
Math 472 Statistics Spring 2000

Homework 4, given Wednesday 2/23, due Wednesday 3/1

Exercise H4.1. Consider the Gaussian location model with restricted parameter space Θ =
[−K,K], where K > 0, sample size n = 1 and σ2 = 1.

(i) Find the minimax linear estimator TLM .

(ii) Show that TLM is strictly better than the sample mean X̄n = X, everywhere on Θ =
[−K,K] (this implies that X is not admissible).

(iii) Show that TLM is Bayesian in the unrestricted model Θ = R for a certain prior distri-
bution N(0, τ2), and find the τ2.

Solution:(i)let’s assume the linear estimator TLM = aX + b with a, b ∈ R, then

Eθ (T (x)− θ)2 = Eθ (aX + b− θ)2

= Eθ(a(X − θ) + b+ (a− 1)θ)2

= a2Eθ(X − θ)2 + 2aEθ (X − θ) (b+ (a− 1)) + (b+ (a− 1) θ)2

= a2 + (b+ (a− 1) θ)2 .

Note that sup
θ
Eθ (T (x)− θ)2 = a2 + (b+ (a− 1)K)2 , b(a− 1) > 0

= a2 + (b− (a− 1)K)2 , b (a− 1) 6 0 (why? try to figure
out it.).

And, inf
{a,b|b(a−1)>0}

sup
−K6θ6K

Eθ (T (x)− θ)2 = inf
{a,b|b(a−1)>0}

a2 + (b+ (a− 1)K)2

= inf
a∈R

a2 + (a− 1)2K2 (why does b

need to be 0 ?)

= (
K2

K2 + 1
)2 +

(
K2

K2 + 1
− 1
)2

K2

( why?
d

da

(
a2 + (a− 1)2K2

)
= 0.)

=
K2

K2 + 1
,

Similarly, we have inf
{a,b|b(a−1)>0}

sup
−K6θ6K

Eθ (T (x)− θ)2 =
K2

K2 + 1
.

Thus our minimax linear estimator is TLM (X) =
K2

K2 + 1
X.
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(ii) from (i), we know that Eθ (TLM (x)− θ)2 =
K2

K2 + 1
< 1 = Eθ (X − θ)2 .

(iii) The Beyesian estimator is
τ2

τ2 + 1
X in the unrestricted model θ = R wirh the

prior distribution N(0, τ2). Thus τ2 = K2 .

Exercise H4.2 Let X1, . . . , Xn be independent and identically distributed with Poisson law
Po(λ), where λ > 0 is unknown. Assume that the statement of Theorem 4.2 (Cramer-Rao
bound for i.i.d. data) is valid in this case (the sample space X is not finite here but countable,
but it will be shown in lectures that the Cramer-Rao bound (4.10) is also valid here) .

(i) Compute the Fisher information IF (λ) for one observation X1.

(ii) Show that for n observations, the sample mean X̄n is a uniformly best unbiased estimator.

Solution: (i) since Pλ (x) =
e−λλx

x!
, we have

d

dλ
lλ (x) =

d

dλ
lnPλ (x)

=
d

dλ
(−λ+ x lnλ− lnx!)

= −1 +
x

λ
,

then,

IF (λ) = Eλ

(
d

dλ
lλ (X)

)2

= Eλ

(
−1 +

X

λ

)2

=
1
λ2Eλ (X − λ)2

=
1
λ2 var (X)

=
1
λ

.

(ii) Note that Eλ
(
Xn

)
=

1
n
nλ = λ,

and,

V ar
(
Xn

)
=

1
n
V ar (X) =

λ

n
=

1
nIF (λ)

.

