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Filtering

l General problem statement

w Filtering is the problem of sequentially estimating the 
states (parameters or hidden variables) of a system as 
a set of observations become available on-line.
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Filtering

l Solution of sequential estimation problem given by

w Posterior density :

w By recursively computing a marginal of the posterior, the 
filtering density, 

one need not keep track of the complete history of the 
states.
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Filtering

l Given the filtering density, a number of estimates of the 
system state can be calculated:

w Mean (optimal MMSE estimate of state)

w Mode 

w Median

w Confidence intervals

w Kurtosis, etc.
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State Space Formulation of System

l General discrete-time nonlinear, non-Gaussian 
dynamic system

w Assumptions : 

1) States follow a first order Markov process

2) Observations independent given the states
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Recursive Bayesian Estimation

l Given this state space model, how do we recursively 
estimate the filtering density ?
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Recursive Bayesian Estimation

w Prior :

(Propagation of past state into future before new observation is made.)

w Likelihood : defined in terms of observation model

w Evidence : 
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Practical Solutions

l Gaussian Approximations

l Perfect Monte Carlo Simulation

l Sequential Monte Carlo Methods : “Particle Filters”

w Bayesian Importance Sampling

w Sampling-importance resampling (SIR)



Gaussian Approximations
l Most common approach.
l Assume all RV statistics are Gaussian.
l Optimal recursive MMSE estimate is then given by

l Different implementations :

w Extended Kalman Filter (EKF) : optimal quantities approximated via 
first order Taylor series expansion (linearization) of process and 
measurement models.

w Unscented Kalman Filter (UKF) : optimal quantities calculated using 
the Unscented Transformation (accurate to second order for any 
nonlinearity). Drastic improvement over EKF [Wan, van der Merwe,
Nelson 2000].

l Problem : Gaussian approximation breaks down for most nonlinear 
real-world applications (multi-modal distributions, non-Gaussian noise 
sources, etc.)
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Perfect Monte Carlo Simulation

l Allow for a complete representation of the posterior 
distribution.

l Map intractable integrals of optimal Bayesian solution to 
tractable discrete sums of weighted samples drawn from 
the posterior distribution.

l So, any estimate of the form

may be approximated by :
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Particle Filters

l Bayesian Importance Sampling
w It is often impossible to sample directly from the true 

posterior density.
w However, we can rather sample from a known, easy-to-

sample, proposal distribution, 

and make use of the following substitution
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Particle Filters

w So, by drawing samples from                     , we can 
approximate expectations of interest by the following:

w Where the normalized importance weights are given by
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Particle Filters

w Using the state space assumptions (1st order Markov / observational 
independence given state), the importance weights can be 
estimated recursively by      [proof in De Freitas (2000)]

w Problem with SIS is that the variance of the importance 
weights increase stochastically over time [Kong et al. 
(1994), Doucet et al. (1999)]

w To solve this, we need to resample the particles 
• keep / multiply particles with high importance weights
• discard particles with low importance weights 

w Sampling-importance Resampling (SIR)
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Particle Filters

l Sampling-importance Resampling 
w Maps the N unequally weighted particles into a new set of N 

equally  weighted samples.

w Method proposed by Gordon, Salmond & Smith (1993) and 
proven mathematically by Gordon (1994).

{ } { }( ) ( ) ( ) 1, ,i i j
k k kw N −→x x%

j            resampled index p(i)

cdf   

1

( )j
tw%

1N −



Particle Filters



Particle Filters

l Choice of Proposal Distribution 

critical design issue for successful particle filter
• samples/particles are drawn from this distribution
• used to evaluate importance weights

w Requirements 

1) Support of proposal distribution must include support of true posterior 
distribution, i.e. heavy-tailed distributions are preferable.

2) Must include most recent observations.
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Particle Filters

w Most popular choice of proposal distribution does not 
satisfy these requirements though:

[Isard and Blake 96, Kitagawa 96, Gordon et al. 93, Beadle and Djuric 
97, Avitzour 95]

w Easy to implement :

w Does not incorporate most recent observation  though !

