http://www.drpaulcarter.com/pcasm/
http://www.csn.ul.ie/~darkstar/assembler/tut3.html


The code for DSP read is listed as below. 
 
#include <asm/io.h> 

 

#define SB16_BASE 0x220 

#define SB16_DSP_READ (SB16_BASE+0xA) 

#define SB16_DSP_RSTATUS (SB16_BASE+0xE) 

 

#define SB16_RBUF_EMPTY()  (!(inb(SB16_DSP_RSTATUS) & 0x80)) 

 

unsigned char read_dsp(void) 

{ 

while(SB16_RBUF_EMPTY()); 

return inb(SB16_DSP_READ); 

} 

Please write the code for DSP write (write_dsp) and DSP reset (reset_dsp). Defining ports and other 

numbers with #define helps increasing readability of your code and give the code a professional look. 

Thus, it is highly recommended. 

Read the Guide page 6-29. It describes the command for retrieving the version number of the sound 

card DSP. Use the read_dsp and write_dsp function to retrieve the version number and print it out on 

screen (using printk). Do not forget you need to reset the DSP for before everything. Implement the 

code in a function and call that function in the module initialization. The version of DSP in the virtual 

machine is 4.05. In the other word, the major version number is 4 and minor version number is 5. 

Make sure the sound card on the virtual machine is Sound Blaster 16 in the setting page. By default, it 

may be another type of card and the checkpoint 3 result cannot be reproduced 

If you can successfully output the version number as below, you know how to talk to the hardware with 

your C code now. A big achievement! 
 

 

 

NOTE: This will be CHECKPOINT 3 for this lab. You need to save all files that are required for 

demonstrating reading the version number of SB16 onboard DSP. 

When you would like to make some sound from the sound card, sound samples are sent to the sound 

card. The sample values are transformed into electric signals via D/A converter, which is then amplified 

and use to drive the speaker/earphone. 

Our next step is DMA (Direct Memory Access) since DMA is used to send data to sound card. First, learn 

a fact: using CPU to copy data to I/O port is very inefficient. This is because compiled code for copying 

data is also in memory and CPU has to read the code while transferring data. Thus, doing it this way 

cannot fully use the available memory bandwidth. Moreover, many peripherals cannot keep up with the 

fast speed of CPU and making the CPU sitting there and idling most of time during the copy process. 

DMA is invented to solve this very problem. The data transfer using DMA is controlled by a special 

hardware called DMA controller, which can be seen as a CPU that just knows how to copy data. DMA 

controller shares the memory bus with CPU by time. The sharing is coordinated with special signal lines 

between CPU and DMA controller. 



More detailed description of DMA can be found in textbook of Microcomputer Interfacing or the 

following places. 

 http://en.wikipedia.org/wiki/Direct_memory_access 

 http://www.inversereality.org/files/dmaprogramming.pdf 

 http://cires.colorado.edu/jimenez-group/QAMSResources/Docs/DMAFundamentals.pdf 
 

To initialize a DMA transfer, the DMA controller registers has to be setup. It is possible to use the port 

I/O method to setup DMA controller, although Linux provided wrapper functions to do the same job. For 

the details about how to use those functions, please read the following page from “DMA for ISA Devices” 

to the end. 

 http://www.xml.com/ldd/chapter/book/ch13.html 
 

Notice in the page above, a parameterized function (dad_dma_prepare) for setting up DMA transfer is 

already supplied. To use the function, the appropriate parameter should be passed. 

 Channel: 1  

 Mode: DMA_MODE_WRITE 

 Buffer address and count will be specified later. 

Do not forget to include header file asm/dma.h. 

Alone with setting up DMA controller, the sound card DSP have to be setup as well to interpret data in 

the right way. Read the Guide from page 3-2 to 3-5 and page 3-26 for the details. After finish reading, 

write a function for getting the DSP ready for a DMA 8-bit mono channel 11025Hz sound sample data 

transfer. Name the function init_dspdma. 

