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Question 1

(a) FALSE, the posterior may be bimodal.

(b) FALSE, the Cramér-Rao lower bound applies only to unbiased estimators.

(c) TRUE, since T is unbiased, the Cramér-Rao lower bound implies that V artheta(T ) ≥ 1
I(θ) for

any θ. Thus, when θ = θ̂, we see that V arθ̂(T ) ≥ 1
I(θ̂)

and the right-hand expression is now the

normal approximation variance for θ̂. Thus, since the length of the two confidence intervals in

question is determined by the variance used, we see that the first interval must be at least as

longer than the second.

(d) TRUE, if all we are allowed to change is the cut-off level, then clearly increasing the power

means increasing the cut-off (so that more outcomes fall in the rejection region) which must

simultaneously increase the chance of a Type I error.

(e) TRUE.
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Question 2

Let X1, . . . , Xn be an iid sample from a distribution with density function of the form:

fX(x; θ) = θ(x + 1)−(θ+1), x > 0,

for some parameter value θ > 2.

(a) We have:
fX(x; θ) = θ(x + 1)−(θ+1)

= exp{ln(θ)− (θ + 1) ln(x + 1)}
= exp{−θ ln(x + 1) + ln(θ)− ln(x + 1)},

which clearly has the form of a one-dimensional exponential family with defining functions

a(x) = ln(x + 1), b(θ) = − ln(θ), c1(θ) = −θ, and d1(x) = ln(x + 1). Therefore, we know that

a complete, sufficient statistic for θ is given by D =
∑n

i=1 d1(Xi) =
∑n

i=1 ln(Xi + 1).

(b) To find the Cramér-Rao bound, we first need the Fisher information. From part (a), we see

that the log-likelihood for θ based on the sample is l(θ) = −θ
∑n

i=1 ln(Xi + 1) + n ln(θ) −
∑n

i=1 ln(Xi + 1) = −θD + n ln(θ)−D, which leads to a second derivative of:

l′′(θ) = − n

θ2
.

Thus, the Fisher information is:

I(θ) = −Eθ{l′′(θ)} =
n

θ2
.

Moreover, we have τ ′(θ) = −(θ − 1)−2. Finally, then, the Cramér-Rao lower bound for the

variance of an unbiased estimator T of τ(θ) is:

V arθ(T ) ≥ {τ ′(θ)}2
I(θ)

=
(θ − 1)−4

n/θ2
=

θ2

n(θ − 1)4
.

Now, the variance of X is just

V arθ(X) =
1
n

V arθ(Xi) =
θ

n(θ − 1)2(θ − 2)
.

A simple bit of algebra shows that

θ

n(θ − 1)2(θ − 2)
− θ2

n(θ − 1)4
=

θ(θ − 1)2 − θ2(θ − 2)
n(θ − 1)4(θ − 2)

=
θ

n(θ − 1)4(θ − 2)
,

which is clearly positive for any θ > 2. Therefore, the variance of X does not achieve the

Cramér-Rao lower bound. This does not, in general, imply directly that X is not UMVU;

however, in this case we can see that X is not UMVU since it is not a function of D, the

complete and sufficient statistic in this problem. In order to determine an estimator which is

UMVU, we could find T = E(X|D).
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(c) The derivative of the log-likelihood given in part (b) is l′(θ) = nθ−1 − D, which clearly im-

plies that θ̂MLE = nD−1, and this means that τ̂MLE = τ(θ̂MLE) = (nD−1 − 1)−1 = D
n−D .

Furthermore, the approximate variance is given by

{τ ′(θ̂MLE)}2
I(θ̂)

=
θ̂2

n(θ̂ − 1)4
=

nD2

(n−D)4
.

Therefore, an approximate 95% confidence interval can be constructed as:

D

n−D
± 1.96

√
nD

(n−D)2
.

Alternatively, we might use −Φ−1(1− β) and Φ−1(0.95 + β) for some 0 ≤ β ≤ 0.05 instead of

−Φ(0.975) = −1.96 and Φ−1(0.975) = 1.96 to arrive at an asymmetric interval.

