Exercise H2.1.Let X_1, \ldots, X_n be independent and identically distributed with Poisson law $Po(\lambda)$, where $\lambda > \varepsilon$ is unknown, (ε is known, $0 < \varepsilon < n^{-1}$). Find the maximum likelihood estimator (MLE) of λ (proof).

Exercise H2.2 Let X_1, \ldots, X_n be independent and identically distributed such that X_1 has the uniform law on the set $\{1, \ldots, r\}$ for some integer r > 1 (i.e. $P(X_1 = k) = 1/r$, $k = 1, \ldots, r$). In the statistical model where r > 1 is unknown, find the MLE of r (proof).

Exercise H2.3. Let X_1, \ldots, X_n be independent and identically distributed such that X_1 has the geometric law Geom(p), i.e.

$$P(X_1 = k) = (1 - p)^{k-1} p, \ k = 1, 2, \dots$$

In the statistical model where $p \in (0, \delta)$ is unknown (δ is known, $(1 + n^{-1})^{-1} < \delta < 1$) find the MLE of p (proof).

Exercise H2.4 This exercise presupposes the **continuous likelihood principle**. Let X be a random variable with values in \mathbb{R}^k such that $\mathcal{L}(X) \in \{P_\vartheta; \vartheta \in \Theta\}$, and each law P_ϑ has a density $p_\vartheta(x)$ on \mathbb{R}^k . For each $x \in \mathbb{R}^k$, the function

$$L_x(\vartheta) = p_\vartheta(x)$$

is called the likelihood function of ϑ given x. A maximum likelihood estimator of ϑ is an estimator $T(x) = T_{ML}(x)$ such that

$$L_x(T_{ML}(x)) = \max_{\vartheta \in \Theta} L_x(\vartheta),$$

i.e. for each given x, the estimator is a value of ϑ which maximizes the likelihood.

Let X_1, \ldots, X_n be independent and identically distributed such that X_1 has the normal law $N(\mu, \sigma^2)$. In the statistical model where $\mu \in \mathbb{R}$ is unknown and $\sigma^2 > 0$ is known, find the MLE of μ . (proof).

Exercise H2.5 This exercise refers to section 2.6. handout (conditional and posterior densities). Consider reversing the roles of ϑ and X, i.e. take the marginal probability function for X given by (2.29) and combine it with the conditional density for ϑ given by (2.30). Consider the expression $q_x(\vartheta)P(X = x)$ and, analogously to (2.31), divide it by its sum over all possible values of x ($x \in \mathcal{X}$). Call the result $q_\vartheta(x)$. Show that for any ϑ with $g(\vartheta) > 0$, the relation

$$q_{\vartheta}(x) = P_{\vartheta}(x), \, x \in \mathcal{X}$$

holds.

Remark. This result justifies to call $P_{\vartheta}(x)$ a conditional probability function under $U = \vartheta$:

$$P_{\vartheta}(x) = P\left(X = x | U = \vartheta\right),$$

even though U is continuous and the event $U = \vartheta$ has probability 0.

Exercise H2.1.Let $X_1, ..., X_n$ be idependent and identically distributed with Poisson law $Po(\lambda)$, where $\lambda > \varepsilon$ is unknown, (ε is known, $0 < \varepsilon < n^{-1}$). Find the maximum likelihood estimator (MLE) of λ (proof).

Solution: since $X_1, ..., X_n$ are independent and identically distributed with Poisson law $Po(\lambda)$, then

$$L_{x} (\lambda) = P_{\lambda} (X_{1} = x_{1}, ..., X_{n} = x_{n})$$

$$= \prod_{i=1}^{n} P_{\lambda} (X_{i} = x_{i})$$

$$= \prod_{i=1}^{n} \frac{\lambda^{x_{i}}}{x_{i!}} e^{-\lambda}$$

$$= \frac{\lambda^{\sum_{i=1}^{n} x_{i}}}{\prod_{i=1}^{n} x_{i!}!} e^{-n\lambda}.$$
Note that $\frac{d}{d_{11}} (\ln L_{x} (\lambda)) = \frac{\sum_{i=1}^{n} x_{i}}{2} - n = 0$ iff $\lambda = \frac{\sum_{i=1}^{n} x_{i}}{2}$, and $\frac{d^{2}}{2} (\ln L_{x} (\lambda)) = -\frac{\sum_{i=1}^{n} x_{i}}{2} \leq 1$

Note that $\frac{d}{d\lambda}(\ln L_x(\lambda)) = \frac{\sum_{i=1}^n x_i}{\lambda} - n = 0$ iff $\lambda = \frac{\sum_{i=1}^n x_i}{n}$, and $\frac{d^2}{d\lambda^2}(\ln L_x(\lambda)) = -\frac{\sum_{i=1}^n x_i}{\lambda^2} \leqslant 0$.

