
STA2112F99 ε−δ Review 

1. Sequences of real numbers 

Definition: Let a1, a2, ... be a sequence of real numbers. We will write an → a, or 
n→∞
lim  an = a, if for

all ε > 0, there exists a real number N such that if n > N, |an–a| < ε.

For short, we can write: an → a means ∀ ε>0, ∃ N∈ R ∋ if n > N, |an–a| < ε.

Example 1: Show  1
n → 0. 

Proof:  We seek to show that ∀ ε>0, ∃ N∈ R ∋ if n > N, |  1
n –0| < ε ⇔   1

n  < ε. Let  Ν = 1/ε  and

let n > N. Then n > 1/ε ⇒  1
n  < ε, which was to be shown. ♦

Example 2: Show  n + 1
2n + 6  →  1

2 . 

Proof. We seek to show that ∀ ε>0, ∃ N∈ R ∋ if n > N, |  n + 1
2n + 6 –  1

2 | < ε.  Now  |  n + 1
2n + 6 –  1

2 | =

 2(n + 1) – (2n +6)
2(2n + 6)  = 

 2n + 2 – 2n – 6)
4(n + 3)  =  – 4

4(n + 3)  =  1
n + 3  < ε ⇔   n+3 > 1/ε ⇔   n > 1/ε – 3.

Accordingly, let N > 1/ε, and the result follows. ♦

Example 3: Let an → a  and bn → b . Show an + bn → a + b.

Proof 1:  We seek to show that ∀ ε>0, ∃ N∈ R ∋ if n > N, |(an + bn ) –  (a + b)| < ε . Let ε>0 be

given. an → a implies ∃ N1∈ R ∋ if n > N1, |an–a| < ε /2.  Similarly, bn → b implies ∃ N2∈ R ∋ if n

> N2, |bn–b| < ε /2.  Let N = Max(N1, N2) and let n > N. Then |an–a| < ε /2 and |bn–b| < ε /2.

Consequently,  |(an + bn ) –  (a + b)| = |(an–a) + (bn–b)| ≤  |an–a| + |bn–b| < ε /2 + ε /2 = ε, as

required. ♦
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To see more clearly what's going on here, we could do it this way. Proof 1 is more professional.

Proof 2:  We seek to show that ∀ ε>0, ∃ N∈ R ∋ if n > N, |(an + bn ) –  (a + b)| < ε . Let ε>0 be

given. 

Step Justification

1. an → a implies ∃ N1∈ R ∋ if n > N1,

|an–a| < ε /2

Definition of limit.

2. bn → b implies ∃ N2∈ R ∋ if n > N2,

|bn–b| < ε /2

Definition of limit.

3.  Let N = Max(N1, N2) and let n > N. Then

|an–a| < ε /2 and |bn–b| < ε /2.

Using steps 1 and 2.

4.  |(an + bn ) –  (a + b)| = |(an–a) + (bn–b)| Algebra

5.  ≤  |(an–a| + |bn–b| Triangle inequality

6. <  ε /2 + ε /2 Step 3

7. = ε Algebra

8. Done. We have found N such that for any
ε>0, if n > N, |(an + bn ) –  (a + b)| < ε

Satisfies definition of an + bn → a + b.
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Example 4: Show that if 
n→∞
 lim  an exists, it is unique. 

Proof:  Let an → x  and an → y. We seek to show that x = y.  Suppose on the contrary that x ≠ y;

without loss of generality, let x > y. Now an → x implies ∃ N1∈ R ∋ if n > N1, |an–x| < (x–y) /3.

Similarly, an → y implies ∃ N2∈ R ∋ if n > N2, |an–y| < (x–y) /3.  Let N = Max(N1, N2) and let n >

N, so that  an > x - (x–y) /3 and at the same time,  an < y + (x–y) /3. This leads to the conclusion that

x < y, which contradicts our initial assumption that  x > y. A similar argument shows that y < x

implies y > x. Therefor x≠y is impossible, so that x = y as required. ♦

The idea here is that if we start out with an assumption, and we reason correctly to a conclusion that

is obviously false, the initial assumption must have been wrong. This is called a proof by

contradiction.  The key is to reason correctly, because any mistake can lead to a contradiction, and that

proves nothing.  

