Exercise P1. (20\%) Consider the Gaussian location-scale model (Model III), for sample size n, i. e. observations are i.i.d X_{1}, \ldots, X_{n} with distribution $N\left(\mu, \sigma^{2}\right)$ where $\mu \in \mathbb{R}$ and $\sigma^{2}>0$ are unknown. For a certain $\sigma_{0}^{2}>0$, consider hypotheses $H: \sigma^{2} \leq \sigma_{0}^{2}$ vs. $K: \sigma^{2}>\sigma_{0}^{2}$.

Find an α-test with rejection region of form (c, ∞) (i.e. a one-sided test) where c is a quantile of a χ^{2}-distribution. (Note: it is not asked to find the LR test; but the test should observe level α, on all parameters in the hypothesis $H: \sigma^{2} \leq \sigma_{0}^{2}$.)

Hint: A good estimator of σ^{2} might be a starting point.

Solution. A good estimator of σ^{2} is the bias corrected sample variance:

$$
\hat{S}_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} .
$$

According to Theorem 6.2, p. 55 it can be represented as

$$
\begin{equation*}
\hat{S}_{n}^{2}=\frac{\sigma^{2}}{n-1} \sum_{i=1}^{n-1} \xi_{i}^{2} \tag{1}
\end{equation*}
$$

where $\xi_{1}, \ldots, \xi_{n-1}$ are independent standard normals. Hence $(n-1) \hat{S}_{n}^{2} / \sigma^{2}$ has a χ^{2}-distribution with $n-1$ degrees of freedom. If the hypothesis were $H: \sigma^{2}=\sigma_{0}^{2}$ then

$$
V_{0}=\frac{n-1}{\sigma_{0}^{2}} \hat{S}_{n}^{2}
$$

is a reasonable test statistic: the distribution under H is χ_{n-1}^{2}, which does not depend on the unspecified nuisance parameter μ. Thus the test is

$$
\varphi(X)=\left\{\begin{array}{l}
1 \text { if } V_{0}>\chi_{n-1 ; 1-\alpha} \\
0 \text { otherwise }
\end{array}\right.
$$

(where $\chi_{n-1 ; 1-\alpha}$ is the lower $1-\alpha$ quantile). This is an α-test under $H: \sigma^{2}=\sigma_{0}^{2}$; we have to ensure now that under the larger hypothesis $H: \sigma^{2} \leq \sigma_{0}^{2}$.it has still level α. Now the representation (1) is true for any $\sigma^{2}>0$ when σ^{2} is the true parameter. Let us write probabilities as $P_{\mu, \sigma^{2}}(\cdot)$ where μ, σ^{2} are the pertaining "true"parameters; then

$$
\begin{aligned}
P_{\mu, \sigma^{2}}(\varphi(X) & \left.=1)=P_{\mu, \sigma^{2}}\left(\frac{n-1}{\sigma_{0}^{2}} \hat{S}_{n}^{2}>\chi_{n-1 ; 1-\alpha}\right)\right) \\
& \left.=P\left(\frac{\sigma^{2}}{\sigma_{0}^{2}} \sum_{i=1}^{n-1} \xi_{i}^{2}>\chi_{n-1 ; 1-\alpha}\right)\right) \\
& \left.=P\left(\sum_{i=1}^{n-1} \xi_{i}^{2}>\frac{\sigma_{0}^{2}}{\sigma^{2}} \chi_{n-1 ; 1-\alpha}\right)\right)
\end{aligned}
$$

where the probability without index $P(\cdot)$ refers to $\xi_{1}, \ldots, \xi_{n-1}$ which have a given law (not depending on any parameters). Since under H we have $\sigma_{0}^{2} / \sigma^{2} \geq 1$, it follows

$$
\left.\left.P\left(\sum_{i=1}^{n-1} \xi_{i}^{2}>\frac{\sigma_{0}^{2}}{\sigma^{2}} \chi_{n-1 ; 1-\alpha}\right)\right) \leq P\left(\sum_{i=1}^{n-1} \xi_{i}^{2}>\chi_{n-1 ; 1-\alpha}\right)\right)=\alpha
$$

thus φ has indeed level α for $H: \sigma^{2} \leq \sigma_{0}^{2}$.
Exercise P2 (Two sample problem, F-test for variances). Let X_{1}, \ldots, X_{n} be independent $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and Y_{1}, \ldots, Y_{n} be independent $N\left(\mu_{2}, \sigma_{2}^{2}\right)$, also independent of X_{1}, \ldots, X_{n} $(n>1)$ where μ_{1}, σ_{1}^{2} and μ_{2}, σ_{2}^{2} are all unknown. Define the statistics

$$
\begin{align*}
F & =F(X, Y)=\frac{S_{X}^{2}}{S_{Y}^{2}} \tag{2}\\
S_{X}^{2} & =n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}, S_{Y}^{2}=n^{-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}
\end{align*}
$$

