
Math 472 Statistics Spring 2000

Preliminary (take home) exam, given Friday 3/31, due Friday 4/7

Exercise P1. (20%) Consider the Gaussian location-scale model (Model III), for sample
size n, i. e. observations are i.i.d X1, . . . , Xn with distribution N(µ, σ2) where µ ∈ R and
σ2 > 0 are unknown. For a certain σ2

0 > 0, consider hypotheses H : σ2 ≤ σ2
0 vs. K : σ2 > σ2

0.

Find an α-test with rejection region of form (c,∞) (i.e. a one-sided test) where c is a quantile
of a χ2-distribution. (Note: it is not asked to find the LR test; but the test should observe
level α, on all parameters in the hypothesis H : σ2 ≤ σ2

0. )

Hint: A good estimator of σ2 might be a starting point.

Solution. A good estimator of σ2 is the bias corrected sample variance:

Ŝ2
n =

1
n− 1

n∑
i=1

(Xi − X̄n)2.

According to Theorem 6.2, p. 55 it can be represented as

Ŝ2
n =

σ2

n− 1

n−1∑
i=1

ξ2i(1)

where ξ1, . . . , ξn−1 are independent standard normals. Hence (n−1)Ŝ2
n/σ

2 has a χ2-distribution
with n− 1 degrees of freedom. If the hypothesis were H : σ2 = σ2

0 then

V0 =
n− 1
σ2

0

Ŝ2
n

is a reasonable test statistic: the distribution under H is χ2
n−1, which does not depend on

the unspecified nuisance parameter µ. Thus the test is

ϕ(X) = { 1 if V0 > χn−1;1−α
0 otherwise

(where χn−1;1−α is the lower 1 − α quantile). This is an α-test under H : σ2 = σ2
0; we

have to ensure now that under the larger hypothesis H : σ2 ≤ σ2
0.it has still level α. Now

the representation (1) is true for any σ2 > 0 when σ2 is the true parameter. Let us write
probabilities as Pµ,σ2(·) where µ, σ2 are the pertaining ”true”parameters; then

Pµ,σ2(ϕ(X) = 1) = Pµ,σ2

(
n− 1
σ2

0

Ŝ2
n > χn−1;1−α)

)
= P

(
σ2

σ2
0

n−1∑
i=1

ξ2i > χn−1;1−α)

)

= P

(
n−1∑
i=1

ξ2i >
σ2

0

σ2
χn−1;1−α)

)
1



2

where the probability without index P (·) refers to ξ1, . . . , ξn−1 which have a given law (not
depending on any parameters). Since under H we have σ2

0/σ
2 ≥ 1, it follows

P

(
n−1∑
i=1

ξ2i >
σ2

0

σ2
χn−1;1−α)

)
≤ P

(
n−1∑
i=1

ξ2i > χn−1;1−α)

)
= α

thus ϕ has indeed level α for H : σ2 ≤ σ2
0.

Exercise P2 (Two sample problem, F -test for variances). Let X1, . . . , Xn be inde-
pendent N(µ1, σ

2
1) and Y1, . . . , Yn be independent N(µ2, σ

2
2), also independent of X1, . . . , Xn

(n > 1) where µ1, σ
2
1 and µ2, σ

2
2 are all unknown. Define the statistics

F = F (X,Y ) =
S2
X

S2
Y

,(2)

S2
X = n−1

n∑
i=1

(
Xi − X̄n

)2 , S2
Y = n−1

n∑
i=1

(
Yi − Ȳn

)2
(here (X,Y ) symbolizes the total sample).

Define the F-distribution with k1, k2 degrees of freedom (denoted Fk1,k2) as the distri-
bution of Z1/Z2 where Zi are independent r.v.’s having χ2-distributions of k1 and k2 degrees
of freedom, respectively.

i) (15%) Show that F (X,Y ) has an F -distribution if σ2
1 = σ2

2, and find the degrees of
freedom.

ii) (20%) For hypotheses H : σ2
1 ≤ σ2

2 vs. K : σ2
1 > σ2

2, find an α-test with rejection region
of form (c,∞) (i.e. a one-sided test) where c is a quantile of an F -distribution. (Note: it is
not asked to find the LR test; but the test should observe level α, on all parameters in the
hypothesis H : σ2

1 ≤ σ2
2 ).

Remark. The above definition of the F -distribution was misquoted; it is not the one found in
the literature. The F -distribution Fk1,k2 is commonly defined as the distribution of k−1

1 Z1/k
−2
2 Z2

where Zi are independent r.v.’s having χ2-distributions of k1 and k2 degrees of freedom, re-
spectively. Thus numerator and denominator have to be divided by the respective degree of
freedom; in the handout this is given correctly. .This error in the problem formulation does
not affect the solution however.