Here is a Venn Diagram that may help.  The diagram illustrates A ⇒ B. It also illustrates

(Not B) ⇒ (Not A). In fact, these two statements are equivalent.  The idea behind proof by

contradiction is to start with the assumption (Not B), and prove (Not A).  This allows us to conclude

A ⇒ B.

A

B

In the proof of Example 4, a couple of steps were left out. How do we know that

a.  an > x - (x–y) /3 (and  an < y - (x–y) /3)?

b.  Even assuming (a), how does it follow that x < y?
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2. Limits of real functions 

We want to be able to define   lim
x →x0

f(x)  = y.  Want f(x) to be very close to y whenever x is close to x0,

but we specifically want to leave out the case x=x0. Why leave it out?  Because of situations like this:

x0

And also, consider the definition of a derivative:

f'(a) =   lim
x →a

f(x) – f(a)
x – a  =   lim

x →a
q(x)

The function q(x) is not even defined at x=a.

Definition:   lim
x → x0

f(x) = y means ∀ ε>0, ∃ δ=δ(ε,x0)>0 ∋ if |x-x0|<δ with  x≠ x0 then |f(x)-y| < ε.

Example 5:  Let f(x) = 3x + 1. Show   lim
x → 2

f(x) = 7.

Proof: We seek to show that ∀ ε>0, ∃ δ=δ(ε,x0)>0 ∋ if  |x-2|<δ with x≠ 2, then |(3x+1) - 7| < ε.

Now |3x–6| < ε ⇔ 3 |x–2| < ε ⇔ |x–2| < ε/3. Set δ = ε/3, and the result follows. ♦

Notice we never needed to use the assumption that x≠ 2; that's because in this case, |x-x0|<δ ⇒

|f(x)–y| < ε even when x=x0.  Also notice that we can make the proof more straightforward by

putting it in tabular form and proceeding directly from premise to conclusion.
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Step Justification

1. We seek to show that ∀ ε>0, ∃ δ=δ(ε,x0)>0
∋ if  |x–2|<δ with x≠2, then |(3x+1) - 7| < ε.

Definition of   lim
x → 2

f(x) = 7

2. Set  δ = ε/3; This choice of δ will satisfy the definition.

3.  |x–2| < ε/3 Substitute ε/3 for δ

4. ⇒   3 |x–2| < ε Algebra

5. ⇒  |3x–6| < ε Algebra

6. ⇒  |(3x+1) - 7| < ε Algebra

7. Done. Definition of   lim
x → 2

f(x) = 7 is satisfied.

This is all we were doing in the compact proof above, just following the arrows backwards.

Example 6: Let f(x) = x2 if x≠ 0, and f(x)=4 if x=0. Prove that   lim
x → 0

f(x) = 0. 

Proof: We seek to show that ∀ ε>0, ∃ δ=δ(ε,x0)>0 ∋ if  |x–0|<δ with x≠ 0, then |f(x)–0| < ε.

Assume x≠ 0 and let ε>0 be given. Then |f(x)| = |x2| = x2 < ε ⇔ |x| <  ε . Set δ  =   ε , and the
result follows.  ♦

Example 7: Let f(x) = 
 7x2 + 11x – 6

x + 2
. Show   lim

x → 0
f(x) = –3.

Proof 1:  We seek to show that ∀ ε>0, ∃ δ>0 ∋ if  |x–0|<δ with x≠ 0, then

 7x2 + 11x – 6
x + 2

– (– 3)  < ε.  Assume x≠ 0 and let ε>0 be given. Then 
 7x2 + 11x – 6

x + 2
– (– 3)  =

 7x2 + 11x – 6
x + 2

+ 3  = 
 7x2 + 11x – 6

x + 2
+

3(x + 2)
x + 2

 = 
 7x2 + 11x – 6 + 3x + 6

x + 2
 = 

 7x2 + 14x
x + 2

 =

 7x(x + 2)
x + 2

 = |7x| = 7|x| < ε ⇔ |x| < ε/7. Accordingly, let δ = ε/7, and the result follows.  ♦

STA2112 epsilon-delta Review 1: Page 5 of 13



You may still be at the stage of "Huh? What do you mean it follows?" The problem may be that we

were working backwards from what we sought to show, and obtained an equivalent statement of the

form |x-x0|<δ with  x≠ x0 (though we did not need x≠ x0).  Okay, here is a proof that is more

"obvious" in the sense that it starts with |x-x0|<δ and proceeds to |f(x)-y| < ε. But it's less obvious

because it's a mystery where the δ came from. Well, it came from the backwards proof above.