This implies Xn is a uniformly best unbiased estimator.
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Exercise H4.3 Consider the Cramer-Rao bound in a continuous statistical model.
Assume X1, . . . , Xn are i.i.d. random variables, each having a density pϑ(x) defined on R,
where ϑ ∈ Θ is unknown and Θ is an interval in R. Consider the following (analogous)
definition of a Fisher information IF (ϑ) for X1:

IF (ϑ) = Eϑ

(
∂

∂ϑ
log pϑ(X1)

)2

(where it is assumed that all expressions are well defined, i.e. log pϑ(x) is defined for all x, is
differentiable in ϑ, and the expectation above is finite). Assume again that the Cramer-Rao
bound (4.10) is also valid here, for all unbiased estimators of ϑ.

(i) Specializing to Model II (Gaussian location model; pϑ(x) is the density of N(ϑ, σ2) with
unknown ϑ ∈ R and known σ2 > 0), compute IF (ϑ) for one observation X1.

(ii) Show that for n observations in Model II, the sample mean X̄n is a uniformly best
unbiased estimator.

(iii) Specialize to the Gaussian scale model: pϑ(x) is the density ofN(0, σ2), with unknown
ϑ = σ2 > 0; compute IF (σ2) for one observation X1.

(iv) Show that for n observations in the Gaussian scale model, the sample variance

S2 = n−1
n∑
i=1

X2
i

is a uniformly best unbiased estimator. (See next page for hints)

Hints: (a) Note that σ2 is treated as parameter, not σ; so it may be convenient to write ϑ
for σ2 when taking derivatives.

(b) Note that

Varσ2X2
1 = 2σ4.

A short proof runs as follows. We have X1 = σY for standard normal Z, so it suffices to
prove VarZ2 = 2. Now VarZ2 = EZ4 − (EZ2)2, so it suffices to prove EZ2 = 3. For the
standard normal density ϕ we have by partial integration, using ϕ′(x) = −xϕ(x)∫

x4ϕ(x)dx = −
∫
x3ϕ′(x)dx = 3

∫
x2ϕ(x)dx = 3.

Solution: (i) since Pθ (x) =
1

(2π)
1
2σ
e
−

(x− θ)2

2σ2 , we have

d

dθ
lθ (x) =

d

dθ

(
− ln

(
(2π)

1
2σ
)
− (x− θ)2

2σ2

)

=
x− θ
σ2

,

then,
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IF (θ) = Eθ

(
d

dθ
lθ (X)

)2

= Eθ

(
X − θ
σ2

)2

=
1
σ4
var (X)

=
1
σ2
.

(ii) Note that Eθ
(
Xn

)
= θ, and V ar

(
Xn

)
=

1
n
var (X) =

σ2

n
=

1
nIF (θ)

.

This implie Xn is a uniformly best unbiased estimator.

(iii) since Pσ2 (x) =
1

(2π)
1
2σ
e
−
x2

2σ2 , we have

d

dσ2
lσ2 (x) =

d

dσ2

(
− ln(2π)

1
2 − 1

2
lnσ2 − x2

2σ2

)

= − 1
2σ2

+
x2

2σ4
,

then,

IF
(
σ2
)

= Eσ2

(
d

dσ2
lσ2 (X)

)2

= Eσ2

(
− 1

2σ2
+
X2

2σ4

)2

=
(
− 1

2σ2

)2

+ 2
(
− 1

2σ2

)
Eσ2(X2)

2σ4
+
Eσ2(X4)
(2σ4)2

=
(
− 1

2σ2

)2

+ 2
(
− 1

2σ2

)
σ2

2σ4
+

2σ4 + (σ2)2

(2σ4)2

=
1

2σ4
.

(from the hint(b), we have E
(
X4
)

= V ar
(
X2
)

+
(
E
(
X2
))2

.)

(iv) Note that E
(
S2
)

=
1
n
nE
(
X2
)

= E
(
X2
)

= σ2, and

var
(
S2
)

=
1
n
var

(
X2
)
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=
1
n
E
(
X2 −EX2

)2
=

1
n

(
EX4 − 2σ2EX2 + σ4

)
=

1
n

(3σ4 − 2σ2σ2 + σ4)

=
2σ4

n

=
1

nIF (σ2)
.

This implie S2 is a uniformly best unbiased estimator.