(d) Using the given distributional fact, we know that:

Pr{χ2
(2n)(0.05− β) < Q ≤ χ2

(2n)(1− β)} = (1− β)− (0.05− β) = 0.95,

for any 0 ≤ β ≤ 0.05. After some straightforward algebraic manipulation (and noting that

Q = 2θD, this probability statement yields a pivotal confidence interval of the form:

C =
{

χ2
(2n)(0.05− β)

2D
,
χ2

(2n)(1− β)

2D

}
.

(e) The Neymann-Pearson test of H0 : θ = 1 versus H1 : θ = 2 is determined by a rejection region

of the form C = {Λ(X1, . . . , Xn) ≤ cα}, where cα is a cut-off value chosen to give the test size

α and

Λ(X1, . . . , Xn) =
L(1)
L(2)

=
∏n

i=1(Xi + 1)−(1+1)

∏n
i=1 2(Xi + 1)−(2+1)

=
n∏

i=1

1
2
(Xi + 1).

Thus, the desired test has a rejection region of the form:

C =
{ n∏

i=1

1
2
(Xi + 1) ≤ cα

}

=
{ n∏

i=1

(Xi + 1) ≤ cα2n

}

=
{ n∑

i=1

ln(Xi + 1) ≤ ln(cα2n)
}

,

which is precisely the required form when k = ln(cα2n). Finally, to set the size, we note that

we need:

α = PrH0(C) = Prθ=1(D ≤ k) = Prθ=1(2D ≤ 2k).

Now, since we know that 2θD ∼ χ2
(2n), we see that 2D has a χ2

(2n) distribution when θ = 1,

and thus we need 2k to be equal to the α-quantile of the χ2
(2n) distribution. In other words,

we need

2k = {χ2
(2n)}−1(α) =⇒ k =

1
2
{χ2

(2n)}−1(α),
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where {χ2
(2n)}−1(·) is the inverse of the CDF of a chi-squared distribution with 2n degrees of

freedom.

Question 3

(a) The form of the posterior distribution can be found as:

π(θ|X1, . . . , X10) ∝ π(θ)L(θ; X1, . . . , X10)

= θe−θ
10∏

i=1

fX(Xi; θ)

= θe−θ θ5

{Γ(1/2)}10
10∏

i=1

e−θ(ln Xi)
2

Xi

=
θ6

{Γ(1/2)}10 ∏10
i=1 Xi

exp
{
− θ − θ

10∑

i=1

(ln Xi)2
}

∝ θ6 exp
[
− θ

{
1 +

10∑

i=1

(ln Xi)2
}]

,

which clearly has the form of a gamma distribution with shape parameter 6 + 1 = 7 and scale

parameter
{
1 +

∑10
i=1(lnXi)2

}−1 = (11.9469)−1 = 0.0837.

(b) The posterior Bayes estimator is simply the mean of the posterior distribution, which means

that θ̂π = 7(0.0837) = 0.5859 since the mean of a gamma distribution is just the product of

its shape and scale parameters.

(c) To find a more general Bayes estimate with respect to the loss function `(t; θ), we must choose

the estimate, t = t(X1, . . . , Xn), which will minimise the Bayes risk r(t) = Eπ{Rt(θ)}, where

Rt(θ) = Eθ{`(t; θ)}.
(d) To find a highest posterior density for τ(θ), we reparameterise the posterior distribution for

θ, π(θ|X1, . . . , X10), to the posterior distribution for τ using the standard change of variable

formula (since τ is a monotonic function of θ):

πτ (τ |X1, . . . , X10) =
1

|τ ′(θ)|π{θ
−1(τ)|X1, . . . , X10} =

1
2τ

π(0.5τ−1|X1, . . . , X10),

and then finding the highest posterior density region, Cτ , as that set of τ values which sat-

isfied the criteria
∫

Cτ
πτ (t|X1, . . . , X10)dt = 1 − α and (τ ∈ Cτ ) & {πτ (τ ′|X1, . . . , X10) >

πτ (τ |X1, . . . , X10)} =⇒ τ ′ ∈ Cτ . In other words, Cτ is that set of τ values having pos-

terior probability 1 − α which have the highest posterior density values; thus, the highest

posterior density region can be determined graphically by sliding a horizontal line down across

a graph of the posterior density until the region corresponding to the τ values having posterior

density value larger than the cut-off line is 1−α. [NOTE: Alternatively, since the relationship

between τ and θ is monotonic in this case, we could find a highest posterior density region for

