Lecture 2:

Algorithms and Applications
Outline

- State Sequence Decoding
 - Example: dice & coins
- Observation Sequence Evaluation
 - Example: spoken digit recognition
- HMM architectures
- Other applications of HMMs
- HMM tools
STATE SEQUENCE DECODING

- The aim of decoding is to **discover** the hidden state sequence that most likely describes a given observation sequence.

- One solution to this problem is to use the **Viterbi** algorithm, which finds the **single best** state sequence for an observation sequence.

- **Parameter δ**: The probability of the most probable state path for the partial observation sequence:

\[
\delta_t(i) = \max_{q_1,q_2,\ldots,q_{t-1}} p(q_1q_2\ldots q_t = s_i, o_1, o_2, \ldots, o_t | \lambda)
\]
Viterbi Algorithm:

1. Initialization:
 \[\delta_1(i) = \pi_i b_i(o_1), \quad 1 \leq i \leq N \]
 \[\psi_1(i) = 0 \]

2. Recursion:
 \[\delta_t(j) = \max_{1 \leq i \leq N} [\delta_{t-1}(i)a_{ij}] b_j(o_t), \quad 2 \leq t \leq T, \quad 1 \leq j \leq N \]
 \[\psi_t(j) = \text{arg} \max_{1 \leq i \leq N} [\delta_{t-1}(i)a_{ij}], \quad 2 \leq t \leq T, \quad 1 \leq j \leq N \]

3. Termination:
 \[P^* = \max_{1 \leq i \leq N} [\delta_T(i)] \]
 \[q_T^* = \text{arg} \max_{1 \leq i \leq N} [\delta_T(i)] \]

4. Optimal state sequence backtracking:
 \[q_t^* = \psi_{t+1} (q_{t+1}^*), \quad t = T - 1, T - 2, ..., 1 \]
First pass:

Second pass (back track):
Dice Experiment – State Sequence Decoding

\[P(H|\text{Red Coin}) = 0.9 \]
\[P(T|\text{Red Coin}) = 0.1 \]
\[P(H|\text{Green Coin}) = 0.95 \]

\[A = \begin{bmatrix} 0.9 & 0.1 \\ 0.05 & 0.95 \end{bmatrix} \quad \pi = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ \frac{6}{12} & \frac{6}{12} & \frac{6}{12} & \frac{6}{12} & \frac{6}{12} & \frac{6}{12} \\ \frac{7}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ \frac{12}{12} & \frac{12}{12} & \frac{12}{12} & \frac{12}{12} & \frac{12}{12} & \frac{12}{12} \end{bmatrix} \]

MATLAB Viterbi algorithm:

\[
\begin{align*}
\text{obs} &= [2 \ 6 \ 1 \ 1] \quad \% \text{Die outcomes} \\
\text{states} &= [1 \ 1 \ 2 \ 2] \quad \% \text{True state sequence}
\end{align*}
\]

likelystates = hmmviterbi(obs,A,B)
likelystates =
\[
\begin{bmatrix}
1 & 1 & 2 & 2
\end{bmatrix}
\]

(From the dice experiment)
Observation Sequence Evaluation

Imagine first we have L number of HMM models. This problem could be viewed as one of evaluating how well a model predicts a given observation sequence $O = o_1, ..., o_T$; and thus allows us to choose the most appropriate model λ_l ($1 \leq l \leq L$) from a set, i.e.,

$$P(O|\lambda_l) = P(o_1, ..., o_T|\lambda_l)?$$
Remember that an observation sequence \(O \) depends on the state sequence \(Q = q_1, \ldots, q_T \) of a HMM \(\lambda_l \). So,

\[
P(O|Q, \lambda_l) = \prod_{t=1}^{T} P(o_t|q_t, \lambda_l) = b_{q_1}(o_1) \times b_{q_2}(o_2) \times \cdots \times b_{q_T}(o_T)
\]

For state sequence \(Q \) of the observation sequence \(O \) we have:

\[
P(Q|\lambda_l) = \pi_{q_1} a_{q_1q_2} a_{q_2q_3} \cdots a_{q_{T-1}q_T}
\]
Finally, we can come up with the final evaluation of the observation sequence as:

\[
P(O|\lambda_l) = \sum_Q P(O|Q,\lambda_l)P(Q|\lambda_l)
\]

\[
= \sum_{q_1,...,q_T} \pi_{q_1} b_{q_1}(o_1) a_{q_1q_2} b_{q_2}(o_2) ... a_{q_{T-1}q_T} b_{q_T}(o_T)
\]
Observation Sequence Evaluation

There is an issue with the last expression: We would have to consider ALL possible state sequences for the observations evaluation (brute force).