Solution. (i) By 1 we have

S2
X =

σ2
1

n

n−1∑
i=1

ξ2i , S
2
Y =

σ2
2

n

n−1∑
i=1

η2
i(3)

where η1, . . . , ηn−1 are also independent standard normals η1, . . . , ηn−1. Since Xi and Yi
are independent, the ξi and ηi are also independent. Both

∑n−1
i=1 ξ

2
i and

∑n−1
i=1 η

2
i have a

distribution χ2
n−1. Introduce the (unobservable) random variable

F0 =
(n− 1)−1

∑n−1
i=1 ξ

2
i

(n− 1)−1
∑n−1

i=1 η
2
i

;
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it has a distribution Fn−1,n−1. Then under H : σ2
1 = σ2

2

F = F (X,Y ) =
S2
X

S2
Y

=
(n− 1)−1

∑n−1
i=1 ξ

2
i

(n− 1)−1
∑n−1

i=1 η
2
i

= F0

has exactly this F -distribution (since both degrees of freedom are n − 1, the above error in
the definition of the F -distribution is irrelevant).

(ii) The representation 3 is valid for general σ2
1, σ2

2; then

F (X,Y ) =
σ2

1

σ2
2

(n− 1)−1
∑n−1

i=1 ξ
2
i

(n− 1)−1
∑n−1

i=1 η
2
i

=
σ2

1

σ2
2

F0.

This suggests F (X,Y ) as a reasonable test statistic for H : σ2
1 ≤ σ2

2 , and the hypothesis is
rejected when F (X,Y ) is too large. Thus we consider the test

ϕ(X) = { 1 if F (X,Y ) > Fn−1,n−1;1−α
0 otherwise

where Fn−1,n−1;1−α is the lower 1 − α-quantile of Fn−1,n−1. According to part (i), this
certainly an α-test for H : σ2

1 = σ2
2. It remains to be shown that also under the larger

hypothesis H : σ2
1 ≤ σ2

2 it has level α. The proof is analogous to problem P1. Let us write
probabilities as Pµ,σ2

1,σ
2
2
(·) where µ = (µ1, µ2), σ2

1, σ2
2 are the pertaining ”true”parameters;

then

Pµ,σ2
1,σ

2
2
(F (X,Y ) > Fn−1,n−1;1−α) = Pµ,σ2

1,σ
2
2

(
σ2

1

σ2
2

F0 > Fn−1,n−1;1−α

)
= Pµ,σ2

1,σ
2
2

(
F0 >

σ2
2

σ2
1

Fn−1,n−1;1−α

)
.

Under H : σ2
1 ≤ σ2

2, we have σ2
2/σ

2
1 ≥ 1 and hence

Pµ,σ2
1,σ

2
2

(
F0 >

σ2
2

σ2
1

Fn−1,n−1;1−α

)
≤ Pµ,σ2

1,σ
2
2

(F0 > Fn−1,n−1;1−α) = α

thus indeed the test has level α for H : σ2
1 ≤ σ2

2.

Exercise P3 (25 %) (Two sample t-test). Let X1, . . . , Xn be independent N(µ1, σ
2) and

Y1, . . . , Yn be independent N(µ2, σ
2), also independent of X1, . . . , Xn (n > 1), where µ1, µ2,

and σ2 are all unknown. Consider hypotheses H : µ1 = µ2 vs. K : µ1 6= µ2.

Show that the likelihood ratio test is equivalent to a certain t-test, i.e. a test where the
critical value is chosen as the upper α/2-quantile of a t-distribution. (Equivalence of two
tests based on the same sample here means that they result in the same decisions, for all
values of the sample).

Hint: Cp. also homework exercise H6.1. The likelihood ratio computation is similar to
proposition 7.5 (ii), p. 81-82 handout.

Solution. Theorem 9.8. p. 119 handout.
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Exercise P4. (10%) Complete the proof of proposition 7.5 handout by establishing claim
(i). In detail: consider the Gaussian location-scale model (Model III), for sample size n, i. e.
observations are i. i. d. X1, . . . , Xn with distribution N(µ, σ2) where µ ∈ R and σ2 > 0 are
unknown. Consider hypotheses H : µ ≤ µ0 vs. K : µ > µ0, and the one sided t-test which
rejects when the t-statistic

Tµ0
(X) =

(
X̄n − µ0

)
n1/2

Ŝn
.

is too large (with a proper choice of critical value, such that an α-test results). Show that
the one sided t-test is the likelihood ratio test for this problem.