(here (X, Y) symbolizes the total sample).
Define the \mathbf{F}-distribution with k_{1}, k_{2} degrees of freedom (denoted $F_{k_{1}, k_{2}}$) as the distribution of Z_{1} / Z_{2} where Z_{i} are independent r.v.'s having χ^{2}-distributions of k_{1} and k_{2} degrees of freedom, respectively.
i) (15%) Show that $F(X, Y)$ has an F-distribution if $\sigma_{1}^{2}=\sigma_{2}^{2}$, and find the degrees of freedom.
ii) (20%) For hypotheses $H: \sigma_{1}^{2} \leq \sigma_{2}^{2}$ vs. $K: \sigma_{1}^{2}>\sigma_{2}^{2}$, find an α-test with rejection region of form (c, ∞) (i.e. a one-sided test) where c is a quantile of an F-distribution. (Note: it is not asked to find the LR test; but the test should observe level α, on all parameters in the hypothesis $\left.H: \sigma_{1}^{2} \leq \sigma_{2}^{2}\right)$.

Remark. The above definition of the F-distribution was misquoted; it is not the one found in the literature. The F-distribution $F_{k_{1}, k_{2}}$ is commonly defined as the distribution of $k_{1}^{-1} Z_{1} / k_{2}^{-2} Z_{2}$ where Z_{i} are independent r.v.'s having χ^{2}-distributions of k_{1} and k_{2} degrees of freedom, respectively. Thus numerator and denominator have to be divided by the respective degree of freedom; in the handout this is given correctly. .This error in the problem formulation does not affect the solution however.

Solution. (i) By 1 we have

$$
\begin{equation*}
S_{X}^{2}=\frac{\sigma_{1}^{2}}{n} \sum_{i=1}^{n-1} \xi_{i}^{2}, S_{Y}^{2}=\frac{\sigma_{2}^{2}}{n} \sum_{i=1}^{n-1} \eta_{i}^{2} \tag{3}
\end{equation*}
$$

where $\eta_{1}, \ldots, \eta_{n-1}$ are also independent standard normals $\eta_{1}, \ldots, \eta_{n-1}$. Since X_{i} and Y_{i} are independent, the ξ_{i} and η_{i} are also independent. Both $\sum_{i=1}^{n-1} \xi_{i}^{2}$ and $\sum_{i=1}^{n-1} \eta_{i}^{2}$ have a distribution χ_{n-1}^{2}. Introduce the (unobservable) random variable

$$
F_{0}=\frac{(n-1)^{-1} \sum_{i=1}^{n-1} \xi_{i}^{2}}{(n-1)^{-1} \sum_{i=1}^{n-1} \eta_{i}^{2}}
$$

it has a distribution $F_{n-1, n-1}$. Then under $H: \sigma_{1}^{2}=\sigma_{2}^{2}$

$$
F=F(X, Y)=\frac{S_{X}^{2}}{S_{Y}^{2}}=\frac{(n-1)^{-1} \sum_{i=1}^{n-1} \xi_{i}^{2}}{(n-1)^{-1} \sum_{i=1}^{n-1} \eta_{i}^{2}}=F_{0}
$$

has exactly this F-distribution (since both degrees of freedom are $n-1$, the above error in the definition of the F-distribution is irrelevant).
(ii) The representation 3 is valid for general $\sigma_{1}^{2}, \sigma_{2}^{2}$; then

$$
F(X, Y)=\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \frac{(n-1)^{-1} \sum_{i=1}^{n-1} \xi_{i}^{2}}{(n-1)^{-1} \sum_{i=1}^{n-1} \eta_{i}^{2}}=\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} F_{0}
$$