( ) ( )
( )

( )

1
1

1

1

| |

|

|

k k k k
k k

k k

k k k

p p
w w

p

w p

−
−

−

−

=

=

y x x x

x x

y x

( ) ( )1 1| , |k k k k kq p− −=x X Y x x



Improving Particle Filters

l Incorporate New Observations into Proposal

w Use Gaussian approximation (i.e. Kalman filter) to 
generate proposal by combining new observation with 
prior 
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Improving Particle Filters

l Extented Kalman Filter Proposal Generation

w De Freitas (1998), Doucet (1998), Pitt & Shephard (1999).

w Greatly improved performance compared to standard 
particle filter in problems with very accurate 
measurements, i.e. likelihood very peaked in comparison 
to prior.

w In highly nonlinear problems, the EKF tends to be very 
inaccurate and underestimates the true covariance of the 
state. This violates the distribution support requirement for 
the proposal distribution and can lead to poor performance 
and filter divergence.

l We propose the use of the Unscented Kalman Filter
for proposal generation to address these problems !



Improving Particle Filters

l Unscented Kalman Filter Proposal Generation

w UKF is a recursive MMSE estimator based on the 
Unscented Transformation (UT).

w UT : Method for calculating the statistics of a RV that 
undergoes a nonlinear transformation (Julier and Uhlmann 1997)

w UT/UKF : - accurate to 3rd order for Gaussians
- higher order errors scaled by choice of 

transform parameters.

w More accurate estimates than EKF (Wan, van der Merwe, Nelson 
2000)

w Have some control over higher order moments, i.e. 
kurtosis, etc.           heavy tailed distributions !
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mean

covariance sigma
points

Actual (sampling) UT Linearized (EKF)
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Experimental Results

l Synthetic Experiment

w Time-series

• process model :

• nonstationary observation model :
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Experimental Results

l Synthetic Experiment :  (100 independent runs)

0.0060.070Unscented Particle Filter

0.0160.310Particle Filter : EKF proposal

0.0530.424Particle Filter : generic

0.0120.280Unscented Kalman Filter (UKF)

0.0150.374Extended Kalman Filter (EKF)

variancemean

MSEFilter



Experimental Results
l Synthetic Experiment 



Experimental Results

l Pricing Financial Options
w Options : financial derivative that gives the holder the right 

(but not obligation) to do something in the future.
• Call option : - allow holder to buy an underlying cash product

- at a specified future date (“maturity time”) 
- for a predetermined price (“strike price”)

• Put option  : - allow holder to sell an underlying cash product

w Black Scholes partial differential equation
• Main industry standard for pricing options
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Experimental Results

l Pricing Financial Options
w Black & Scholes (1973) derived the following pricing solution:
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Experimental Results

l Pricing Financial Options
w State-space representation to model system for particle filters

• Hidden states :

• Output observations: 

• Known control signals:

w Estimate call and put prices over a 204 day period on the 
FTSE-100 index.

• Performance : normalized square error for one-step-ahead predictions
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Experimental Results

l Options Pricing Experiment :  (100 independent runs)

0.0000.008Unscented Particle Filter

0.0070.024Particle Filter : EKF proposal

0.0000.023Particle Filter : generic

0.0000.023Unscented Kalman Filter (UKF)Put

0.0000.023Extended Kalman Filter (EKF)

0.0000.035Trivial

0.0000.009Unscented Particle Filter

0.5080.092Particle Filter : EKF proposal

0.0000.037Particle Filter : generic

0.0000.037Unscented Kalman Filter (UKF)Call

0.0000.037Extended Kalman Filter (EKF)

0.0000.078Trivial

varmean

NSEAlgorithmOption Type



Experimental Results

l Options Pricing Experiment : UPF one-step-ahead 
predictions



Experimental Results

l Options Pricing Experiment : Estimated interest rate 
and volatility



Experimental Results

l Options Pricing Experiment : Probability distributions 
of implied interest rate and volatility



Particle Filter Demos
l Visual Dynamics Group, Oxford. (Andrew Blake)

Tracking agile motion

Tracking motion against camouflage Mixed state tracking



Conclusions
l Particle filters allow for a practical but complete representation of 

posterior probability distribution.

l Applicable to general nonlinear, non-Gaussian estimation problems 
where standard Gaussian approximations fail.

l Particle filters rely on importance sampling, so the proper choice of 
proposal distribution is very important:

w Standard approach (i.e. transition prior proposal) fails when likelihood of 
new data is very peaked (accurate sensors) or for heavy-tailed noise 
sources.

w EKF proposal : Incorporates new observations, but can diverge due to 
inaccurate and inconsistent state estimates.

w Unscented Particle Filter : UKF proposal
• More consistent and accurate state estimates.
• Larger support overlap,  can have heavier tailed distributions.
• Theory predicts and experiments prove significantly better performance.



The End