Hints: a) When maximizing pµ,σ2(x) over the alternative, the supremum is not attained
(µ > µ0 is an open interval). However the supremum is the same as the maximum over
µ ≥ µ0 which is attained by certain maximum likelihod estimators µ̂1, σ̂

2
1 (find these, and

also MLE’s µ̂0, σ̂
2
0 under H)

b) Note that this time, in difference to part (ii), we have to show that the likelihood ratio is
a monotone increasing function of Tµ0

(X) itself, not of its absolute value. Establish this by
considering separately the cases of positive and nonnegative values of the t-statistic Tµ0

(X).

Solution. The density pµ,σ2 of the data x = (x1, . . . , xn) is again

pµ,σ2(x) =
1

(2πσ2)n/2
exp

(
−S

2
n + (x̄n − µ)2

2σ2n−1

)
,(4)

S2
n = n−1

n∑
i=1

(xi − x̄n)2.(5)

To find MLE’s of µ and σ2 under µ > µ0, we first maximize for fixed σ2 over all possible µ.
When x̄n > µ0. the solution is µ̂ = x̄n. When x̄n ≤ µ0, the problem is to minimize (x̄n − µ)2

under µ > µ0. This minimum is not attained (µ can be selected arbitrarily close to µ0, such
that still µ > µ0, which makes (x̄n − µ)2 arbitrarily close to (x̄n − µ0)2, never attaining this
value). However

inf
µ>µ0

(x̄n − µ)2 = min
µ≥µ0

(x̄n − µ)2 = (x̄n − µ0)2 .

Thus the MLE of µ under µ ≥ µ0 is µ̂1 = max(x̄n, µ0). This is not the MLE under K, but
gives the supremal value of the likelihood under K for given σ2. To continue, we have to
maximize in σ2. Now

(x̄n − µ̂1)2 = (min(0, x̄n − µ0))2

and defining

S2
n,1 := S2

n + (x̄n − µ̂1)2

we obtain

sup
µ>µ0,σ

2>0

pµ,σ2(x) = sup
σ2>0

1
(2πσ2)n/2

exp

(
−

S2
n,1

2σ2n−1

)
.
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The maximization in σ2 is now analogous to the argument for part (ii) of Proposition 7.9,
(p. 81 handout). The maximizing value is σ̂2

1 = S2
n,1 and the maximized likelihood (which is

also the supremal likelihood under K) is

sup
µ>µ0,σ

2>0

pµ,σ2(x) =
1

(σ̂2
1)n/2

1
(2π)n/2

exp
(
− 1

2n−1

)
.

Now under the hypothesis, since µ ≤ µ0 is a closed interval, the MLE’s can straightforwardly
be found. An analogous argument to the one above gives

µ̂0 = min(x̄n, µ0),

min
µ≤µ0

(x̄n − µ)2 = (x̄n − µ̂0)2 = (max(0, x̄n − µ0))2 ,

σ̂2
0 = S2

n,0 where S2
n,0 := S2

n + (x̄n − µ̂0)2 ,

sup
µ≤µ0,σ

2>0

pµ,σ2(x) =
1

(σ̂2
0)n/2

1
(2π)n/2

exp
(
− 1

2n−1

)
.

Thus the likelihood ratio is

L(x) =
(
σ̂2

0

σ̂2
1

)n/2
=

(
S2
n + (x̄n − µ̂0)2

S2
n + (x̄n − µ̂1)2

)n/2
Suppose first that the t-statistic Tµ0

(X) has values ≤ 0; this is equivalent to x̄n ≤ µ0. In this
case µ̂0 = x̄n, µ̂1 = µ0, hence

L(x) =
(

S2
n

S2
n + (x̄n − µ0)2

)n/2
=
(

1
1 + (x̄n − µ0)2 /S2

n

)n/2
=

(
1

1 + (Tµ0
(X))2/(n− 1)

)n/2
.

Thus for nonpositive values of Tµ0
(X), the likelihood ratio L(x) is a monotone decreasing

function of the absolute value of Tµ0
(X), which means it is monotone increasing in Tµ0

(X),
on values Tµ0

(X) ≤ 0.

Consider now nonnegative values of Tµ0
(X): Tµ0

(X) ≥ 0. Then x̄n ≥ µ0, hence µ̂0 = µ0,
µ̂1 = x̄n and

L(x) =
(
σ̂2

0

σ̂2
1

)n/2
=

(
S2
n + (x̄n − µ0)2

S2
n

)n/2
=

(
1 + (Tµ0

(X))2/(n− 1)
)n/2

.