Let’s take a look at the big picture of the process for playing sound using sound blaster 16. Suppose the 

sound samples are now at somewhere in the memory, the data has to be sent to the sound card. The 

data transfer is done using DMA. The DMA controller has to be initialized first. Then the DSP is setup for 

receiving 8bit 11025Hz mono channel sound sample data. DSP will automatically starts to play the sound 

from now until the data transferring finished. The code for playing sound is provided below. 
 

void start_play(void) 

{ 

init_dmactl(); // init dma controller 

init_dspdma(); // init DSP dma setting 
 

printk("<1> started play!\n"); 

} 
 

The function init_dmactl will initialize the DMA controller and the function init_dspdma will get the DSP 

in sound card ready for receiving data in the format fixed before. Both function is implemented by 

yourself. 

http://en.wikipedia.org/wiki/Direct_memory_access
http://www.inversereality.org/files/dmaprogramming.pdf
http://cires.colorado.edu/jimenez-group/QAMSResources/Docs/DMAFundamentals.pdf
http://www.xml.com/ldd/chapter/book/ch13.html


You may notice there is one important link missing. Where is the sound sample data coming from? It is 

actually from a file. A program will read in the file and write the content to the device created in last 

section. The device driver stores the data into a dedicated DMA buffer. When the buffer is filled, it will 

initialize the DMA transfer. 

One thing worth mentioning is that the DMA controller is kind of picky about the buffer. The buffer 

cannot go over a 64KB boundary and the address should be lower than 16M(0x100000). Thus, a special 

function will be used to allocate the DMA buffer. 
 

Here is the code for allocating 64K of DMA buffer. 
 

dma_buffer = (unsigned char*)   get_free_pages(GFP_DMA, 4); 

 

Here is the code for freeing the memory allocated. 
 

free_pages( (long)dmabuffer, 4); 

 

Put the allocation in module initialization and the free in module cleanup. The GFP_DMA flag in the code 

above will guarantee the returned buffer satisfy DMA requirement. The number 4 means 24=16 pages. 

With each page 4KB long (x86 architecture default), it is equal to 64KB of buffer. 
 

Now the buffer address and count of the DMA controller initialization is figured out. 
 

 Buffer: dma_buffer 

 Count: 64*1024 
 

Interrupt is not mentioned in this section since it is desired to keep this tutorial as simple as possible. 

The side-effect is that the driver will not get notified when the 64KB data transfer finished and thus 

cannot play sound segment longer than a few seconds (64*1024/11025=5.9 sec). Adding interrupt 

handling will enable the driver to play continuous sound with arbitrary length. However, it will increase 

the length of the code by at least 200 lines. If you are interested, talk with the lab TA (me) about it. 
 

Integration and Testing 
Integrate what you learn from previous sections and come up with a working sound card driver. 

Skeleton of the code of driver is listed below for reference. 
 
<include header files> 

 

// forward declarations 

int sb16drv_open(struct inode *inode, struct file *filp); 

int sb16drv_release(struct inode *inode, struct file *filp); 

ssize_t sb16drv_read(struct file *filp, char *buf, size_t count, loff_t *f_pos); 

ssize_t sb16drv_write(struct file *filp, const char *buf, size_t count, loff_t *f_pos); 

int sb16drv_init(void); 

void sb16drv_exit(void); 

 

// the file_operations structure 

const struct file_operations sb16drv_fops = { 

read: sb16drv_read, 

write: sb16drv_write, 

open: sb16drv_open, 

release: sb16drv_release 

}; 



// DMA buffer pointer 

unsigned char *dma_buffer = NULL; 

 

// See Manual page 2-4 

void write_dsp(unsigned char value) 

{ 

// implement this function 

} 

 

// See Manual page 2-3 

unsigned char read_dsp(void) 

{ 

// implement this function 

} 

 

// See Manual page 2-2 

int reset_dsp(void) 

{ 

// implement this function 

// return value should indicate if the reset is successful 

// Hint: mdelay(x); will pause execution for x millisecond 

} 

 

int dad_dma_prepare( .... ) 

{ 

// copy the function over 

} 

 

// DMA controller configuration 

void init_dmactl(void) 

{ 

// config the dma controller by calling function 

// dad_dma_prepare with appropriate parameters 

} 

 

// Setup DMA transfer sampling rate, direction, format and length 

// See manual 3-26 

void init_dspdma(void) 

{ 

// implement the procedure described in the Guide 

// hint: 

// High byte of a word x .... ((x&0xff00)>>8) 

// Low byte of a word x  .... (x&0xff) 

} 

 

// play sound 

void start_play(void) 

{ 

init_dmactl(); // init dma controller 

init_dspdma(); // init DSP dma setting 

printk("<1> started play!\n"); 

} 

 

// module init 

int sb16drv_init() { 

 

// implement this function 

// This function need following components 

// 1. reset DSP. 

