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Question 1

(a) FALSE - UMVU estimators need not have variances which achieve the Cramér-Rao lower

bound.

(b) TRUE - If an estimator has a variance which achieves the Cramér-Rao lower bound it will be

UMVU (provided the appropriate regularity conditions are satisfied).

(c) FALSE - The δ-method variance will indeed be equal to the Cramér-Rao lower bound for

unbiased estimators of τ(θ); however, τ̂ = τ(θ̂) is not necessarily an unbiased estimator of τ(θ)

and thus its variance may actually be smaller than the bound.

(d) TRUE - If θ(F̂ ) is truly unbiased, then EF {θ(F̂ )} = θ(F ) for any distribution F . In particular,

if we set F = F̂ in this identity, we see that EF̂ {θ(F̂ �)} = θ(F̂ ), where F̂ � = ̂̂
F is the empirical

distribution function of a re-sample from the original sample data. Thus, the theoretical

bootstrap bias estimate is EF̂ {θ(F̂ �)} − θ(F̂ ) = 0. Of course, the actual bootstrap bias

estimate based on B re-samples is 1
B

∑B
b=0 θ(F̂ �

b )−θ(F̂ ) which will not be exactly zero, though

it will approach zero as B approaches infinity.

(e) FALSE - Uniform or “flat” priors still represent some prior information about the parameter.

In particular, if we examine any non-linear reparameterisation of θ, the transformation of the

flat prior indicates that we do have some non-uniform prior for that new parameter.

[10 marks]
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Question 2

(a) We have:

Eθ(T1) = Eθ

{
1
n

n∑

i=1

(−1)Xi

}

=
1
n

n∑

i=1

Eθ{(−1)Xi} = Eθ{(−1)X1} =
∞∑

x=0

(−1)x θxe−θ

x!

= e−θ
∞∑

x=0

(−θ)x

x!
= e−θ(e−θ) = e−2θ = τ(θ).

[NOTE: It is tempting to write E{(−1)Xi} = E{eln(−1)Xi} and then use the mgf of the Poisson

distribution, mX(t) = exp{λ(et−1)}. While this approach appears to ”give the right answer”,

we must be careful since ln(−1) does not actually exist!]

(b) Since the Poisson distributions form a one-parameter exponential family with d1(x) = x (see

Example 2.8 on page 26 of the course notes), we know that S =
∑n

j=1 d1(Xj) =
∑n

j=1 Xj is a

complete and sufficient statistic. Therefore, the UMVU for τ(θ) can be found as:

TU = Eθ(T1|S) = Eθ

{
1
n

n∑

i=1

(−1)Xi

∣
∣
∣
∣S

}

= Eθ{(−1)Xi |S}

=
S∑

x=0

(−1)x S!
x!(S − x)!

(
1
n

)x(

1 − 1
n

)S−x

=
S∑

x=0

S!
x!(S − x)!

(

− 1
n

)x(

1 − 1
n

)S−x

=
{(

− 1
n

)

+
(

1 − 1
n

)}S

=
(

n − 2
n

)S

,

where the fourth equality follows from the given conditional distribution of Xi given S and

the penultimate equality follows from the fact given in the hint.

(c) To find the asymptotic relative efficiency, we need to calculate the limit of the variances of the

sequences Zn and Wn. Now, for Wn, we see (using the hint) that

lim
n→∞V arθ(Wn) = lim

n→∞nV arθ(TU ) = lim
n→∞ne−4θ(e4θ/n − 1) = 4θe−4θ.

Next, we note that V arθ{(−1)Xi} = Eθ{(−1)2Xi} − [Eθ{(−1)Xi}]2 = 1 − e−4θ. Thus,

lim
n→∞V arθ(Zn) = lim

n→∞nV arθ(T1) = lim
n→∞V arθ{(−1)Xi} = 1 − e−4θ.

Therefore, the asymptotic relative efficiency of T1 with respect to TU is

eT1,TU
=

4θe−4θ

1 − e−4θ
=

4θ

e4θ − 1
,

which is close to one for small θ’s but which can be much less than one for large θ’s. Thus,

for small values of θ both estimators are approximately asymptotically equivalent in terms of

their efficiency (though the UMVU is still slightly more efficient, as it must be since it has

uniformly minimum variance); however, for large values of θ, the UMVU estimator is much

more efficient.
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Question 3

(a) If we truly believe the manufacturer’s claim that the proportion of defectives from their machine

is p, and we assume that lots are made up of randomly chosen DooDads, then the binomial

prior seems precisely the correct one. Of course, if we don’t believe their claim, we might put

a prior on the parameter p itself, and then use this to compose a different prior for D (which

would lead to an “over-dispersed” binomial, for those who know this term).

