Use the method of separation of variables to show that the 1-D heat conduction problem: find $u=u(x, t)$ so that

$$
\begin{aligned}
\frac{\partial u}{\partial t}(x, t)-\alpha \frac{\partial^{2} u}{\partial x^{2}}(x, t) & =0,0<x<l, t \geq 0 \\
u(0, t) & =0, t \geq 0 \\
u(l, t) & =0, t \geq 0 \\
u(x, 0) & =f(x), 0 \leq x \leq l
\end{aligned}
$$

has the solution

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{l} \exp \left[-\alpha\left(\frac{n \pi}{l}\right)^{2} t\right]
$$

where

$$
c_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x .
$$