Solution: acknowledge there is redundancy in calculations → Forward – Backward Algorithm

F-B Analogy: Obtain distance from city A to other three distant cities B, C, D.
Observation Sequence Evaluation

- Forward - Backward actually are two similar algorithms which compute the same thing \(P(O|\lambda_l) \); it depends where calculations start. **Either** of the two can be used for the observation sequence evaluation.

- In the Forward case, we have a parameter \(\alpha \) which represents the probability of the **partial** observation sequence \(o_1, ..., o_t \) and state \(s_i \) at time \(t \), i.e.,

\[
\alpha_t(i) = P(o_1, ..., o_t, q_t = s_i | \lambda_l)
\]
Forward Algorithm:

1. Initialization:
 \[\alpha_1(i) = \pi_i b_i(o_1), \ 1 \leq i \leq N \]

2. Recursion:
 \[\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij} \right] b_j(o_{t+1}) \]
 \[1 \leq t \leq T - 1, \ 1 \leq j \leq N \]

3. Termination:
 \[p(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i) \]
\[O = \{2, 6, 1, 1, \} \]

\[Q = \{1, 1, 2, 2\} \]
\[P(o_1, o_2, o_3, o_4 | \lambda) = \alpha_4(1) + \alpha_4(2) \]
Using MATLAB:

```
obs = [2 6 1 1];
states = [1 1 2 2];
[PSTATES, LOGPSEQ, FORWARD, BACKWARD, S] = hmmdecode(obs, A, B);

f = FORWARD.*repmat(cumprod(S), size(FORWARD, 1), 1);
```

```
f =

1.0000  0.1500  0.0226  0.0034  0.0005  0.0001
0.0000  0.0083  0.0019  0.0024  0.0015  0.0009
```

\[P(o_1, o_2, o_3, o_4 | \lambda) = 0.0001 + 0.0009 = 0.001 \]

\[\log[P(o_1, o_2, o_3, o_4 | \lambda)] = \log(0.0001 + 0.0009) = -3 \]

This number would be significant if we can compare it with different HMMs.
Recognize digits ‘Zero’ and ‘One’ from two speakers:
Phonemes:

/z/ /iy/ /r/ /ow/

/w/ /ax/ /n/
States: Abstract representation of the sounds

/z/ /iy/ /r/ /ow/
State1 State2 State3 State4

/w/ /ax/ /n/
State1 State2 State3 State4
Feature extraction of speech signals:

- Divide the speech signal into frames using a 30ms window.

Feature = \[
\begin{bmatrix}
\log\text{Energy} \\
C_0 \\
C_1 \\
\vdots \\
C_{12} \\
\Delta \\
\vdots \\
\Delta\Delta \\
\vdots
\end{bmatrix}
\]

39-element feature vector per frame
Observation Sequence Evaluation

- For a word (zero/one) it has several feature vectors:

\[
\begin{bmatrix}
\text{Log Energy} \\
C_0 \\
C_1 \\
\vdots \\
C_{12} \\
\Delta \\
\vdots \\
\Delta\Delta \\
\vdots
\end{bmatrix}
\begin{bmatrix}
\text{Log Energy} \\
C_0 \\
C_1 \\
\vdots \\
C_{12} \\
\Delta \\
\vdots \\
\Delta\Delta \\
\vdots
\end{bmatrix}
\begin{bmatrix}
\text{Log Energy} \\
C_0 \\
C_1 \\
\vdots \\
C_{12} \\
\Delta \\
\vdots \\
\Delta\Delta \\
\vdots
\end{bmatrix}
\]

For a HMM these are the observations!
Basic idea:

HMM ‘Zero’ → Score

HMM ‘One’ → Score

Classification → Max \{Score\}
- Create a HMM for word Zero and One.
- Both HMM have the same number of states (4).
- Model the emission probabilities with 2 Gaussian Mixtures.
- States will be an abstract representation of the features.
- 3 utterances of each word (both speakers) will be used as training data.
- 2 utterances of each word (both speakers) will be used as test data.
- Build the training data for each word by concatenation:
 - **zero_data:**

 ![Log Energy](image)

 - **one_data:**

 ![Log Energy](image)
We start by estimating the transition matrix for both HMMs (HMM Toolbox, Kevin Murphy, 1998)

M = 2; %mixtures
Q = 4; %states
O = size(one_data,2); %dimension
T = size(one_data,1);
nex = 1;
data = zeros(O,T,nex);
data(:,:,nex) = one_data';

prior0 = normalise(rand(Q,1));
transmat0 = mk_stochastic(rand(Q,Q));

