THE AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF STATISTICS AND ECONOMETRICS

STATISTICAL INFERENCE - STAT3013/STAT8027

Mid-Semester Examination 2000 - Solutions

Total Marks: 50
Reading Period: 15 Minutes
Time Allowed: Two Hours
Permitted Materials: Course Brick, Lecture Notes, Non-Programmable Calculator

Question 1

(a) TRUE
(b) FALSE
(c) FALSE
(d) TRUE
(e) FALSE

Question 2

(a) We can write the density function as:

$$
\begin{aligned}
f_{X}(x ; \theta) & =\frac{1}{\sqrt{2 \pi \theta}} \exp \left\{-\frac{1}{2 \theta}(x-\theta)^{2}\right\}=\exp \left\{-\frac{1}{2 \theta}\left(x^{2}-2 \theta x+\theta^{2}\right)-\frac{1}{2} \ln (2 \pi \theta)\right\} \\
& =\exp \left\{-\frac{1}{2 \theta} x^{2}+x-\frac{1}{2} \theta-\frac{1}{2} \ln (2 \pi \theta)\right\}
\end{aligned}
$$

which has the form of a one-parameter exponential family with $d_{1}(x)=x^{2}$. Therefore, we know that $D=\sum_{i=1}^{n} X_{i}^{2}$ is a minimal sufficient statistic for θ based on a sample of size n, X_{1}, \ldots, X_{n}.
(b) From part (a), we see that

$$
l(\theta)=\sum_{i=1}^{n} \ln \left\{f_{X}\left(X_{i} ; \theta\right)\right\}=-\frac{1}{2 \theta} \sum_{i=1}^{n} X_{i}^{2}+\sum_{i=1}^{n} X_{i}-\frac{n}{2} \theta-\frac{n}{2} \ln (2 \pi \theta) .
$$

Thus, we have:

$$
l^{\prime}(\theta)=\frac{1}{2 \theta^{2}} \sum_{i=1}^{n} X_{i}^{2}-\frac{n}{2}-\frac{n}{2 \theta},
$$

and

$$
l^{\prime \prime}(\theta)=-\frac{1}{\theta^{3}} \sum_{i=1}^{n} X_{i}^{2}+\frac{n}{2 \theta^{2}} .
$$

Therefore, the expected Fisher information is:

$$
I(\theta)=-E\left\{l^{\prime \prime}(\theta)\right\}=\frac{1}{\theta^{3}} \sum_{i=1}^{n} E\left(X_{i}^{2}\right)-\frac{n}{2 \theta^{2}}=\frac{n}{\theta^{3}}\left(\theta^{2}+\theta\right)-\frac{n}{2 \theta^{2}}=\frac{n}{\theta}+\frac{n}{2 \theta^{2}},
$$

where we have used the fact that $E\left(X_{i}^{2}\right)=\operatorname{Var}\left(X_{i}\right)+\left\{E\left(X_{i}\right)\right\}^{2}=\theta+\theta^{2}$. Finally, then, the Cramér-Rao bound for the variance of unbiased estimators of θ is given by:

$$
\left(\frac{n}{\theta}+\frac{n}{2 \theta^{2}}\right)^{-1}=\frac{2 \theta^{2}}{n(2 \theta+1)} .
$$

Now, $\operatorname{Var}(\bar{X})=\frac{1}{n} \operatorname{Var}\left(X_{1}\right)=\frac{\theta}{n}$ which is clearly larger than $\left(\frac{n}{\theta}+\frac{n}{2 \theta^{2}}\right)^{-1}$ for all $\theta>0$ [since clearly $\frac{n}{\theta}<\frac{n}{\theta}+\frac{n}{2 \theta^{2}}$.
(c) Since \bar{X} is not a function of $\sum_{i=1}^{n} X_{i}^{2}$ which is a minimal sufficient, complete statistic (since we are dealing with a full-rank exponential family here), it cannot be the UMVU estimator. Indeed, to find the $U M V U$ estimator in this case, we simply need to calculate $E\left(\bar{X} \mid \sum_{i=1}^{n} X_{i}^{2}\right)$ (since \bar{X} is clearly an unbiased estimator).