If $\sum_{i=1}^{n} x_i \ge 1$, the function $\ln L_x(\lambda)$ is strictly concave and achieves its maximum value at $\lambda = \frac{\sum_{i=1}^{n} x_i}{n} (> \varepsilon)$. Thus the *MLE* of λ is $\frac{\sum_{i=1}^{n} x_i}{n}$.

If $\sum_{i=1}^{n} x_i = 0$, $\frac{d}{d\lambda} (\ln L_x(\lambda)) = -n < 0$, then $\sup_{\lambda} (\ln L_x(\lambda)) = \lim_{\lambda \to \varepsilon} \ln L_x(\lambda)$, but it is unattainable on the set $(\varepsilon, +\infty)$. Thus the *MLE* of λ doesn't exist.

Exercise H2.2 Let X_1, \ldots, X_n be independent and identically distributed such that X_1 has the uniform law on the set $\{1, \ldots, r\}$ for some integer r > 1 (i.e. $P(X_1 = k) = 1/r$, $k = 1, \ldots, r$). In the statistical model where r > 1 is unknown, find the MLE of r (proof).

Solution: Since $X_1, ..., X_n$ are independent and identically distributed according to the uniform distribution $U\{1, ..., r\}$ for some integer $r \ge 2$, then

$$L_x(r) = P_r(X_1 = x_1, ..., X_n = x_n)$$

= $\prod_{i=1}^n P_r(X_i = x_i)$
= $\frac{1}{r^n} 1_{\{\max(x_1, ..., x_n) \le r\}}(x_1, ..., x_n).$

Note that $L_x(r) = \frac{1}{r^n}$ is decreasing on the set $\{r | r \ge \max\{x_1, ..., x_n, 2\}\}$.

This implies $L_x(r)$ achieves its maximum at $r = \max\{x_1, ..., x_n, 2\}$. Thus the *MLE* of *r* is $\max\{x_1, ..., x_n, 2\}$.

Exercise H2.3. Let X_1, \ldots, X_n be independent and identically distributed such that X_1 has the geometric law Geom(p), i.e.

$$P(X_1 = k) = (1 - p)^{k-1} p, \ k = 1, 2, \dots$$

In the statistical model where $p \in (0, \delta)$ is unknown (δ is known, $(1 + n^{-1})^{-1} < \delta < 1$) find the MLE of p (proof).

Solution: since $X_1, ..., X_n$ are independent and identically distributed according to the geometric law Geom(p), then

$$L_x(p) = P_r(X_1 = x_1, ..., X_n = x_n)$$

= $\prod_{i=1}^n P_r(X_i = x_i)$
= $\prod_{i=1}^n (1-p)^{x_i-1} p$
= $(1-p)^{(\sum_{i=1}^n x_i)-n} p^n.$

Note that $\frac{d}{dp}(\ln L_x(p)) = -\frac{(\sum_{i=1}^n x_i) - n}{1 - p} + \frac{n}{p} = \frac{n - p \sum_{i=1}^n x_i}{(1 - p) p} = 0$ iff $p = \frac{n}{\sum_{i=1}^n x_i}$, and $\frac{d^2}{dp^2}(\ln L_x(p)) = -\frac{(\sum_{i=1}^n x_i) - n}{(1 - p)^2} - \frac{n}{p^2} < 0.$

If $\sum_{i=1}^{n} x_i \ge n+1$, then $\ln L_x(p)$ is strictly concave and achieves its maximum value at $p = \frac{n}{\sum_{i=1}^{n} x_i} (<\delta)$. Thus the *MLE* of *p* is $\frac{n}{\sum_{i=1}^{n} x_i}$.