Proof 2:  We seek to show that ∀ ε>0, ∃ δ=δ(ε,x0)>0 ∋ if  |x–0|<δ with x≠ 0, then

 7x2 + 11x – 6
x + 2

– (– 3)  < ε.  Let ε>0 be given, let δ = ε/7, and let |x|<δ with x≠ x0. Then |x| < ε/7 ⇒

7|x| < ε ⇒ 
 7x(x + 2)
x + 2

 < ε ⇒ 
 7x2 + 14x
x + 2

< ε ⇒ 
 7x2 + 11x – 6 + 3x + 6

x + 2
< ε ⇒

 7x2 + 11x – 6
x + 2

+
3(x + 2)

x + 2
 < ε ⇒ 

 7x2 + 11x – 6
x + 2

+ 3   < ε ⇒ 
 7x2 + 11x – 6

x + 2
– (– 3)  < ε.  This is

what we needed to show. ♦

What is meant by "the result follows" is exactly Proof 2; that is, Proof 2 is implicit in Proof 1.  Maybe

Proof 2 is easier to follow in a way, but I think Proof 1 is better, because the thought process behind it

is clearer. And in order to write Proof 2, you need to have done Proof 1 first anyway.

Example 8: Assume   lim
x → x0

f(x) = 3. Show   lim
x →x0

2 f(x) = 6.

Proof:  We seek to show that ∀ ε>0, ∃ δ=δ(ε,x0)>0 ∋ if |x-x0|<δ with  x≠ x0 then |2f(x)-6| < ε. Let

ε>0 be given.   lim
x → x0

f(x) = 3 means ∃ δ1>0 ∋ if |x-x0|<δ1 with  x≠ x0 then |f(x)-3| < ε/2.  Choose δ =

δ1, and let  |x-x0|<δ with  x≠ x0 .  Then  |f(x)-3| < ε/2 ⇒ |2f(x)-6| < ε, which was to be shown. ♦

Example 9: Assume   lim
x → x0

f(x) = y1 and   lim
x → x0

g(x) = y2. Prove   lim
x → x0

[f(x) + g(x)]  = y1 + y2. 

Proof:  We seek to show that ∀ ε>0, ∃ δ=δ(ε,x0)>0 ∋ if |x-x0|<δ with  x≠ x0 then

|f(x)+g(x)–(y1+y2)| < ε.  Let ε>0 be given.   lim
x → x0

f(x) = y1 implies ∃ δ1 ∋ if |x–x0|<δ1 with  x≠ x0

then  |f(x)–y1| < ε/2.  Similarly,   lim
x → x0

g(x) = y2 implies ∃ δ2 ∋ if |x-x0|<δ2 with  x≠ x0 then

|g(x)–y2| < ε/2. Take δ = Min(δ1,δ2) and let |x-x0|<δ with  x≠ x0.  Then |f(x)–y1| < ε/2 and
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|f(x)–y2| < ε/2.  Consequently,  |f(x)+g(x)–(y1+y2)| = |(f(x)–y1)+(g(x)–y2)| ≤  |f(x)–y1| + |g(x)–y2|

< ε /2 + ε /2 = ε, as required. ♦

Note the similarity of this proof to the one for an → a  and bn → b ⇒ an + bn → a + b.

Example 10:  Let f(x) = cos(1/x). Prove   lim
x → 0

f(x)  does not exist.

Proof:  We seek to show that there exists ε>0 such that there can be no pair of real numbers (y,δ)

such that if |x–0|<δ with  x≠ 0 then |cos(1/x)-y| < ε. Suppose on the contrary that there is such a pair

(y,δ), and let ε be given, 0< ε <1.  Note that ∃ x1 ∈ (0,δ) and x2 ∈ (0,δ) with f(x1) = cos(1/x1) = 1

and  f(x2) = cos(1/x2) = –1. Now by the definition of a limit, |f(x1)–y|<ε<1 and |f(x2)–y|<ε<1, so that

|f(x1)–f(x2)| = |f(x1)–y + y–f(x2)| ≤   |f(x1)–y| + |y–f(x2)| < 2ε <2. But |f(x1)–f(x2)|  = 2.  This

contradiction shows that the assumed existence of the pair (y,δ) must have been false. That is, the limit

does not exist. ♦

Definition: f continuous at x0 means   lim
x → x0

f(x) = f(x0). 