// 2. print out version number of DSP 

// 3. registering the device 

// 4. allocate DMA buffer 

// If any of these three steps fails, goto fail. 

// You many want to print some message to help you debuging. 

printk("<1> Inserted sb16drv module: successful\n"); 

return 0; 

 

fail: 

printk("<1> Inserted sb16drv module: FAILED \n"); 



sb16drv_exit(); 

return -1; 

} 

 

// module clean up. 

void sb16drv_exit() { 

printk(KERN_INFO "sb16drv uninitializing"); 

 

// implement this function 

// This function need following components 

// 1. free DMA buffer if dma_buffer is not NULL. 

// 2. unregistering the device 

// 3. reset DSP. 

printk("<1> Removed sb16drv module\n"); 

} 

 

// open device, always return success 

int sb16drv_open(struct inode *inode, struct file *filp){ 

printk("<1> Device opened\n"); 

return 0; 

} 

// close device, always return success 

int sb16drv_release(struct inode *inode, struct file *flip){ 

printk("<1> Device closed\n"); 

return 0; 

} 

// read device, nothing to read from it. 

ssize_t sb16drv_read(struct file *filp, char* buf, size_t count, loff_t *f_pos){ 

return 0; 

} 

// write device use to write data to DMA buffer 

ssize_t sb16drv_write(struct file *filp, const char *buf, size_t count, loff_t *f_pos) { 

// Implement this function, please note: 

// 1) *f_pos will indicate the current offset to write 

// 2) count will be the length of the data provided 

// 3) do not forget to use copy_from_user instead of memcpy 

// 4) If the count is more than the space left in the buffer, copy part of 

// the data and return the number of byte actually copied. 

// 5) If the buffer is filled, e.g. current offset is at 64*1024, call start_play. 

} 

 

Necessary header files: 
 

 

 

To test the device driver, a piece of program that writes data into the device driver is needed. The 

program is very simple: read a 64 KB chunk of data from a file and write it into the device file. The better 



news is that you do not have to write the program by yourself. Linux comes with lots of utility program 

that achieve the same job. To send a file named “data” into the device file at “/dev/sb16driver”, just 

type the following command line 
 

cat data>/dev/sb16driver 

 

If you followed closely, you will soon found you do not have a playable sound sample files. We are going 

to use the hard drive to copy sound sample data into the virtual machine. 

 

Install a hard drive in the virtual machine settings page, go to the Settings of the virtual machine. In the 

Storage page, write click in the space part of the Storage Tree and select Add a hard driver, then add an 

Empty device.  Finally, OK to confirm the change. 

 

 

After that, select the file “sound.img” in Lab 6 Resource Pack. 

Then type in the following command to create a mount point. This only has to be done once. 
 

sudo mkdir /mnt/hrdisk 
 

sudo chmod 777 /mnt/hrdisk 

 

To mount the hard drive at the mount point (this have to be done in every boot): 
 

sudo mount /dev/sdb1 /mnt/hrdisk 

 

To un-mount the hard drive, notice the current working directory cannot be inside the mount point 

directory else you get a file in use error: 
 

sudo umount /mnt/hrdisk 

 

The sound file linked at the course web site, named 

http://www.ces.clemson.edu/~ahoover/ece468/labs/sound-hd.vdi，is the hard drive image that 

http://www.ces.clemson.edu/~ahoover/ece468/labs/sound-hd.vdi


contains the sound file. This file contains the sound sample data in 8 bit, 11025Hz, mono channel 

format. After you finish writing the driver C code, you need to 

 

 Build the module 

 Insert the module using insmod 

 Create the special file in /dev using mknod 

 Send the file into the driver file by 
 

cat /mnt/hrdisk/sound1.raw > /dev/sb16driver 

 

If everything goes well, which rarely happen, you should be able to hear some sound. Do not forget to 

bring an earphone because computers in the lab do not come with speakers. 

NOTE: This will be CHECKPOINT 4 for this lab. You need to save all files that are required for 

demonstrating making sound with your driver 

  



 