If $\sum_{i=1}^{n} x_i = n$, then $\frac{d}{dp} (L_x(p)) > 0$, then $\sup_{p} L_x(p) = \lim_{p \to \delta} L_x(p)$, but it is unattainable on the set $(0, \delta)$. Thus the *MLE* of *p* doesn't exist.

Exercise H2.4 This exercise presupposes the **continuous likelihood principle**. Let X be a random variable with values in \mathbb{R}^k such that $\mathcal{L}(X) \in \{P_\vartheta; \vartheta \in \Theta\}$, and each law P_ϑ has a density $p_\vartheta(x)$ on \mathbb{R}^k . For each $x \in \mathbb{R}^k$, the function

$$L_x(\vartheta) = p_\vartheta(x)$$

is called the likelihood function of ϑ given x. A maximum likelihood estimator of ϑ is an estimator $T(x) = T_{ML}(x)$ such that

$$L_x(T_{ML}(x)) = \max_{\vartheta \in \Theta} L_x(\vartheta),$$

i.e. for each given x, the estimator is a value of ϑ which maximizes the likelihood. Let X_1, \ldots, X_n be independent and identically distributed such that X_1 has the normal law $N(\mu, \sigma^2)$. In the statistical model where $\mu \in \mathbb{R}$ is unknown and $\sigma^2 > 0$ is known, find the MLE of μ . (proof).

Solution: since $X_1, ..., X_n$ are independent and identically distributed according the normal law $N(\mu, \sigma^2)$, then

$$L_{x}(\mu) = P_{\theta} (X_{1} = x_{1}, ..., X_{n} = x_{n})$$

= $\prod_{i=1}^{n} P_{\theta} (X_{i} = x_{i})$
= $\prod_{i=1}^{n} \frac{1}{(2\pi)^{\frac{1}{2}}} e^{-\frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}}$
= $\frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n} (x_{i} - \mu)^{2}}.$

Note that $\frac{d}{d\mu} \ln L_x(\mu) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (-2(x_i - \mu)) = \frac{1}{\sigma^2} (\sum_{i=1}^n x_i - n\mu) = 0$ iff $\mu = \frac{\sum_{i=1}^n x_i}{n}$, and $\frac{d^2}{d\mu^2} \ln L_x(\mu) = -\frac{n}{\sigma^2} < 0$.

This implies $\ln L_x(\mu)$ achieves its maximum at $\mu = \frac{\sum_{i=1}^n x_i}{n}$. Thus the *MLE* of μ is $\frac{\sum_{i=1}^n x_i}{n}$.

Exercise H2.5 This exercise refers to section 2.6. handout (conditional and posterior densities). Consider reversing the roles of ϑ and X, i.e. take the marginal probability function for X given by (2.29) and combine it with the conditional density for ϑ given by (2.30). Consider the expression $q_x(\vartheta)P(X = x)$ and, analogously to (2.31), divide it by its sum over all possible values of x ($x \in \mathcal{X}$). Call the result $q_\vartheta(x)$. Show that for any ϑ with $g(\vartheta) > 0$, the relation

$$q_{\vartheta}(x) = P_{\vartheta}(x), \, x \in \mathcal{X}$$

holds.

Remark. This result justifies to call $P_{\vartheta}(x)$ a conditional probability function under $U = \vartheta$:

$$P_{\vartheta}(x) = P\left(X = x | U = \vartheta\right)$$

even though U is continuous and the event $U = \vartheta$ has probability 0.

Solution: for any θ with $g(\theta) \neq 0$ and x, x, we have

$$q_{\theta}(x) = \frac{q_x(\theta) P(X=x)}{\sum_{x' \in \chi} q_{x'}(\theta) P(X=x')}.$$

From the definition of $q_x(\theta)$, we have

$$q_x(\theta) = \frac{P_\theta(x) g(\theta)}{P(X=x)},$$

then

$$q_{x}(\theta) P(X = x) = P_{\theta}(x) g(\theta),$$

and

$$\sum_{x' \in \chi} q_{x'}(\theta) P(X = x') = \sum_{x' \in \chi} P_{\theta}(x') g(\theta)$$
$$= g(\theta) \sum_{x' \in \chi} P_{\theta}(x')$$

4

 $=g\left(heta
ight) .$

Thus $q_{\theta}(x) = P_{\theta}(x)$.