Example 11: Show f(x) = 3x + 1 is continuous everywhere. 

Example 12:   Let f(x) = x2 if x≠ 0, and f(x)=4 if x=0. Prove that f is not continuous at x=0.

Example 13: Show f(x) =  x  is continuous for x > 0.

Example 14: Prove that if f(x) and g(x) are both continuous at x0, then f(x)+g(x) is also continuous

at x0. 

Example 15: Prove that if f(x) is continuous at x0, then g(x) = 3f(x) is also continuous at x0.

Foundations of the Real Number System

• N = {1,2, ... } is the set of natural numbers.

• Define addition.  N is closed under addition.

• Define subtraction as the inverse of addition. If a-b is allowed for b≥a, we have an
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extension of N to the set of integers Z = {0, ±1, ±2, ...}.

• Define multiplication as repeated addition or subtraction.  Z is closed under

multiplication.

• Define division as the inverse of multiplication.  If a = b/c is allowed for a∉ Z

(provided c≠0) we have an extension of Z to the set of rational numbers Q.

• Define an upper bound of a set of numbers A as follows.  x is an upper bound of A if

∀a∈A, x ≥a.  

• Define the least upper bound (LUB) of A as follows:  y is a LUB of A if (1a) it is an

upper bound of A, and (1b) for each upper bound x of A, y≤x.  An equivalent definition is:  y is the

LUB of A if (2a) ∀a∈A, y ≥a, and (2b) ∀ ε>0, ∃ a∈A ∋ a>y-ε.

Proof that the two definitions of LUB are equivalent:  (1a) is the same as (2a) by the definition of an

upper bound. It remains to show (1b) ⇔ (2b).

(1b) ⇒ (2b): Suppose (1b) holds, but there is an ε>0 with no a∈A ∋ a>y-ε.  Then y-ε is an

upper bound of A.  But since y < y-ε, (1b) is contradicted; (2b) follows.  ♦

(2b) ⇒ (1b):  Suppose (2b) holds, but there is an upper bound x of A with x<y. Let ε =

(y–x)/2 in (2b), so that ∃ a∈A ∋ a >y-(y–x)/2 = (x+y)/2 > x. This contradicts the assumption that x is

an upper bound, so y≤x for any upper bound x. ♦

• If we add to the set of rational numbers the set of least upper bounds of all bounded

subsets of rational numbers, we get another extension -- this time to the set R of real numbers.

Another version of this is the Least Upper Bound Axiom, which says that for any set of real numbers

that is bounded above, the LUB always exists.

• A real number that is not rational is called irrational.  How do we know there are any

irrationals?
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Proposition:  2  is irrational. 

Proof: Suppose on the contrary that  2  is rational. This means it can be written as a ratio a/b, where

a and b are positive integers that have no common factor (except 1).  It follows that a2 and b2 also

have no common factors except 1.  Now a/b =  2  ⇒ (a/b)2 = 2 ⇒ a2 = 2b2. This means b2 is a factor

of a2. Since a2 and b2 have no common factors except 1, this means b2 = 1 ⇒ b=1 ⇒ a2=2.  Since

there is clearly no positive integer whose square equals two, the assumption that  2  is rational has led

to a contradiction. Therefore,  2  is irrational. 

There is a story that one of the Pythagoreans discovered that  2  is irrational (so that not all numbers

were rational and a lot of important philosophic principles were thrown into question). He wouldn't

keep quiet about it, so they drowned him in a lake.  

• If {a1,a2, ...} is a bounded non-decreasing set of real numbers with LUB = x,

then  
n→∞
 lim  an =x. 

Proof:  
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 • The preceding result implies that any real number can be written uniquely as

an infinite decimal.  For example, let x∈[0,1].  x=0.e1e2e3 ...  means the following:  let

e1 be the largest integer with e1/10 ≤ x. Let e2 be the largest integer with e1/10 + e2/100 ≤

x.  In general, let Sn–1=
 ek

10k∑
k=1

n – 1

, and define en to be the largest integer with

Sn–1 + en/10n ≤ x. 