This suggests $F(X, Y)$ as a reasonable test statistic for $H: \sigma_{1}^{2} \leq \sigma_{2}^{2}$, and the hypothesis is rejected when $F(X, Y)$ is too large. Thus we consider the test

$$
\varphi(X)=\left\{\begin{array}{l}
1 \text { if } F(X, Y)>F_{n-1, n-1 ; 1-\alpha} \\
0 \text { otherwise }
\end{array}\right.
$$

where $F_{n-1, n-1 ; 1-\alpha}$ is the lower $1-\alpha$-quantile of $F_{n-1, n-1}$. According to part (i), this certainly an α-test for $H: \sigma_{1}^{2}=\sigma_{2}^{2}$. It remains to be shown that also under the larger hypothesis $H: \sigma_{1}^{2} \leq \sigma_{2}^{2}$ it has level α. The proof is analogous to problem P1. Let us write probabilities as $P_{\boldsymbol{\mu}, \sigma_{1}^{2}, \sigma_{2}^{2}}(\cdot)$ where $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right), \sigma_{1}^{2}, \sigma_{2}^{2}$ are the pertaining "true"parameters; then

$$
\begin{aligned}
P_{\boldsymbol{\mu}, \sigma_{1}^{2}, \sigma_{2}^{2}}(F(X, Y) & \left.>F_{n-1, n-1 ; 1-\alpha}\right)=P_{\boldsymbol{\mu}, \sigma_{1}^{2}, \sigma_{2}^{2}}\left(\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} F_{0}>F_{n-1, n-1 ; 1-\alpha}\right) \\
& =P_{\boldsymbol{\mu}, \sigma_{1}^{2}, \sigma_{2}^{2}}\left(F_{0}>\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} F_{n-1, n-1 ; 1-\alpha}\right)
\end{aligned}
$$

Under $H: \sigma_{1}^{2} \leq \sigma_{2}^{2}$, we have $\sigma_{2}^{2} / \sigma_{1}^{2} \geq 1$ and hence

$$
P_{\mu, \sigma_{1}^{2}, \sigma_{2}^{2}}\left(F_{0}>\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} F_{n-1, n-1 ; 1-\alpha}\right) \leq P_{\boldsymbol{\mu}, \sigma_{1}^{2}, \sigma_{2}^{2}}\left(F_{0}>F_{n-1, n-1 ; 1-\alpha}\right)=\alpha
$$

thus indeed the test has level α for $H: \sigma_{1}^{2} \leq \sigma_{2}^{2}$.

Exercise P3 (25 \%) (Two sample t-test). Let X_{1}, \ldots, X_{n} be independent $N\left(\mu_{1}, \sigma^{2}\right)$ and Y_{1}, \ldots, Y_{n} be independent $N\left(\mu_{2}, \sigma^{2}\right)$, also independent of $X_{1}, \ldots, X_{n}(n>1)$, where μ_{1}, μ_{2}, and σ^{2} are all unknown. Consider hypotheses $H: \mu_{1}=\mu_{2}$ vs. $K: \mu_{1} \neq \mu_{2}$.

Show that the likelihood ratio test is equivalent to a certain t-test, i.e. a test where the critical value is chosen as the upper $\alpha / 2$-quantile of a t-distribution. (Equivalence of two tests based on the same sample here means that they result in the same decisions, for all values of the sample).

Hint: Cp. also homework exercise H6.1. The likelihood ratio computation is similar to proposition 7.5 (ii), p. 81-82 handout.

Solution. Theorem 9.8. p. 119 handout.

Exercise P4. (10\%) Complete the proof of proposition 7.5 handout by establishing claim (i). In detail: consider the Gaussian location-scale model (Model III), for sample size n, i. e. observations are i. i. d. X_{1}, \ldots, X_{n} with distribution $N\left(\mu, \sigma^{2}\right)$ where $\mu \in \mathbb{R}$ and $\sigma^{2}>0$ are unknown. Consider hypotheses $H: \mu \leq \mu_{0}$ vs. $K: \mu>\mu_{0}$, and the one sided t-test which rejects when the t-statistic

$$
T_{\mu_{0}}(X)=\frac{\left(\bar{X}_{n}-\mu_{0}\right) n^{1 / 2}}{\hat{S}_{n}} .
$$

is too large (with a proper choice of critical value, such that an α-test results). Show that the one sided t-test is the likelihood ratio test for this problem.

Hints: a) When maximizing $p_{\mu, \sigma^{2}}(x)$ over the alternative, the supremum is not attained ($\mu>\mu_{0}$ is an open interval). However the supremum is the same as the maximum over $\mu \geq \mu_{0}$ which is attained by certain maximum likelihod estimators $\hat{\mu}_{1}, \hat{\sigma}_{1}^{2}$ (find these, and also MLE's $\hat{\mu}_{0}, \hat{\sigma}_{0}^{2}$ under H)
b) Note that this time, in difference to part (ii), we have to show that the likelihood ratio is a monotone increasing function of $T_{\mu_{0}}(X)$ itself, not of its absolute value. Establish this by considering separately the cases of positive and nonnegative values of the t-statistic $T_{\mu_{0}}(X)$.

