Exercise H4.1. Consider the Gaussian location model with restricted parameter space $\Theta = [-K, K]$, where K > 0, sample size n = 1 and $\sigma^2 = 1$.

(i) Find the minimax linear estimator T_{LM} .

(ii) Show that T_{LM} is strictly better than the sample mean $\bar{X}_n = X$, everywhere on $\Theta = [-K, K]$ (this implies that X is not admissible).

(iii) Show that T_{LM} is Bayesian in the unrestricted model $\Theta = \mathbb{R}$ for a certain prior distribution $N(0, \tau^2)$, and find the τ^2 .

Solution:(i)let's assume the linear estimator $T_{LM} = aX + b$ with $a, b \in R$, then

$$E_{\theta} (T (x) - \theta)^{2} = E_{\theta} (aX + b - \theta)^{2}$$

= $E_{\theta} (a(X - \theta) + b + (a - 1)\theta)^{2}$
= $a^{2}E_{\theta} (X - \theta)^{2} + 2aE_{\theta} (X - \theta) (b + (a - 1)) + (b + (a - 1)\theta)^{2}$
= $a^{2} + (b + (a - 1)\theta)^{2}$.

Note that $\sup_{\theta} E_{\theta} (T(x) - \theta)^2 = a^2 + (b + (a - 1)K)^2, \ b(a - 1) \ge 0$

 $= a^{2} + (b - (a - 1)K)^{2}, b(a - 1) \leq 0$ (why? try to figure

out it.).

And,
$$\inf_{\{a,b|b(a-1)\ge 0\}-K\le \theta\le K} E_{\theta} (T(x) - \theta)^2 = \inf_{\{a,b|b(a-1)\ge 0\}} a^2 + (b + (a-1)K)^2$$

 $= \inf_{a \in \mathbb{R}} a^2 + (a-1)^2 K^2 \quad (\text{why does } b$

need to be 0?)

(why? $\frac{d}{da}\left(a^2+\left(a\right)\right)$

$$= \left(\frac{K^2}{K^2+1}\right)^2 + \left(\frac{K^2}{K^2+1} - 1\right)^2 K^2$$
$$-1)^2 K^2 = 0.)$$

$$=\frac{1}{K^2+1}$$

 K^2

Similarly, we have $\inf_{\{a,b|b(a-1)\ge 0\}-K\leqslant \theta\leqslant K} E_{\theta} \left(T\left(x\right)-\theta\right)^2 = \frac{K^2}{K^2+1}.$

Thus our minimax linear estimator is $T_{LM}(X) = \frac{K^2}{K^2 + 1}X.$

(ii) from (i), we know that $E_{\theta} (T_{LM} (x) - \theta)^2 = \frac{K^2}{K^2 + 1} < 1 = E_{\theta} (X - \theta)^2$.

(iii) The Beyesian estimator is $\frac{\tau^2}{\tau^2+1}X$ in the unrestricted model $\theta = R$ with the prior distribution $N(0, \tau^2)$. Thus $\tau^2 = K^2$.

Exercise H4.2 Let X_1, \ldots, X_n be independent and identically distributed with Poisson law $Po(\lambda)$, where $\lambda > 0$ is unknown. Assume that the statement of Theorem 4.2 (Cramer-Rao bound for i.i.d. data) is valid in this case (the sample space \mathcal{X} is not finite here but countable, but it will be shown in lectures that the Cramer-Rao bound (4.10) is also valid here).

- (i) Compute the Fisher information $I_F(\lambda)$ for one observation X_1 .
- (ii) Show that for n observations, the sample mean \bar{X}_n is a uniformly best unbiased estimator.

Solution: (i) since
$$P_{\lambda}(x) = \frac{e^{-\lambda}\lambda^{x}}{x!}$$
, we have

$$\frac{d}{d\lambda}l_{\lambda}(x) = \frac{d}{d\lambda}\ln P_{\lambda}(x)$$

$$= \frac{d}{d\lambda}(-\lambda + x\ln\lambda - \ln x!)$$

$$= -1 + \frac{x}{\lambda},$$

then,

$$I_F(\lambda) = E_\lambda \left(\frac{d}{d\lambda} l_\lambda(X)\right)^2$$
$$= E_\lambda \left(-1 + \frac{X}{\lambda}\right)^2$$
$$= \frac{1}{\lambda^2} E_\lambda (X - \lambda)^2$$
$$= \frac{1}{\lambda^2} var(X)$$
$$= \frac{1}{\lambda}.$$
(ii) Note that $E_\lambda \left(\bar{X}_n\right) = \frac{1}{n} n\lambda =$

and,

$$Var\left(\bar{X_n}\right) = \frac{1}{n}Var\left(X\right) = \frac{\lambda}{n} = \frac{1}{nI_F\left(\lambda\right)}.$$

λ,

This implies X_n is a uniformly best unbiased estimator.

Exercise H4.3 Consider the **Cramer-Rao bound in a continuous statistical model**. Assume X_1, \ldots, X_n are i.i.d. random variables, each having a density $p_{\vartheta}(x)$ defined on \mathbb{R} , where $\vartheta \in \Theta$ is unknown and Θ is an interval in \mathbb{R} . Consider the following (analogous) definition of a Fisher information $I_F(\vartheta)$ for X_1 :

$$I_F(\vartheta) = E_{\vartheta} \left(\frac{\partial}{\partial \vartheta} \log p_{\vartheta}(X_1)\right)^2$$

(where it is assumed that all expressions are well defined, i.e. $\log p_{\vartheta}(x)$ is defined for all x, is differentiable in ϑ , and the expectation above is finite). Assume again that the Cramer-Rao bound (4.10) is also valid here, for all unbiased estimators of ϑ .