(b) The posterior distribution is given by:

π(D|d) =
f(d|D)π(D)

∑N
D=0 f(d|D)π(D)

= C(d)
{

D!(N − D)!n!(N − n)!
d!(D − d)!(n − d)!(N − D − n + d)!N !

}{
N !

D!(N − D)!
pD(1 − p)N−D

}

= C(d)
n!(N − n)!

d!(D − d)!(n − d)!(N − D − n + d)!
pD(1 − p)N−D,

where {C(d)}−1 =
∑N

D=0 f(d|D)π(D). Now, when d = 0, this posterior reduces to:

π(D|d = 0) = C(0)
(N − n)!

D!(N − D − n)!
pD(1 − p)N−D,

which clearly has the form of a binomial distribution with parameters N − n and p, meaning

that C(0) = (1 − p)−n. As such, the posterior Bayes estimator, which is just the mean of the

posterior distribution, is D̂π = E(D|d = 0) = (N − n)p.

(c) The result is seen to show that, given no defectives in the sampled n DooDads, we should

just estimate the number of defectives as binomially distributed among the remaining N − n

unsampled DooDads with defective probability p. In other words, since we accepted the value

of p as fixed, and we believe that the DooDads are independent, then our posterior belief should

still be that p is the appropriate probability of defectives among the unsampled DooDads, and

we should expect (N − n)p of them to be defective. If we had seen some other number, d,

of defectives, the same reasoning suggests (and indeed it turns out to be correct) that the

posterior Bayes estimate of D in that case is just (N − n)p + d.

Question 4

(a) The MSE of θ(F̂ ) is MSEF {θ(F̂ )} = EF

[{θ(F̂ ) − θ(F )}2
]
. Thus, the bootstrap paradigm

indicates that we should estimate this value by:

MSEF {θ(F̂ )} ≈ MSEF̂ {θ(F̂ �)} = EF̂

[{θ(F̂ �) − θ(F̂ )}2
]
.

To actually calculate an estimate, of course, we must approximate this value using re-samples

from the data, so that our actual bootstrap estimator of MSE is:

M̂SEB{θ(F̂ )} =
1
B

B∑

b=1

{θ(F̂ �
b ) − θ(F̂ )}2.

Of course, we could also just recall that the MSE is equal to the variance plus the square

of the bias and use the usual bootstrap variance and bias estimates to make up the pieces.
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This approach will lead to a slightly different answer if we use the usual bootstrap variance

estimator; however, it will yields exactly the same answer if we replace the value B − 1 in the

usual bootstrap variance formula by the value B instead (i.e., we opt not to make the usual

degrees-of-freedom-type correction).

(b) Using the hint, we see that:

EF (θ̃B) = EF

{

2θ(F̂ ) − 1
B

B∑

b=1

θ(F̂ �
b )

}

= 2EF {θ(F̂ )} − 1
B

B∑

b=1

EF {θ(F̂ �
b )}

= 2
{

θ(F ) +
a(F )

n

}

− EF

[
EF̂ {θ(F̂ �)}]

= 2θ(F ) +
2a(F )

n
− EF

{

θ(F̂ ) +
a(F̂ )

n

}

= 2θ(F ) +
2a(F )

n
−

[{

θ(F ) +
a(F )

n

}

+
1
n

{

a(F ) +
b(F )

n

}]

= θ(F ) − b(F )
n2

,

where the fourth equality follows from the fact that we have been told that EF {θ(F̂ ) =

θ(F ) + n−1a(F ) for any distribution F , including F = F̂ . Thus, the bias is − b(F )
n2 , which

shows how the bootstrap bias corrected estimator achieves a generally smaller bias [depending,

of course, on the relative sizes of a(F ), b(F ) and n; though as n increases, the relative sizes of

a(F ) and b(F ) become irrelevant and we see that the bias is indeed dramatically reduced for

large sample cases].

END OF EXAMINATION