Solution. The density $p_{\mu, \sigma^{2}}$ of the data $x=\left(x_{1}, \ldots, x_{n}\right)$ is again

$$
\begin{align*}
p_{\mu, \sigma^{2}}(x) & =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{S_{n}^{2}+\left(\bar{x}_{n}-\mu\right)^{2}}{2 \sigma^{2} n^{-1}}\right) \tag{4}\\
S_{n}^{2} & =n^{-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} \tag{5}
\end{align*}
$$

To find MLE's of μ and σ^{2} under $\mu>\mu_{0}$, we first maximize for fixed σ^{2} over all possible μ. When $\bar{x}_{n}>\mu_{0}$. the solution is $\hat{\mu}=\bar{x}_{n}$. When $\bar{x}_{n} \leq \mu_{0}$, the problem is to minimize $\left(\bar{x}_{n}-\mu\right)^{2}$ under $\mu>\mu_{0}$. This minimum is not attained (μ can be selected arbitrarily close to μ_{0}, such that still $\mu>\mu_{0}$, which makes $\left(\bar{x}_{n}-\mu\right)^{2}$ arbitrarily close to $\left(\bar{x}_{n}-\mu_{0}\right)^{2}$, never attaining this value). However

$$
\inf _{\mu>\mu_{0}}\left(\bar{x}_{n}-\mu\right)^{2}=\min _{\mu \geq \mu_{0}}\left(\bar{x}_{n}-\mu\right)^{2}=\left(\bar{x}_{n}-\mu_{0}\right)^{2} .
$$

Thus the MLE of μ under $\mu \geq \mu_{0}$ is $\hat{\mu}_{1}=\max \left(\bar{x}_{n}, \mu_{0}\right)$. This is not the MLE under K, but gives the supremal value of the likelihood under K for given σ^{2}. To continue, we have to maximize in σ^{2}. Now

$$
\left(\bar{x}_{n}-\hat{\mu}_{1}\right)^{2}=\left(\min \left(0, \bar{x}_{n}-\mu_{0}\right)\right)^{2}
$$

and defining

$$
S_{n, 1}^{2}:=S_{n}^{2}+\left(\bar{x}_{n}-\hat{\mu}_{1}\right)^{2}
$$

we obtain

$$
\sup _{\mu>\mu_{0}, \sigma^{2}>0} p_{\mu, \sigma^{2}}(x)=\sup _{\sigma^{2}>0} \frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{S_{n, 1}^{2}}{2 \sigma^{2} n^{-1}}\right) .
$$

The maximization in σ^{2} is now analogous to the argument for part (ii) of Proposition 7.9, (p. 81 handout). The maximizing value is $\hat{\sigma}_{1}^{2}=S_{n, 1}^{2}$ and the maximized likelihood (which is also the supremal likelihood under K) is

$$
\sup _{\mu>\mu_{0}, \sigma^{2}>0} p_{\mu, \sigma^{2}}(x)=\frac{1}{\left(\hat{\sigma}_{1}^{2}\right)^{n / 2}} \frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{1}{2 n^{-1}}\right)
$$

Now under the hypothesis, since $\mu \leq \mu_{0}$ is a closed interval, the MLE's can straightforwardly be found. An analogous argument to the one above gives

$$
\begin{aligned}
\hat{\mu}_{0} & =\min \left(\bar{x}_{n}, \mu_{0}\right) \\
\min _{\mu \leq \mu_{0}}\left(\bar{x}_{n}-\mu\right)^{2} & =\left(\bar{x}_{n}-\hat{\mu}_{0}\right)^{2}=\left(\max \left(0, \bar{x}_{n}-\mu_{0}\right)\right)^{2} \\
\hat{\sigma}_{0}^{2} & =S_{n, 0}^{2} \text { where } S_{n, 0}^{2}:=S_{n}^{2}+\left(\bar{x}_{n}-\hat{\mu}_{0}\right)^{2}, \\
\sup _{\mu \leq \mu_{0}, \sigma^{2}>0} p_{\mu, \sigma^{2}}(x) & =\frac{1}{\left(\hat{\sigma}_{0}^{2}\right)^{n / 2}} \frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{1}{2 n^{-1}}\right)
\end{aligned}
$$