Question 3

(a) We can write the likelihood function as:

$$
L(\theta)=\prod_{i=1}^{n} f_{X}\left(X_{i} ; \theta\right)=\theta^{n} \prod_{i=1}^{n} X_{i}^{\theta-1}=\theta^{n} e^{(\theta-1) \ln \left(\prod_{i=1}^{n} X_{i}\right)}
$$

Therefore, the posterior distribution has the form:

$$
\begin{aligned}
\pi\left(\theta \mid X_{1}, \ldots, X_{n}\right) & =\frac{L(\theta) \pi(\theta)}{\int_{\Theta} L(t) \pi(t) d t}=c_{1} \theta^{n} e^{(\theta-1) \ln \left(\prod_{i=1}^{n} X_{i}\right)} \theta^{\alpha-1} e^{-\alpha \theta} \\
& =c_{2} \theta^{n+\alpha-1} e^{-\left\{\alpha-\sum_{i=1}^{n} \ln \left(X_{i}\right)\right\} \theta},
\end{aligned}
$$

where $c_{1}=\frac{\alpha^{\alpha}}{\Gamma(\alpha) \int_{\Theta} L(t) \pi(t) d t}$ and $c_{2}=c_{1} e^{-\sum_{i=1}^{n} \ln \left(X_{i}\right)}$. Clearly, this has the form of a Gamma distribution with shape parameter $\alpha+n$ and scale parameter $\left\{\alpha-\sum_{i=1}^{n} \ln \left(X_{i}\right)\right\}^{-1}$.
(b) The posterior Bayes estimator is just the mean of the posterior distribution. Therefore, $\hat{\theta}_{\pi}=$ $\frac{\alpha+n}{\alpha-\ln \left(\prod_{i=1}^{n} X_{i}\right)}$.
(c) Using the MLE we can write the posterior Bayes estimator as:

$$
\hat{\theta}_{\pi}=\frac{\alpha+n}{\alpha-\ln \left(\prod_{i=1}^{n} X_{i}\right)}=\frac{\alpha+n}{\alpha+\left(n / \hat{\theta}_{M L E}\right)}=\frac{\alpha \hat{\theta}_{M L E}+n \hat{\theta}_{M L E}}{\alpha \hat{\theta}_{M L E}+n} .
$$

So, for a fixed α, we see that as n tends to infinity the posterior Bayes estimator tends towards $\hat{\theta}_{M L E}$ as it should. Similarly, for a fixed n, we see that as α tends to infinity (which corresponds to the variance of the posterior tending to zero), we see that the posterior Bayes estimator tends towards 1 (which is the mean of the posterior distribution).

Question 4

(a) When we remove X_{1}, we can see that the average of the remaining first components is $\frac{1}{2}(3+4)=$ 3.5 , the average of the remaining second components is $\frac{1}{2}(2+6)=4$ and the average of the
remaining ratios is $\frac{1}{2}\left(\frac{3}{2}+\frac{4}{6}\right)=1.083$. Similarly, when we remove X_{2}, the corresponding values are $2.5,5$ and 0.458 . For removal of X_{3} we get 2,3 and 0.875 . Therefore, for T_{1}, we have $\hat{\theta}_{1}=\frac{3.5}{4}=0.875, \hat{\theta}_{2}=\frac{2.5}{5}=0.5$ and $\hat{\theta}_{3}=\frac{2}{3}=0.667$ and the average of these three values is $\hat{\theta}_{\bullet}=0.681$. Also, T_{1} itself is equal to 0.667 . Thus, the Jackknife estimate of bias is $\hat{B}_{J}=(3-1)(0.681-0.667)=0.028$. For T_{2}, we see that $\hat{\theta}_{1}=1.083, \hat{\theta}_{2}=0.458, \hat{\theta}_{3}=0.875$ and this means that $\hat{\theta}_{\bullet}=0.806$. Finally, then, we see that T_{2} is 0.806 which means that the Jackknife estimate of variance is zero.
(b) Using the alternate formula derived in Tutorial 6, we see that the Jackknife estimate of variance is calculated as:

$$
\frac{n-1}{n} \sum_{i=1}^{n}\left(\hat{\theta}_{i}-\hat{\theta}\right)^{2}
$$

Therefore, for T_{1} we have a Jackknife variance estimate of 0.047 . Similarly, for T_{2} we have a Jackknife variance estimate of 0.135 .
(c) We can approximate the MSE of these two estimators as $M S E_{t_{1}}=0.047+(0.028)^{2}=0.04784$ and $M S E_{t_{2}}=0.135$. As such, we might prefer T_{1}. Alternatively, it appears that T_{2} is unbiased in this case, so we might prefer it on those grounds. Of course, we should note that these MSE estimates are not necessarily that reliable. In particular, since T_{2} is just an average, it is easily seen that the Jackknife bias estimate must be zero, even though it is rarely the case that T_{2} is actually unbiased.