θ, say Cθ and then transform this region into one for τ by simply appropriately transforming

each element so that Cτ = {τ : 0.5τ−1 ∈ Cθ}.]
Question 4

Suppose that we observe 5 ordered pairs:

(X1, Y1) = (9.73, 22.69), (X2, Y2) = (9.18, 21.13), (X3, Y3) = (10.86, 21.89),
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(X4, Y4) = (10.21, 18.15), (X5, Y5) = (10.67, 20.28),

and we fit a linear regression model

Yi = α + βXi + εi,

and arrive at the usual least-squares estimates α̂ = 24.928, β̂ = −0.405 and observed residuals

e1 = 1.700, e2 = −0.083, e3 = 1.358, e4 = −2.646, e5 = −0.329. Moreover, we note that

5∑

i=1

(Xi −X)2 = 1.893,

5∑

i=1

e2
i = 11.848.

Now, when we fit the linear regression model without including the first data point, we observe an

estimate of the slope of β̂(1) = 0.0971. Similarly, when we remove each of the other datapoints in

turn, we observe slope estimates of β̂(2) = −0.533, β̂(3) = −1.414, β̂(4) = −0.265, and β̂(5) = −0.259.

(a) The Jackknife estimate of bias is:

B̂J = (5− 1)
(

1
5

5∑

i=1

β̂(i) − β̂

)
= 4(−0.47478 + 0.405) = −0.27912.

Similarly, the Jackknife estimate of variance is:

5− 1
5

5∑

i=1

(β̂(i) − β̂•)2 =
4
5
(1.30314) = 1.0425.

Now, we know that the true bias of β̂ is 0 and the true variance is given by V ar(ε)/1.893,

which can be approximated here as MSE/1.893 = (11.848/3)/1.893 = 2.0863 (since the MSE

is just the sum of the squared errors divided by the appropriate degrees of freedom, n− 2 = 3

in this case). As such, we see that the Jackknife estimates are not that good here.

(b) One method is based on using the bootstrap to estimate the mean and variance of β̂ and then

employing these values in the normal approximation to the distribution of β̂. The advantage

of this method is that it generally requires fewer re-samples to accurately estimate the mean

and variance then to estimate distributional quantiles (which are required for the percentile

method, which is the other bootstrap confidence interval procedure). However, this method is

neither range-respecting (not an issue here, since slopes are not range-restricted parameters)

nor parameterisation equivariant. The second method is the bootstrap percentile method,

which constructs an interval based on the quantiles of the estimated quantiles of the distribution

of β̂ as approximated by a large number of re-sampled estimates β̂?
b . This interval is range-

respecting and parameterisation equivariant. However, it is more computationally expensive

as noted above.

(c) Clearly, any given re-sample has a probability of 5−5 of occuring. As there are 5 possible

re-samples with all pairs identical, we see that the desired probability is 5−4 = 0.0016. In this

case, such a re-sample is quite problematic for the bootstrap, since a dataset with 5 identical

pairs cannot be used to fit a regression. As such, our collection of β̂?
b ’s will have about 1

in 1000 values which are undefined. The typical solution to this problem is a pragmatic one;

namely, we ignore the undefined values, but the consequences of this on the distribution should
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be recognised. Fortunately, the chance of undefined slopes is small and thus will not be much

of a problem, particularly in larger, more realistic, datasets.

Question 5

The main issues to discuss are:

1. Why is the client so convinced of the parametric model?

2. Is there any prior information about the parameter? If so, is a Bayesian analysis desired?

3. The best estimator in many respects is the MLE, so this should likely be the starting point if

the parametric model is truly believed (and if there is little direct prior information). However,

issues of appropriate loss functions, and appropriate trade-offs in bias versus variance (i.e., is

the client more concerned with bias or with precision) should be taken into account.

END OF EXAMINATION