(i) Specializing to Model II (Gaussian location model; $p_{\vartheta}(x)$ is the density of $N(\vartheta, \sigma^2)$ with unknown $\vartheta \in \mathbb{R}$ and known $\sigma^2 > 0$), compute $I_F(\vartheta)$ for one observation X_1 .

(ii) Show that for n observations in Model II, the sample mean \bar{X}_n is a uniformly best unbiased estimator.

(iii) Specialize to the **Gaussian scale model:** $p_{\vartheta}(x)$ is the density of $N(0, \sigma^2)$, with unknown $\vartheta = \sigma^2 > 0$; compute $I_F(\sigma^2)$ for one observation X_1 .

(iv) Show that for *n* observations in the Gaussian scale model, the sample variance

$$S^2 = n^{-1} \sum_{i=1}^n X_i^2$$

is a uniformly best unbiased estimator. (See next page for hints)

Hints: (a) Note that σ^2 is treated as parameter, not σ ; so it may be convenient to write ϑ for σ^2 when taking derivatives.

(b) Note that

$$\operatorname{Var}_{\sigma^2} X_1^2 = 2\sigma^4.$$

A short proof runs as follows. We have $X_1 = \sigma Y$ for standard normal Z, so it suffices to prove $\operatorname{Var} Z^2 = 2$. Now $\operatorname{Var} Z^2 = EZ^4 - (EZ^2)^2$, so it suffices to prove $EZ^2 = 3$. For the standard normal density φ we have by partial integration, using $\varphi'(x) = -x\varphi(x)$

$$\int x^4 \varphi(x) dx = -\int x^3 \varphi'(x) dx = 3 \int x^2 \varphi(x) dx = 3.$$

Solution: (i) since $P_{\theta}(x) = \frac{1}{(2\pi)^{\frac{1}{2}}\sigma}e^{-\frac{(x-\theta)^2}{2\sigma^2}}$, we have

$$\frac{d}{d\theta}l_{\theta}(x) = \frac{d}{d\theta}\left(-\ln\left((2\pi)^{\frac{1}{2}}\sigma\right) - \frac{(x-\theta)^{2}}{2\sigma^{2}}\right)$$
$$= \frac{x-\theta}{\sigma^{2}},$$

then,

$$I_F(\theta) = E_\theta \left(\frac{d}{d\theta}l_\theta(X)\right)^2$$
$$= E_\theta \left(\frac{X-\theta}{\sigma^2}\right)^2$$
$$= \frac{1}{\sigma^4} var(X)$$
$$= \frac{1}{\sigma^2}.$$

(ii) Note that
$$E_{\theta}\left(\bar{X_n}\right) = \theta$$
, and $Var\left(\bar{X_n}\right) = \frac{1}{n} var\left(X\right) = \frac{\sigma^2}{n} = \frac{1}{nI_F(\theta)}$.

This implie $\bar{X_n}$ is a uniformly best unbiased estimator. r^2

(iii) since
$$P_{\sigma^2}(x) = \frac{1}{(2\pi)^{\frac{1}{2}}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$
, we have
$$\frac{d}{d\sigma^2} l_{\sigma^2}(x) = \frac{d}{d\sigma^2} \left(-\ln(2\pi)^{\frac{1}{2}} - \frac{1}{2}\ln\sigma^2 - \frac{x^2}{2\sigma^2} \right)$$
$$= -\frac{1}{2\sigma^2} + \frac{x^2}{2\sigma^4},$$

then,

$$\begin{split} I_F(\sigma^2) &= E_{\sigma^2} \left(\frac{d}{d\sigma^2} \, l_{\sigma^2} \, (X) \right)^2 \\ &= E_{\sigma^2} \left(-\frac{1}{2\sigma^2} + \frac{X^2}{2\sigma^4} \right)^2 \\ &= \left(-\frac{1}{2\sigma^2} \right)^2 + 2 \left(-\frac{1}{2\sigma^2} \right) \frac{E_{\sigma^2}(X^2)}{2\sigma^4} + \frac{E_{\sigma^2}(X^4)}{(2\sigma^4)^2} \\ &= \left(-\frac{1}{2\sigma^2} \right)^2 + 2 \left(-\frac{1}{2\sigma^2} \right) \frac{\sigma^2}{2\sigma^4} + \frac{2\sigma^4 + (\sigma^2)^2}{(2\sigma^4)^2} \\ &= \frac{1}{2\sigma^4}. \end{split}$$

(from the hint(b), we have $E(X^4) = Var(X^2)$

 $+\left(E\left(X^{2}
ight)
ight) ^{2}.
ight)$

(iv) Note that
$$E(S^2) = \frac{1}{n}nE(X^2) = E(X^2) = \sigma^2$$
, and
 $var(S^2) = \frac{1}{n}var(X^2)$

$$= \frac{1}{n}E\left(X^2 - EX^2\right)^2$$
$$= \frac{1}{n}\left(EX^4 - 2\sigma^2 EX^2 + \sigma^4\right)$$
$$= \frac{1}{n}(3\sigma^4 - 2\sigma^2\sigma^2 + \sigma^4)$$
$$= \frac{2\sigma^4}{n}$$
$$= \frac{1}{nI_F(\sigma^2)}.$$

This implie S^2 is a uniformly best unbiased estimator.