[mu0, Sigma0] = mixgauss_init(Q*M, reshape(data, [O T*nex]), 'diag');
mu0 = reshape(mu0, [O Q M]);
Sigma0 = reshape(Sigma0, [O O Q M]);
mixmat0 = mk_stochastic(rand(Q,M));

[LL, prior1, transmat1, mu1, Sigma1, mixmat1] = mhmm_em(data, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', 20);

oneA = transmat1;
omo = mu1;
oSigma = Sigma1;
oprior = prior1;
omixmat = mixmat1;

Parameters
Transition probability matrices:

\[
zA =
\begin{pmatrix}
0.9414 & 0.0293 & 0.0293 & 0 \\
0 & 0.7966 & 0.1017 & 0.1017 \\
0 & 0 & 0.9016 & 0.0984 \\
0 & 0 & 0 & 1.0000
\end{pmatrix}
\]

\[
oA =
\begin{pmatrix}
0.8388 & 0.0806 & 0.0806 & 0 \\
0 & 0.9212 & 0.0394 & 0.0394 \\
0 & 0 & 0.9076 & 0.0924 \\
0 & 0 & 0 & 1.0000
\end{pmatrix}
\]
Now, we can evaluate the test data by feeding to each of the HMM models, compute the log likelihood score, and assigned to a HMM based on the max of score.

```matlab
LogLikScore = zeros(4,2);

LogLikScore(1,1) = mhmm_logprob(ts_zeromfcc1', zprior, zA, zmu, zSigma, zmixmat);
LogLikScore(1,2) = mhmm_logprob(ts_zeromfcc1', oprior, oA, omu, oSigma, omixmat);

LogLikScore(2,1) = mhmm_logprob(ts_zeromfcc2', zprior, zA, zmu, zSigma, zmixmat);
LogLikScore(2,2) = mhmm_logprob(ts_zeromfcc2', oprior, oA, omu, oSigma, omixmat);

LogLikScore(3,1) = mhmm_logprob(ts_onemfcc1', zprior, zA, zmu, zSigma, zmixmat);
LogLikScore(3,2) = mhmm_logprob(ts_onemfcc1', oprior, oA, omu, oSigma, omixmat);

LogLikScore(4,1) = mhmm_logprob(ts_onemfcc2', zprior, zA, zmu, zSigma, zmixmat);
LogLikScore(4,2) = mhmm_logprob(ts_onemfcc2', oprior, oA, omu, oSigma, omixmat);

Results = {};
for i=1:size(LogLikScore,1)
    if(LogLikScore(i,1)>LogLikScore(i,2))
        Results = [Results;'Zero'];
    else
        Results = [Results;'One'];
    end
end
```

LogLikScore =

```
  1.0e+03 *
  -2.4663   -Inf
  -2.2151   -Inf
  -3.1509    0.6508
  -2.4131    0.4971
```

Results =

```
'Zero'
'Zero'
'One'
'One'
```
HMM Architectures

Ergodic HMM

Left-Right HMM

Parallel HMM
OTHER APPLICATIONS OF HMMs

Due to the powerfulness that Markov models provide, it can be used anywhere sequential information exists:

- Finance
- Biology
- Tracking systems
- Speech processing
- Image processing
- Communication systems
- Many more...
Model non-stationary and non-linearity of financial data to predict the direction of the time series.

DNA is composed of 4 bases (A, G, T, C) which pair together to form nucleotides. Markov models can compute likelihoods of a DNA sequence.

Markov models can be used to estimate the position in a tracking system.
Speech recognition has been the most exploited area for use of Markov models.
Human action recognition can be modeled with Markov models.
HMM TOOLS

- Hidden Markov Toolkit (HTK) - Cambridge University:
 - http://htk.eng.cam.ac.uk/

- MATLAB functions:
 - hmmtrain, hmmgenerate, hmmdecode, hmmestimate, hmmviterbi

- HMM Matlab Toolbox (Kevin Murphy, 1998):

- MATLAB functions for training and evaluating HMMs and GMMs (Ron Weiss, Columbia University):
 - https://github.com/ronw/matlab_hmm

- Sage (open-source mathematics software): http://www.sagemath.org/
 - HMM: statistics package
 - Online Sage Notebook (Gmail account)
REFERENCES

- Barbara Resch (modified Erhard and Car Line Rank and Mathew Magimai-doss); “Hidden Markov Models A Tutorial for the Course Computational Intelligence.”
- HTKBook: http://htk.eng.cam.ac.uk/docs/docs.shtml