Thus the likelihood ratio is

$$
L(x)=\left(\frac{\hat{\sigma}_{0}^{2}}{\hat{\sigma}_{1}^{2}}\right)^{n / 2}=\left(\frac{S_{n}^{2}+\left(\bar{x}_{n}-\hat{\mu}_{0}\right)^{2}}{S_{n}^{2}+\left(\bar{x}_{n}-\hat{\mu}_{1}\right)^{2}}\right)^{n / 2}
$$

Suppose first that the t-statistic $T_{\mu_{0}}(X)$ has values ≤ 0; this is equivalent to $\bar{x}_{n} \leq \mu_{0}$. In this case $\hat{\mu}_{0}=\bar{x}_{n}, \hat{\mu}_{1}=\mu_{0}$, hence

$$
\begin{aligned}
L(x) & =\left(\frac{S_{n}^{2}}{S_{n}^{2}+\left(\bar{x}_{n}-\mu_{0}\right)^{2}}\right)^{n / 2}=\left(\frac{1}{1+\left(\bar{x}_{n}-\mu_{0}\right)^{2} / S_{n}^{2}}\right)^{n / 2} \\
& =\left(\frac{1}{1+\left(T_{\mu_{0}}(X)\right)^{2} /(n-1)}\right)^{n / 2}
\end{aligned}
$$

Thus for nonpositive values of $T_{\mu_{0}}(X)$, the likelihood ratio $L(x)$ is a monotone decreasing function of the absolute value of $T_{\mu_{0}}(X)$, which means it is monotone increasing in $T_{\mu_{0}}(X)$, on values $T_{\mu_{0}}(X) \leq 0$.

Consider now nonnegative values of $T_{\mu_{0}}(X): T_{\mu_{0}}(X) \geq 0$. Then $\bar{x}_{n} \geq \mu_{0}$, hence $\hat{\mu}_{0}=\mu_{0}$, $\hat{\mu}_{1}=\bar{x}_{n}$ and

$$
\begin{aligned}
L(x) & =\left(\frac{\hat{\sigma}_{0}^{2}}{\hat{\sigma}_{1}^{2}}\right)^{n / 2}=\left(\frac{S_{n}^{2}+\left(\bar{x}_{n}-\mu_{0}\right)^{2}}{S_{n}^{2}}\right)^{n / 2} \\
& =\left(1+\left(T_{\mu_{0}}(X)\right)^{2} /(n-1)\right)^{n / 2}
\end{aligned}
$$

Thus for values $T_{\mu_{0}}(X) \geq 0$, the likelihood ratio $L(x)$ is a monotone increasing function of the absolute value of $T_{\mu_{0}}(X)$, which means it is monotone increasing in $T_{\mu_{0}}(X)$, on these values $T_{\mu_{0}}(X) \geq 0$.
The two areas of values of $T_{\mu_{0}}(X)$ we considered do overlap (in $T_{\mu_{0}}(X)=0$); and we showed that $L(x)$ is a monotone increasing function of $T_{\mu_{0}}(X)$ on both of these. Hence $L(x)$ is a monotone increasing function of $T_{\mu_{0}}(X)$.
Exercise P5 (F-test for equality of variances). Consider the two sample problem of exercise P 2 , but hypotheses $H: \sigma_{1}^{2}=\sigma_{2}^{2}$ vs. $K: \sigma_{1}^{2} \neq \sigma_{2}^{2}$.
i) (5%) Find the likelihood ratio test and show that it is equivalent to a test which rejects if the F-statistic (2) is outside a certain interval of form $\left[c^{-1}, c\right]$.
ii) (5%) Show that the c of i) can be chosen as the upper $\alpha / 2$ quantile of the distribution $F_{r, r}$ for a a certain $r>0$.

Solution. The likelihood is the product of the one for X_{1}, \ldots, X_{n} and for Y_{1}, \ldots, Y_{n}. The means μ_{1}, μ_{2} are nuisance parameters, they are estimated by their respective MLE under both hypothesis amd alternative. After this first stage, the likelihood for X_{1}, \ldots, X_{n} becomes

$$
\frac{1}{\left(2 \pi \sigma_{1}^{2}\right)^{n / 2}} \exp \left(-\frac{S_{X}^{2}}{2 \sigma_{1}^{2} n^{-1}}\right)
$$

and the likelihood for Y_{1}, \ldots, Y_{n} analogously

$$
\frac{1}{\left(2 \pi \sigma_{2}^{2}\right)^{n / 2}} \exp \left(-\frac{S_{Y}^{2}}{2 \sigma_{2}^{2} n^{-1}}\right),
$$