Thus for values Tµ0
(X) ≥ 0, the likelihood ratio L(x) is a monotone increasing function of

the absolute value of Tµ0
(X), which means it is monotone increasing in Tµ0

(X), on these
values Tµ0

(X) ≥ 0.

The two areas of values of Tµ0
(X) we considered do overlap (in Tµ0

(X) = 0); and we showed
that L(x) is a monotone increasing function of Tµ0

(X) on both of these. Hence L(x) is a
monotone increasing function of Tµ0

(X).

Exercise P5 (F -test for equality of variances). Consider the two sample problem of
exercise P2, but hypotheses H : σ2

1 = σ2
2 vs. K : σ2

1 6= σ2
2.
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i) (5%) Find the likelihood ratio test and show that it is equivalent to a test which rejects if
the F -statistic (2) is outside a certain interval of form [c−1, c].

ii) (5%) Show that the c of i) can be chosen as the upper α/2 quantile of the distribution
Fr,r for a a certain r > 0.

Solution. The likelihood is the product of the one for X1, . . . , Xn and for Y1, . . . , Yn . The
means µ1, µ2 are nuisance parameters, they are estimated by their respective MLE under
both hypothesis amd alternative. After this first stage, the likelihood for X1, . . . , Xn becomes

1
(2πσ2

1)n/2
exp

(
−

S2
X

2σ2
1n
−1

)
,

and the likelihood for Y1, . . . , Yn analogously

1
(2πσ2

2)n/2
exp

(
−

S2
Y

2σ2
2n
−1

)
,.

To obtain the likelihood under K:σ2
1 6= σ2

2, we first maximize in σ2
1 and σ2

2 without any
restriction. This gives estimates

σ̂2
1 = S2

X , σ̂
2
2 = S2

X .

These estimates are independent and have a continuous distribution (they each have a density,
since the χ2 has a density), hence they have a joint continuous distribution, and the event
σ̂2

1 = σ̂2
2 has zero probability (for all values of the parameters). Hence with probability one,

σ̂2
1, σ̂

2
2 are the MLE under K, an the maximized likelihood is

1
(σ̂2

1σ̂
2
2)n/2

1
(2π)n

exp
(
− 1
n−1

)
.

Now under H : σ2
1 = σ2

2 (call the common value σ2) the joint likelihood of X1, . . . , Xn

, Y1, . . . , Yn is

1
(2πσ2)n

exp
(
−

(S2
X + S2

Y )/2
2σ2(2n)−1

)
.

This gives an MLE

σ̂2 =
1
2

(S2
X + S2

Y )

and a maximized likelihood under H
1

(σ̂2)n
1

(2π)n
exp

(
− 1
n−1

)
.

Thus the likelihood ratio is

L(X,Y ) =
(

σ̂2

σ̂1σ̂2

)n
=
(

(S2
X + S2

Y )/2
(S2
X)1/2(S2

Y )1/2

)n
=

1
2n

((
S2
X

S2
Y

)1/2

+
(
S2
Y

S2
X

)1/2
)n

1
2n
(

(F (X,Y ))1/2 + (F (X,Y ))−1/2
)n
.
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Consider the function g(t) = t1/2 + t−1/2, for t > 0. . The LR test rejects when either
F (X,Y ) is too large ((F (X,Y ))1/2 large ) or too small ((F (X,Y ))−1/2 large ).The inequality
L(X,Y ) > c0 is equivalent to

g(F (X,Y )) > c∗

The function g has the property g(t) = g(t−1), thus the set {t : g(t) > c∗} has the property
that if u is in this set then also u−1 is in it. Hence (noting also that g is monotone increasing
for t > 1 ) there must be a c such that

{t : g(t) ≤ c∗} = [c−1, c].

Then rejection is equivalent to

F (X,Y ) > c or F (X,Y ) < c−1

which proves i) .

(ii) Under H, F (X,Y ) has a distribution Fn−1,n−1 (P2 (i)), and this distribution has the
property that (F (X,Y ))−1 has the same distribution (this follows immediately from the
definition of the F -distribution). Hence selecting c = Fn−1,n−1;1−α/2 (lower 1−α/2-quantile)
ensures that under H

P (F (X,Y ) > c) = α/2,
P (F (X,Y ) < c−1) = P ((F (X,Y ))−1 > c) = α/2

which proves the claim.