To see that the sequence e1, e2, ... corresponds uniquely to x, it is enough to show that the

sequence may be obtained from x, and x may be obtained from the sequence (so they are

one-to-one). We see above how the sequence is obtained from the number x.  To prove that

the number x can be recovered from the sequence, note that {S1, S2, ...} is non-

decreasing, and its least upper bound is x.  Therefore it converges to x, and we may obtain

x from {e1, e2, ...} by constructing {S1, S2, ...} from {e1, e2, ...}, and then taking

n→∞
 lim Sn.

Countable and uncountable sets

• A set B is said to be countable (denumerable) iff the elements of B can be placed in

one-to-one correspondence with a subset of N, the set of natural numbers.

• Any finite set is countable.

• The set of positive even integers is countable.

• The set of integers is countable.  

• In a sense, then, there is the same "number" of positive integers, positive even

integers, and integers.  This is very psychedelic, man.

• Any countable union of countable sets is countable.
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• The set of RATIONAL numbers is countable.

• How about the set of REAL numbers R?  Is R countable?  This question is

profoundly important to probability.

To see how essential the notion of countability is, consider the standard axioms of

probability:  Let S be a set, and let A be a collection of subsets of S.  The probability set

function P(.) satisfies

1)  P(A) ≥ 0 ∀ A∈A .

2) P(S)=1.

3) If {A1, A2, ...} is a sequence of disjoint sets in A,  then 

P[ An∪
n=1

∞

] =  P(An)∑
n=1

∞

 .

Recall another standard elementary definition:  if X is a continuous random variable with

density f, then ∀ real a and b with a≤b, P(a≤X≤b) = f(x) dx
a

b

.

Now suppose the real numbers are countable.  Then the ones between a and b are

countable too, and they can be listed in some order x1, x2, .... Then {x: a≤x≤b} = {x1} ∪

{x2} ∪ ...  .  These singleton set are disjoint, and so 

P[a≤X≤b] = P[X=xn, some n=1, 2,  ...] = P[ {X=xn}∪
n=1

∞

] = P(X=xn)∑
n=1

∞

 = P[xn≤X≤xn]

f(x) dx
xn

xn

∑
n=1

∞

 = 0∑
n=1

∞

 = 0.  

This shows that if the real numbers are countable, we have a disaster.  Continuous
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probability is impossible!  The real numbers had better be uncountable or we have all

wasted a lot of time.

 Proof that the real numbers are uncountable.  It is enough to show that the

numbers between zero and one are uncountable.  Suppose, on the contrary, that they are

countable.  Then they can be listed in some order x1, x2, ...  Write them as infinite

decimals (we know from before that we can do this).

x1 = . e11 e12 e13 e14 e15 ...

x2 = . e21 e22 e23 e24 e25 ...

x3 = . e31 e32 e33 e34 e35 ...

x4 = . e41 e42 e43 e44 e45 ...

x5 = . e51 e52 e53 e54 e55 ...

.

.

.

Now construct another real number y = . a1 a2 a3 a4 a5 ... as follows.  For k = 1, 2, ..., if

ekk=5, let ak=2.  Otherwise, let ak=5.  Clearly y differs from x1 in the first decimal place, y

differs from x2 in the second place, and so on.  So y is not on the list.  But y MUST be on

the list, because the list contains all the real numbers.  This contradiction shows that the

construction of a list of all the real numbers is impossible.  In other words, the real

numbers are uncountable.  Done.

• There is more than one kind of infinity, countable and uncountable.  This is

very cosmic.
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• Not only do irrational numbers exist, but they greatly outnumber the rationals.

• Fortunately, continuous probability is possible.

• We're going to use countable and uncountable sets a lot.

• Define the supremum (sup) of a set of real numbers as follows.  If the set is

bounded above, the sup (pronounced soup) is the least upper bound.  If unbounded, it's

∞.  Maximum likelihood doesn't work well with the maximum.  It is defined in terms of

the sup.  

• The infimum (inf) is either the greatest lower bound, or -∞ if the set is not

bounded below.
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