To obtain the likelihood under $K: \sigma_{1}^{2} \neq \sigma_{2}^{2}$, we first maximize in σ_{1}^{2} and σ_{2}^{2} without any restriction. This gives estimates

$$
\hat{\sigma}_{1}^{2}=S_{X}^{2}, \hat{\sigma}_{2}^{2}=S_{X}^{2}
$$

These estimates are independent and have a continuous distribution (they each have a density, since the χ^{2} has a density), hence they have a joint continuous distribution, and the event $\hat{\sigma}_{1}^{2}=\hat{\sigma}_{2}^{2}$ has zero probability (for all values of the parameters). Hence with probability one, $\hat{\sigma}_{1}^{2}, \hat{\sigma}_{2}^{2}$ are the MLE under K, an the maximized likelihood is

$$
\frac{1}{\left(\hat{\sigma}_{1}^{2} \hat{\sigma}_{2}^{2}\right)^{n / 2}} \frac{1}{(2 \pi)^{n}} \exp \left(-\frac{1}{n^{-1}}\right)
$$

Now under $H: \sigma_{1}^{2}=\sigma_{2}^{2}$ (call the common value σ^{2}) the joint likelihood of X_{1}, \ldots, X_{n} $, Y_{1}, \ldots, Y_{n}$ is

$$
\frac{1}{\left(2 \pi \sigma^{2}\right)^{n}} \exp \left(-\frac{\left(S_{X}^{2}+S_{Y}^{2}\right) / 2}{2 \sigma^{2}(2 n)^{-1}}\right)
$$

This gives an MLE

$$
\hat{\sigma}^{2}=\frac{1}{2}\left(S_{X}^{2}+S_{Y}^{2}\right)
$$

and a maximized likelihood under H

$$
\frac{1}{\left(\hat{\sigma}^{2}\right)^{n}} \frac{1}{(2 \pi)^{n}} \exp \left(-\frac{1}{n^{-1}}\right)
$$

Thus the likelihood ratio is

$$
\begin{aligned}
L(X, Y)= & \left(\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{1} \hat{\sigma}_{2}}\right)^{n}=\left(\frac{\left(S_{X}^{2}+S_{Y}^{2}\right) / 2}{\left(S_{X}^{2}\right)^{1 / 2}\left(S_{Y}^{2}\right)^{1 / 2}}\right)^{n} \\
= & \frac{1}{2^{n}}\left(\left(\frac{S_{X}^{2}}{S_{Y}^{2}}\right)^{1 / 2}+\left(\frac{S_{Y}^{2}}{S_{X}^{2}}\right)^{1 / 2}\right)^{n} \\
& \frac{1}{2^{n}}\left((F(X, Y))^{1 / 2}+(F(X, Y))^{-1 / 2}\right)^{n}
\end{aligned}
$$

Consider the function $g(t)=t^{1 / 2}+t^{-1 / 2}$, for $t>0$. The LR test rejects when either $F(X, Y)$ is too large $\left((F(X, Y))^{1 / 2}\right.$ large $)$ or too small $\left((F(X, Y))^{-1 / 2}\right.$ large $)$.The inequality $L(X, Y)>c_{0}$ is equivalent to

$$
g(F(X, Y))>c^{*}
$$

The function g has the property $g(t)=g\left(t^{-1}\right)$, thus the set $\left\{t: g(t)>c^{*}\right\}$ has the property that if u is in this set then also u^{-1} is in it. Hence (noting also that g is monotone increasing for $t>1$) there must be a c such that

$$
\left\{t: g(t) \leq c^{*}\right\}=\left[c^{-1}, c\right]
$$

Then rejection is equivalent to

$$
F(X, Y)>c \text { or } F(X, Y)<c^{-1}
$$

which proves i) .
(ii) Under $H, F(X, Y)$ has a distribution $F_{n-1, n-1}$ (P2 (i)), and this distribution has the property that $(F(X, Y))^{-1}$ has the same distribution (this follows immediately from the definition of the F-distribution). Hence selecting $c=F_{n-1, n-1 ; 1-\alpha / 2}$ (lower 1- $\alpha / 2$-quantile) ensures that under H

$$
\begin{aligned}
& P(F(X, Y)>c)=\alpha / 2 \\
& P\left(F(X, Y)<c^{-1}\right)=P\left((F(X, Y))^{-1}>c\right)=\alpha / 2
\end{aligned}
$$

which proves the claim.

