Preliminary (take home) exam, given Friday 3/31, due Friday 4/7

Exercise P1. (20\%) Consider the Gaussian location-scale model (Model III), for sample size n, i. e. observations are i.i.d X_{1}, \ldots, X_{n} with distribution $N\left(\mu, \sigma^{2}\right)$ where $\mu \in \mathbb{R}$ and $\sigma^{2}>0$ are unknown. For a certain $\sigma_{0}^{2}>0$, consider hypotheses $H: \sigma^{2} \leq \sigma_{0}^{2}$ vs. $K: \sigma^{2}>\sigma_{0}^{2}$.

Find an α-test with rejection region of form (c, ∞) (i.e. a one-sided test) where c is a quantile of a χ^{2}-distribution. (Note: it is not asked to find the LR test; but the test should observe level α, on all parameters in the hypothesis $H: \sigma^{2} \leq \sigma_{0}^{2}$.)

Hint: A good estimator of σ^{2} might be a starting point.

Exercise P2 (Two sample problem, F-test for variances). Let X_{1}, \ldots, X_{n} be independent $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and Y_{1}, \ldots, Y_{n} be independent $N\left(\mu_{2}, \sigma_{2}^{2}\right)$, also independent of X_{1}, \ldots, X_{n} ($n>1$) where μ_{1}, σ_{1}^{2} and μ_{2}, σ_{2}^{2} are all unknown. Define the statistics

$$
\begin{align*}
F & =F(X, Y)=\frac{S_{X}^{2}}{S_{Y}^{2}} \tag{1}\\
S_{X}^{2} & =n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}, S_{Y}^{2}=n^{-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}
\end{align*}
$$

(here (X, Y) symbolizes the total sample).
Define the \mathbf{F}-distribution with k_{1}, k_{2} degrees of freedom (denoted $F_{k_{1}, k_{2}}$) as the distribution of Z_{1} / Z_{2} where Z_{i} are independent r.v.'s having χ^{2}-distributions of k_{1} and k_{2} degrees of freedom, respectively.
i) (15%) Show that $F(X, Y)$ has an F-distribution if $\sigma_{1}^{2}=\sigma_{2}^{2}$, and find the degrees of freedom.
ii) (20\%) For hypotheses $H: \sigma_{1}^{2} \leq \sigma_{2}^{2}$ vs. $K: \sigma_{1}^{2}>\sigma_{2}^{2}$, find an α-test with rejection region of form (c, ∞) (i.e. a one-sided test) where c is a quantile of an F-distribution. (Note: it is not asked to find the LR test; but the test should observe level α, on all parameters in the hypothesis $\left.H: \sigma_{1}^{2} \leq \sigma_{2}^{2}\right)$.

Exercise P3 (25 \%) (Two sample t-test). Let X_{1}, \ldots, X_{n} be independent $N\left(\mu_{1}, \sigma^{2}\right)$ and Y_{1}, \ldots, Y_{n} be independent $N\left(\mu_{2}, \sigma^{2}\right)$, also independent of $X_{1}, \ldots, X_{n}(n>1)$, where μ_{1}, μ_{2}, and σ^{2} are all unknown. Consider hypotheses $H: \mu_{1}=\mu_{2}$ vs. $K: \mu_{1} \neq \mu_{2}$.

Show that the likelihood ratio test is equivalent to a certain t-test, i.e. a test where the critical value is chosen as the upper $\alpha / 2$-quantile of a t-distribution. (Equivalence of two tests based on the same sample here means that they result in the same decisions, for all values of the sample).

Hint: Cp. also homework exercise H6.1. The likelihood ratio computation is similar to proposition 7.5 (ii), p. 81-82 handout.

Exercise P4. (10\%) Complete the proof of proposition 7.5 handout by establishing claim (i). In detail: consider the Gaussian location-scale model (Model III), for sample size n, i. e. observations are i. i. d. X_{1}, \ldots, X_{n} with distribution $N\left(\mu, \sigma^{2}\right)$ where $\mu \in \mathbb{R}$ and $\sigma^{2}>0$ are unknown. Consider hypotheses $H: \mu \leq \mu_{0}$ vs. $K: \mu>\mu_{0}$, and the one sided t-test which rejects when the t-statistic

$$
T_{\mu_{0}}(X)=\frac{\left(\bar{X}_{n}-\mu_{0}\right) n^{1 / 2}}{\hat{S}_{n}} .
$$

is too large (with a proper choice of critical value, such that an α-test results). Show that the one sided t-test is the likelihood ratio test for this problem.

Hints: a) When maximizing $p_{\mu, \sigma^{2}}(x)$ over the alternative, the supremum is not attained ($\mu>\mu_{0}$ is an open interval). However the supremum is the same as the maximum over $\mu \geq \mu_{0}$ which is attained by certain maximum likelihod estimators $\hat{\mu}_{1}, \hat{\sigma}_{1}^{2}$ (find these, and also MLE's $\hat{\mu}_{0}, \hat{\sigma}_{0}^{2}$ under H)
b) Note that this time, in difference to part (ii), we have to show that the likelihood ratio is a monotone increasing function of $T_{\mu_{0}}(X)$ itself, not of its absolute value. Establish this by considering separately the cases of positive and nonnegative values of the t-statistic $T_{\mu_{0}}(X)$.

Exercise P5 (F-test for equality of variances). Consider the two sample problem of exercise P2, but hypotheses $H: \sigma_{1}^{2}=\sigma_{2}^{2}$ vs. $K: \sigma_{1}^{2} \neq \sigma_{2}^{2}$.
i) (5%) Find the likelihood ratio test and show that it is equivalent to a test which rejects if the F-statistic (1) is outside a certain interval of form $\left[c^{-1}, c\right]$.
ii) (5%) Show that the c of i) can be chosen as the upper $\alpha / 2$ quantile of the distribution $F_{r, r}$ for a a certain $r>0$.

